

Contents

Kurzzusammenfassung	i
Abstract	ii
Thesis Outline	iii
List of Abbreviations Used Within This Work.	iv
1 Introduction	
1.1 Multiphoton Absorption	1
1.2 Principles of Photopolymerization	3
1.3 Two-photon Polymerization (2PP) Technique.	5
1.4 Materials for 2PP Processing.	10
1.5 Current Development Status and Applications of 2PP Technique	15
1.6 Photonic Crystals – Engineering the Propagation of Light.	18
2 Materials and methods	
2.1 Experimental Setup for 2PP Processing	22
2.2 Materials Applied for 2PP Processing.	23
2.3 3D Structure Replication by UV-micromolding	27
3 Results and discussions	
<u>3.1 Investigations of 2PP Process</u>	
3.1.1 Hybrid Organic-Inorganic Materials for 2PP Processing.	31
3.1.2 Shrinkage of Materials Processed by 2PP technique.	34
3.1.3 Structuring of Acrylated Poly(Ethylene Glycol)s with 2PP	38
<u>3.2 Applications of 2PP in Microphotonics</u>	
3.2.1 Fabrication of Microoptical Elements	41
3.2.2 Realisation of 3D Photonic Crystals	
Theoretical Investigations of Properties of 3D Photonic Crystals	45
Results of Experimental Realisation of 3D Photonic Crystals:	52
Fabrication of 3D Photonic Crystals Containing NLO Chromophore	60
Fabrication of Shaped 3D Photonic Crystals	62
<u>3.3 Biomedical applications of 2PP Technique</u>	
3.3.1 Microneedles for Transdermal Drug Delivery	65
3.3.2 Fabrication of Microprostheses.	71
3.3.3 Scaffolds for Tissue Engineering	75
4 Summary and Outlook	
References	85
List of own Publications	95