

Contents

1	Integrated Product Design	1
1.1	Introduction	1
1.2	Determination of Importance of Customer Requirements	4
1.3	Identification of New Product Opportunities.....	9
1.4	Functional Modeling of the Relationships between Customer Requirement and Design Attributes.....	11
1.4.1	Linear Modeling Methods.....	14
1.4.2	Nonlinear Modeling Methods	15
1.5	Maximization of Overall Customer Satisfaction and Determination of Design Attribute Setting of a New Product	15
1.6	Development of Manufacturing Process Models for Quality Prediction of Manufactured Products	19
1.7	Conclusion.....	21
	References	22
2	Computational Intelligence Technologies for Product Design.....	25
2.1	Introduction.....	25
2.2	Modeling Approaches	26
2.2.1	Fuzzy Regression	28
2.2.1.1	Tanaka's Fuzzy Regression	30
2.2.1.2	Peters' Fuzzy Regression.....	30
2.2.2	Neural Networks.....	33
2.2.2.1	Different Configurations of Neural Networks	34
2.2.2.2	Learning Algorithms for Neural Network Weights	40
2.3	Stochastic Optimization Approaches	43
2.3.1	Simulated Annealing	43
2.3.2	Evolutionary Algorithm.....	46
2.3.3	Particle Swarm Optimization.....	48
2.4	Summary of This Chapter	52
2.5	Application of Computational Intelligence Techniques to Product Design within This Book	53
	References	55

3 Determination of Importance of Customer Requirements Using the Fuzzy AHP Method.....	59
3.1 Introduction.....	59
3.2 Hierarchical Structure for the Development of Customer Requirements	60
3.3 Fuzzy Representation of Pairwise Comparison	61
3.4 Fuzzy AHP.....	63
3.5 Case Study: Removable Mountain Bicycle Splashguard	65
3.5.1 Developing a Hierarchical Structure of Customer Requirements for Bicycle Splash-Guard Design.....	65
3.5.2 Constructing Fuzzy Comparison Matrices	66
3.5.3 Computing Importance Weights of Customer Requirements.....	68
3.7 Conclusion	75
References	76
4 An Enhanced Fuzzy AHP Method with Extent Analysis for Determining Importance of Customer Requirements	79
4.1 Introduction.....	79
4.2 Overall Customer Satisfaction on Hair Dryer Design.....	79
4.2.1 Development of the Fuzzy Matrix.....	80
4.2.2 Pairwise Comparison of Customer Requirements	81
4.2.3 Calculation of the Consistency Index and Consistency Ratio	85
4.2.4 Determination of Weight Vectors for Customer Satisfaction	86
4.2.5 Comparison of Fuzzy Numbers.....	87
4.3 Conclusion	92
References	92
5 Development of Product Design Models Using Classical Evolutionary Programming.....	95
5.1 Introduction	95
5.2 Classical Genetic Programming	96
5.2.1 Model Representation	98
5.2.2 Fitness Function.....	99
5.2.3 Crossover and Mutation	100
5.2.4 Selection and Convergence	101
5.3 A Case Study of Digital Camera Design	102
5.4 Conclusion.....	107
References	107

6 Development of Product Design Models Using Fuzzy Regression Based Genetic Programming	111
6.1 Introduction	111
6.2 Fuzzy Regression Based Genetic Programming.....	112
6.2.1 Specification of the Form of the Fuzzy Regression Model.....	112
6.2.2 Determination of Fuzzy Coefficients	113
6.2.3 Pseudocode of Algorithm.....	113
6.2.3.1 Functional Model Representation.....	115
6.2.3.2 Fitness Function	116
6.2.3.3 Evolutionary Operations.....	117
6.3 An Illustrative Example.....	117
6.3.1 Mobile Phone Design.....	117
6.3.2 Functional Model Development.....	120
6.3.3 Optimization of Affective Design	124
6.4 Conclusion.....	125
References	126
7 Generalized Fuzzy Least Square Regression for Generating Customer Satisfaction Models	129
7.1 Introduction.....	129
7.2 Theoretical Background of Generalized Fuzzy Least Squares Regression	130
7.3 Modeling Functional Relationships Using Generalized Fuzzy Least-Squares Regression (GFLSR)	133
7.4 An Illustrative Case: Packing Machine Design.....	138
7.4.1 Establishing a HOQ for Packing Machine Design	138
7.4.2 Normalizing Engineering Performance Values of Engineering Characteristics	138
7.4.3 Development of Functional Models Regarding QFD.....	140
7.5 Conclusion	142
References	142
8 An Enhanced Neuro-fuzzy Approach for Generating Customer Satisfaction Models	145
8.1 Introduction	145
8.2 An Enhanced Neural Fuzzy Network Approach.....	145
8.2.1 Development of Neural Fuzzy Network Models.....	146
8.2.2 Extraction of Significant Fuzzy Rules and the Corresponding Internal Models Using a Proposed Rule Extraction Method	148
8.3 Case Study: Notebook Computer.....	150
8.4 Conclusion	160
References	161

9 Optimization of Customer Satisfaction Using an Improved Simulation Annealing	163
9.1 Introduction	163
9.2 Development of Neighbourhood Function Based on Orthogonal Experimental Design for Product Design Purposes	164
9.2.1 Orthogonal Array Based Neighbourhood Function (ONF)	164
9.2.2 An Improved Orthogonal Array Based Neighbourhood Function	166
9.3 A Case Study: Emulsified Dynamite Packing Machine	168
9.4 Conclusion	173
References	174
10 An Enhanced Genetic Algorithm Integrated with Orthogonal Design	177
10.1 Introduction	177
10.2 Orthogonal Array Based Crossovers	178
10.2.1 Orthogonal Crossover (OC)	179
10.2.2 Main Effect Crossover (MC)	182
10.3 Interaction Crossover (IC)	184
10.4 A Case Study: Car Door Design	186
10.5 Conclusion	194
References	195
11 A Nonlinear Fuzzy Regression for Developing Manufacturing Process Models	199
11.1 Introduction	199
11.2 Nonlinear Fuzzy Regression	200
11.2.1 Model Representation	202
11.2.2 Fitness Function	203
11.2.3 Crossover and Mutation	204
11.2.4 Selection and Convergence	204
11.3 Validation of Genetic Programming Based Fuzzy Regression Approach to Modeling Manufacturing Processes	205
11.4 Conclusion	210
References	211
12 Rule Extraction from Experimental Data for Manufacturing Process Design	213
12.1 Introduction	213
12.2 Fluid Dispensing for Microchip Encapsulation	214
12.3 GA-Based Rule Discovery System	215
12.3.1 Generation of Random Strings	216
12.3.2 Fitness Evaluation	216
12.3.3 Selection and Convergence	218
12.3.4 Crossover and Mutation	219

12.3.5	Rule Induction	220
12.4	Results Verification	221
12.5	Conclusion	226
	References	226
13	Conclusion and Future Work	229
13.1	Conclusions	229
13.1.1	Determination of Importance Weights for Customer Requirements	230
13.1.2	Development of Customer Satisfaction Models	231
13.1.3	Optimization of Overall Customer Satisfaction	233
13.1.4	Development of Manufacturing Process Models for Quality Prediction of Products	233
13.2	Future Works	234
13.2.1	Collection of Customer Survey Data Using Web Mining	234
13.2.2	Investigation of Innovative Computational Intelligence Approaches	235
	References	235
	Index	237