Table of Contents

Table of figuresiv						
_ist of tablesv						
ABBREVIATIONSvi						
1.0	INT	RODUCTION	1			
1.1	1 Th	ne human and simian immunodeficiency viruses	1			
1.1	1.1	Origin and similarities, infection and pathogenesis	1			
	1.1.2	Gene structure and functions				
	1.1.3	Receptor-virus interactions				
	1.1.4	Replication, transcription and regulation of gene expression				
	1.1.5	Cytokines in immune response and regulation	10			
	1.1.6	Effects of chemokines on HIV/SIV infection	11			
	1.2	Pre-clinical models of HIV-1 vaccine studies	13			
	1.2.1	DNA Vaccines	14			
	1.2.2	Viral vector vaccines	15			
	1.3	Rationale for the study	16			
	1.4	Study Objectives	17			
2.0	MA	TERIALS AND METHODS	19			
	2.1	General Methods	19			
	2.1.1	Immunogens	19			
	2.1.2	Experimental animals and design	21			
	2.1.3	Follow-up before and after challenge	22			
	2.1.4	Preparation of Peripheral Blood Mononuclear Cells	23			
	2.1.5	Preparation of virus stock for in vitro infections	23			
	2.1.6	Virus titration	23			
	2.1.7	Indirect Immunoperoxidase Assay	24			
	2.2	Ex vivo susceptibility assays	24			
	2.2.1	Infection of peripheral blood mononuclear cells	24			
	2.2.2	Preparation of DNA Plasmids for PCR standards	25			
	2.2.3	In vitro transcription and preparation of RNA standards for PCR	26			
	2.2.4	Isolation of viral RNA for quantitative PCR	28			
	2.2.5	Quantitative Real-time Reverse Transcriptase PCR				
	2.3	SIVgag-specific IFNγ ELISPOT assays				
	2.4	CD-8+ T-cell non-cytotoxic antiviral response (CNAR) assay				
	2.5	Flow cytometry analyses				
	2.6	Macaque MHC-class 1 typing techniques				
	2.6.1	DNA preparation for MHC typing				
		3. 0				

	2.6.	2 MHC class I locus-specific PCR typing	.33
	2.7	Cytokine assays	.34
	2.7.	2 Preparation of Standards for the assay	.34
	2.7.	3 Cytokine bead array: principles of the assay	.35
	2.7.	4 Cytokine bead array: assay procedures	.35
	2.8	Statistical analyses and determination of associations	.37
3.	0 RI	ESULTS	.38
	3.1.1	Immunization significantly attenuates ex vivo susceptibility to SIV	.38
	3.2	Immune Correlates of ex vivo SIV suppression	.43
	3.2.1	Suppression of SIV ex vivo correlates with INF7-ELISPOT and CNAR	.43
	3.3	Progression to SIV infection after challenge	.48
	3.3.	1 Immunisation leads to significant control of acute viremia after challenge	49
	3.3.	2 Immunization preserves memory CD4+ T-cells after challenge	.53
	3.4	Influence of MHC class-1 allele on susceptibility to SIV	.54
	3.4.	1 PCR typing and MHC- class 1 Mamu allele frequencies	56
	3.4.	2 MHC- class 1 allele did not affect ex vivo susceptibility to SIV infection	. 57
	3.4.	3 Influence of MHC class 1 on control of viremia after challenge	. 59
	3.4. repl	4 Expression of high frequency MHC-1 alleles is linked to rapid SIV ication and viremia turnover	.61
	3.5	Effect of chemokines and cytokines on ex vivo susceptibility to SIV	62
	3.5. cells	1 Secretion of β-chemokines and cytokines is suppressed in ex vivo infects of immunised macaques.	
	3.5. vira	2 Gama inducible protein 10 (IP10, or CXCL10) is lowered during effective control and increased during rapid virus replication	
	3.5.	3 Association of chemokines and cytokines with SIV replication ex vivo	67
	3.6.	1 Pre-challenge VVR accurately predicts plasma viremia after challenge	70
	3.6. afte	2 Intrinsic susceptibility ex vivo predicts the number of memory CD4+ T-corr challenge.	
	3.6. and	Pre-challenge CNAR but not IFN _γ ELISPOT correlate with plasma virem memory CD4+ T-cells counts	
	3.6. plas	4 Pre-challenge secreted cytokine levels correlate with post-challenge sma viremia and memory CD4+ T-cell counts	75
4.	0 D	ISCUSSIONS	78
	4.1	Ex vivo susceptibility to SIV infection.	78
	4.2	Control of viremia after challenge.	79
	4.3	Influence of MHC-class 1 alleles on ex vivo and in vivo virus replication	82
	4.4	Influence of cytokines and chemokines on ex vivo SIV infection	85
	4.4.1	Kinetics of cytokines and chemokines in ex vivo infected PBMC cultures	85

4.4.2 Association of β -chemokines and cytokines with <i>ex vivo</i> SIV replication86					
4.4.3 CXCL10 is associated with increased susceptibility to SIV88					
4.5 Ex vivo model as a predictive surrogate for post-challenge outcome89					
4.5.1 Intrinsic susceptibility predicts viremia and CD4+ T-cell memory after challenge90					
4.5.2 Pre-challenge CNAR but not IFN / ELISPOT predicts post-challenge plasma viremia and memory CD4+ T-cells90					
4.5.3 Beta chemokines correlate differentially with efficacy of vaccine-induced protection92					
4.5.4 Pre-challenge levels of CXCL10 correlate with post-challenge plasma viremia and memory CD4+ T-cells92					
5. CONCLUSIONS94					
6.0 SUMMARY95					
6.0 ZUSAMMENFASSUNG97					
7.0 REFERENCES99					
APPENDIX120					
App. 1.1 REAGENTS AND MATERIALS USED FOR VARIOUS ASSAYS120					
ACKNOWLEDGEMENT129					
CURRICULUM VITAE AND BIBLIOGRAPHY131					
LEBENSLAUF132					