

Contents

The Authors X

Preface XI

1 **Definition, History, Discipline** 1

1.1 Definition of Environmental Engineering 1

1.2 History and Development of Environmental Engineering 3

1.3 From Environmental Chemistry and Technology to Environmental Engineering: Understanding and Diversifying Anthropogenic Environmental Influences 20

1.3.1 Meaning of Pollutant Degradation 26

1.3.2 Substances and Their Sources 43

1.3.3 Transport and Chemical Alteration of Environmental Chemicals 50

1.3.4 Reactions and Effects 53

1.3.5 Examples of Lipophilic Behavior, Accumulation and Toxicity: Kinds and Reasons of Effects Caused by Organotin Compounds 55

1.3.6 The Term "Heavy Metals" and Its (Purported) Chemical and Toxicological Ramifications 57

1.4 How to Determine Environmental Pollution 59

1.4.1 From Methods of Trace Analysis up to Understanding the Underlying Processes 59

1.4.1.1 Inorganic and Organic Compounds 63

1.4.1.2 Speciation and Concentration 65

1.4.1.3 Quality Control of Analysis 66

1.4.1.4 Accreditation of Laboratories 68

1.4.2 Physical Methods in Chemical and Environmental Analysis, Modeling Ecosystems and the Role of Ecotoxicology in Integrative Environmental Sciences 70

1.4.2.1 Analytical Chemistry 71

1.4.2.2 Geographical Information Systems 72

1.4.2.3 Biotest – Biological and Ecotoxicological Implications 74

1.4.2.4 Locating Soil Pollution Sites by Geoelectric and Other Means 77

1.5	Biological System of the Elements	80
1.5.1	Specificity	85
1.5.2	Essentiality	86
1.5.3	Bioavailability	88
1.5.4	Toxicity	91
1.6	Information and Communication	93
1.6.1	What Is This Thing Called Information?	94
1.6.2	Information Processing and Communication – The Ratio and Relationship between Subjective and Objective Factors in Processes of Recognition	95
1.6.3	Ways of Producing Knowledge Established in Natural Sciences Lead Us Back to Accepting and Integrating Plurality of Views and Opinions	98
1.6.4	Examples from Environmental Research	101
1.6.5	Performance of Brain and Modern Computers; a Comparison – Artificial Intelligence and the Internet	103
1.6.6	Emotional Intelligence	105
1.6.7	How to Shape Dialogic Education Processes (DEP) as a Future Principle of Communication	107
1.7	Ethical Aspects for Society	107
1.7.1	A Market-Based Economy	109
1.7.2	Democracy and Its Limitations	112
1.7.3	Protocol for the Future: Grow along with Your Challenges	114
1.7.3.1	Thoughts on the Future	114
1.7.3.2	International Quality Ends	116
1.7.3.3	Learn How to Learn	117
1.7.3.4	Transborder and International Regions of Education	119
1.7.3.5	Think Tanks Can Be Sites and Means of Smart Conflict Handling and Identify Integrative Solutions for Problems of Society	120
1.7.3.6	How Much Time Is Left for Solutions Taking Care of and Integrating the Present Problems?	120
1.7.3.7	Conclusion	122
2	The Compartments of the Environment – Structure, Function and Chemistry	125
2.1	The Three Environmental Compartments and Their Mutual Interactions: Lessons for Environmental Situation Analysis and Technologies to be Learned from Comparative Planetology	125
2.2	Properties of Earth's Environmental Compartments and Resulting Options to Clean Them	133
2.2.1	Atmosphere	133
2.2.1.1	The Reactor Concept Applied to the Atmosphere	138
2.2.1.2	Structure and Layers of the Atmosphere	140
2.2.1.3	The Atmosphere Acting as a Reactor: the Specific Role(s) of Highly Reactive Species	143
2.2.1.4	Chemical Peculiarities: Acidic and/or Hydrophilic Gases in the Atmosphere	148

2.2.1.5	Air is a Multiphase System	149
2.2.1.6	Catalytic Processes in the Atmosphere	151
2.2.1.7	Chemical Reactivity, Growth and Removal (Precipitation) of Particles from Atmosphere	155
2.2.1.8	Conclusions Concerning Air Quality Integrity	156
2.2.2	Water (Fresh-, Marine-, Groundwater)	156
2.2.2.1	Water as a Medium: Density, Optical and Thermal Properties, and Effects thereof on Biological Processes	157
2.2.2.2	Chemical Properties and Their Variation	161
2.2.2.3	Water as a Multiphase System	163
2.2.2.4	Freshwater, Seawater, Osmotic Pressure, Redox States and Biology	164
2.2.2.5	Non-Equilibria among Different Water Layers Can Promote Chemistry, Biological Processes and Deposition of Materials	169
2.2.2.6	Biogeochemical Cycles in Water, Stoichiometric Ecology and the Design of Sewage Treatment Plants Making Use of Biotechnology	170
2.2.3	Soils and Sediments	173
2.2.3.1	Soil as a Multiphase System	174
2.2.3.2	Important Chemical Features of Soils	177
2.2.3.3	Soil as a Bioreactor	178
2.2.3.4	Gradients Do Form in Soils	180
2.2.3.5	Perturbations of Soil Development	182
2.2.3.6	Implications for Soil Sanitation	183
2.3	A Comparison among Environmental Compartments: Phase Composition, Miscibility toward Key Reactants and Contaminants, Transparency and Biological Activity	190
	Conclusions	195
3	Innovative Technologies	197
3.1	Criteria for Innovation	197
3.1.1	Sustainability	198
3.1.2	National and International Jurisdiction	200
3.1.3	Cost/Benefit Calculations	202
3.2	Examples of Innovative Environmental Technologies	203
3.2.1	Precipitation, Adsorption and Immobilization	205
3.2.1.1	Precipitation	205
3.2.1.2	Adsorption	208
3.2.1.3	Immobilization	211
3.2.2	Redox Potentials, Pourbaix Diagrams and Speciation	212
3.2.3	Reaction Kinetics and Hammett Equation	226
3.2.3.1	When Can Charge Density Patterns Control Kinetics of Entire (Larger) Molecules?	227
3.2.3.2	Chemical Properties of Aromatic Compounds	228
3.2.3.3	Kinetic Modeling of Reactions at Non-aromatic Unsaturated Hydrocarbons by the Taft Equation	235

3.2.3.4	Partition of Volatile Aromatics and Their Respective Oxidation Kinetics between Air and Water: Practical Examples from Environmental Chemistry	237
3.2.4	Activation Barriers versus Catalysis	240
3.2.4.1	Reaction Kinetics and Mutual Repulsion among Molecules	240
3.2.4.2	Kinetics, Catalysis, Equilibrium	242
3.2.4.3	Homogeneous versus Heterogeneous Catalysis	244
3.2.5	Throughflow Equilibria and How to Run a Process	248
3.2.5.1	Equilibrium, Equilibrium Constant and Reaction Kinetics	248
3.2.5.2	From Equilibrium Thermodynamics into Flow Systems: Which Are the Effects by Adding and Removing Substances Steadily?	249
3.2.5.3	Nonlinear Chemical Kinetics Can Occur in Throughflow Systems	251
3.2.5.4	Flow Equilibria in Biology: The Blueprint and Precondition for Biomimetic Processes	252
3.2.5.5	The Hard Way into Flow Equilibrium	254
4	Specific Studies	257
4.1	Atmosphere	258
4.1.1	Bioindication and Biomonitoring	258
4.1.1.1	The Problem	259
4.1.1.2	Definitions	260
4.1.1.3	Using Plants as Bioindicators/Biomonitorors	263
4.1.1.4	Comparision of Instrumental Measurements and the Use of Bioindicators with Respect to Harmonization and Quality Control	266
4.1.1.5	Examples of Bioindication/Biomonitoring: Controlling the Atmospheric Deposition of Chemical Elements by Using Mosses and Spanish "Moss" (<i>Tillandsia usneoides</i>)	267
4.1.1.6	Conclusion/Outlook: Construction of a Setup for Preventive Healthcare	276
4.1.2	CO ₂ Reduction	276
4.1.2.1	The Problem	276
4.1.2.2	Applicable Principles and Technical Solutions	285
4.1.2.3	A Practical Example	291
4.1.2.4	CO ₂ -based Radiative Forcing versus Other Sources and Distributions of Waste Heat: What about Nuclear Energy?	294
4.1.2.5	Conclusion	295
4.2	Soils and Sediments	296
4.2.1	Phytoremediation	296
4.2.1.1	The Problem	296
4.2.1.2	Purposes of Mitigation of Noxious Effects	297
4.2.1.3	The Use of Certain Plants and Trees to Clean up Soil	299
4.2.1.4	The Efficacy of Bioremediation Has Been Determined Chemically	302
4.2.1.5	Conclusion	304
4.2.2	Ethylenediamine Tetraacetic Acid—Its Chemical Properties, Persistence, Ecological Hazards and Methods of Removal	305

- 4.2.2.1 The Problem 305
- 4.2.2.2 Fields and Amounts of EDTA Application 306
- 4.2.2.3 The Compound and Its Properties: Why a Complexing Agent Makes Trouble 309
- 4.2.2.4 Principles of Action (Pathways of EDTA Degradation) and Technical Remediation: A Survey of Chances and Obstacles 314
- 4.2.2.5 Practical Experience 320
- 4.2.2.6 Conclusion 321
- 4.3 Water 322
 - 4.3.1 Reactive Walls 322
 - 4.3.1.1 The Problem 322
 - 4.3.1.2 Principles of Action and Practical Solutions 324
 - 4.3.1.3 Conclusion 335
- 4.3.2 Pharmaceuticals in the Environment—Special Emphasis on Diclofenac (Voltaren™)—An Analgetic Agent with Difficult and Interesting Properties 335
 - 4.3.2.1 The Problem 335
 - 4.3.2.2 Toxicological Effects to Animals 337
 - 4.3.2.3 Novel Methods of Removing Diclofenac 339
- 4.4 Energy—One of the Biggest Challenges of the Twenty-first Century. The Need for Renewable Energy 342
 - 4.4.1 The Problems 342
 - 4.4.1.1 Energy Depletion of Fossil Fuels 342
 - 4.4.1.2 Climate Protection 346
 - 4.4.1.3 The Role of Nuclear Power 348
 - 4.4.2 Rethinking to the Way for Ecological Economics 354
 - 4.4.2.1 Global View of Renewable Energy 355
 - 4.4.2.2 Renewable Energy in Germany and the Planned Nuclear Exit 366
 - 4.4.2.3 The Growth Region Ems Axis, Lower Saxony (Northwestern Germany) 367
 - 4.4.3 Conclusion 371

Glossary 373

References 391

Periodic Table of Elements 415

Index 417