Contents

1	HILL	oaucuo	n	I		
2	Systems Analysis: The Strategy of Modeling					
	2.1		dology of Modeling	6		
	2.2		g the Modeling Problem	7		
	2.3		izing the Work	11		
	2.4		oping the Model	14		
		2.4.1	Phenomenological Modeling	15		
		2.4.2	Algorithmization	18		
		2.4.3	Programming	21		
		2.4.4	Testing the Faithfulness of a Model	22		
	2.5	Perfor	ming a Computational Experiment	24		
	2.6	Conclu	usion	27		
	Refe	rences		30		
3	Con	stitutio	n and Model Description of the Structural			
3			n and Model Description of the Structural stics of Metallurgical Melts	33		
3		racteris	-	33		
3	Cha	racteris	stics of Metallurgical Melts			
3	Cha	racteri s Structi	stics of Metallurgical Melts	33 33 36		
3	Cha	racteris Structi 3.1.1	stics of Metallurgical Melts	33 33		
3	Cha	Structoris 3.1.1 3.1.2	stics of Metallurgical Melts ural Characteristics of Melts Radial Distribution Function and Structure Factor. Partial Structure Factors.	33 33 36 39 47		
3	Cha	Structo 3.1.1 3.1.2 3.1.3 3.1.4	stics of Metallurgical Melts ural Characteristics of Melts Radial Distribution Function and Structure Factor Partial Structure Factors Model Description of Structural Characteristics	33 33 36 39		
3	Cha 3.1	Structo 3.1.1 3.1.2 3.1.3 3.1.4	stics of Metallurgical Melts ural Characteristics of Melts Radial Distribution Function and Structure Factor. Partial Structure Factors. Model Description of Structural Characteristics Pair Interaction Potential	33 33 36 39 47		
3	Cha 3.1	Structo 3.1.1 3.1.2 3.1.3 3.1.4 Consti	stics of Metallurgical Melts ural Characteristics of Melts Radial Distribution Function and Structure Factor. Partial Structure Factors. Model Description of Structural Characteristics Pair Interaction Potential itution of Metallic Melts.	33 33 36 39 47 52		
3	Cha 3.1	Structi 3.1.1 3.1.2 3.1.3 3.1.4 Consti 3.2.1	stics of Metallurgical Melts ural Characteristics of Melts Radial Distribution Function and Structure Factor. Partial Structure Factors. Model Description of Structural Characteristics Pair Interaction Potential tution of Metallic Melts. Iron, Nickel, Cobalt.	33 33 36 39 47 52 53		
3	Cha 3.1	Structus 3.1.1 3.1.2 3.1.3 3.1.4 Constit 3.2.1 3.2.2	stics of Metallurgical Melts ural Characteristics of Melts Radial Distribution Function and Structure Factor. Partial Structure Factors. Model Description of Structural Characteristics Pair Interaction Potential itution of Metallic Melts. Iron, Nickel, Cobalt. Iron—Carbon	33 33 36 39 47 52 53 57 64		
3	Cha 3.1	Structi 3.1.1 3.1.2 3.1.3 3.1.4 Consti 3.2.1 3.2.2 3.2.3 3.2.4	stics of Metallurgical Melts ural Characteristics of Melts Radial Distribution Function and Structure Factor. Partial Structure Factors. Model Description of Structural Characteristics Pair Interaction Potential itution of Metallic Melts. Iron, Nickel, Cobalt. Iron—Carbon. Iron—Boron.	33 33 36 39 47 52 53 57 64		
3	Cha 3.1	Structi 3.1.1 3.1.2 3.1.3 3.1.4 Consti 3.2.1 3.2.2 3.2.3 3.2.4	stics of Metallurgical Melts ural Characteristics of Melts Radial Distribution Function and Structure Factor. Partial Structure Factors. Model Description of Structural Characteristics Pair Interaction Potential itution of Metallic Melts. Iron, Nickel, Cobalt. Iron—Carbon Iron—Boron. Iron—Silicon	33 33 36 39 47 52 53 57 64 67		

vi Contents

		3.3.3	The FeO–Fe ₂ O ₃ –CaO System	82
		3.3.4	The SiO ₂ –CaO–MgO System	85
		3.3.5	The SiO_2 -CaO-Al ₂ O ₃ System	87
		3.3.6	The MnO–TiO ₂ –SiO ₂ System	89
		3.3.7	Constitution and Electrical Properties	
			of Melts Containing Iron Oxides	92
		3.3.8	Calculation of the Activities and Ionic Composition	
			of Slag Melts Based on Polymer Theory	95
		3.3.9	Diffusion of Ions in Molten Slags	108
	Refe	erences		125
4	Mod	leling a	and Simulation of High-Temperature Processes	135
	4.1	Therm	nodynamic Methods for Analyzing	
		Multic	component Systems	135
	4.2	Therm	nodynamic Characteristics of Interaction Processes	
		in a N	1etal-Slag-Gas System	138
		4.2.1	Method for Calculating the Equilibrium Distribution	
			of Elements in Multicomponent Systems	139
		4.2.2	Distribution of Boron, Aluminum, and Phosphorus	
			between Liquid Metal and Slag Phases	141
		4.2.3	Equilibrium Distribution of Tungsten Between Liquid	
			Metal and Slag Phases	146
		4.2.4	Calculation and Experimental Determination of the	
			Equilibrium Distribution Coefficients of Sulfur	148
		4.2.5	Investigation of the Equilibrium Concentrations	
			of the Components in a Nickel-Alloy/Oxyfluoride-Slag	
			System	152
		4.2.6	Equilibrium Distribution of Silicon, Manganese,	
			and Titanium Between the Metal	
			and Oxyfluoride Melts	154
	4.3 Methods for the Kinetic Analysis of Multimolecular			
			imultaneously Occurring Reactions	156
		4.3.1	Analysis of the Kinetics of an Interaction Under	
			Steady-State Conditions	156
		4.3.2	Development of a Method for Analyzing the	
			Kinetics of Simultaneously Occurring Electrode	
			Reactions Under Non-Steady-State Conditions	166
		4.3.3	Procedure for Evaluating the Kinetic Laws	
			Governing Electrochemical Processes on a	
			Metal/Polymeric-Oxide-Melt Boundary	172
		4.3.4	Kinetic Parameters of the Passage of Elements Through	
		~	the Interface in a Metal/Oxide-Melt System	180
	4.4		usion	203
	Refe	erences		205

Contents

5	Mod	eling a	nd Simulation of Technological Processes		
	for I	Produci	ing and Refining Steel	211	
	5.1	1 Mathematical Modeling of Steel Smelting Processes		211	
	5.2				
		Refine	ement of a Metal by a Synthetic Slag	218	
	5.3	Predicting the Composition of the Metal in the Head Part			
		of an Ingot During the Teeming of Steel Under			
			ous Heat-Generating Mixtures	225	
	5.4		opment of Mathematical Models of Refining Remelts	232	
		5.4.1	Mathematical Model of the Alloying of a Metal		
			with Nitrogen During Plasma Arc Remelting	232	
		5.4.2	Mathematical Model of the Interaction of the Metal, Slag,		
			and Gas During Vacuum Arc Remelting	241	
		5.4.3	Mathematical Model of the Physicochemical Processes		
			in the Electron-Beam Remelting of Alloys	250	
	5.5	Conclu	usion	260	
	Refe			261	
6	Mod	eling a	nd Simulation of Welding, Surfacing		
		_	g Processes	265	
	6.1	Mathe	matical Modeling of Phase Interaction Processes		
		in Elec	ctroslag Technologies	265	
		6.1.1	Fundamentals of the Mathematical Model		
			of the Phase Interaction in Electroslag Technologies	266	
		6.1.2	Mathematical Model of the Chemical Processes		
			Occurring in the Electroslag Remelting of Steels	268	
		6.1.3	Mathematical Modeling of the Chemical Processes		
			Occurring in Electroslag Welding and Surfacing	275	
		6.1.4	Allowing for Deoxidization of the Slag Pool		
			by Metallic Components in Electroslag Technologies	277	
		6.1.5	Mathematical Model of the Chemical Processes		
			Occurring in Centrifugal Electroslag Casting	279	
	6.2	Calcul	lated Evaluation of the Kinetics of the Interaction		
		of a Multicomponent Metal and a Slag During			
	Submerged-Arc Welding			286	
	6.3		ation of the Interaction Processes in Submerged-Arc	294	
		Welding with a Ceramic Flux			
	6.4	6.4 Mathematical Model of the Kinetics of the Chemical			
		sses Occurring in Gas Welding	299		
	6.5		lation of the Composition of the Metal and the Slag During		
		the Me	elting of Coated Electrodes and Flux-Cored Wires	302	

viii Contents

	6.6	Mathematical Model of the Motion, Heating, and Oxidation				
		Processes Occurring in Electric-Arc Spraying	304			
	6.7	Conclusions	319			
	Refe	rences	320			
7	Predicting the Structure, Phase Composition and Properties					
		ne Metal During Welding and Surfacing	323			
	7.1	Predicting the Quantitative and Qualitative Composition				
		of Hardening Phases	324			
	7.2	Predicting the Phase and Structural Composition of the Matrix				
		of a Deposited Metal	329			
	7.3	Mathematical Description of the New Constitution Diagram				
		of the Matrix of a Deposited Metal	332			
	7.4	Experimental Testing of the Methods Developed	340			
	7.5	Calculation of the Composition and Amounts of the Phases				
		in Equilibrium Multicomponent Alloys Based on Iron	342			
	7.6	Conclusion	352			
	Refe	rences	353			
8	Usin	ng Modeling and Simulation to Improve				
	Higl	1-Temperature Technologies	357			
	8.1	Improving the Technological Scheme of the Oxidative				
		Remelting of Tungsten-Containing Scrap	357			
	8.2	Development of Compositions of Synthetic Slags for				
		the Ladle Refinement of Steel				
	8.3 Improvement of Electroslag Technologies Based					
		on Mathematical Modeling of the Interaction				
		Processes of the Metal, Slag, and Gas	367			
		8.3.1 Influence of the Composition of the Weld Metal				
		on Pore Formation during the Electroslag Welding				
		of Press Columns	367			
		8.3.2 Influence of the Flux Composition and the Oxidation				
		Level of the Electrode on the Chemical Heterogeneity				
		of the Ingot during the Electroslag Remelting				
		of 38Kh2MYuA Steel	371			
		8.3.3 Optimization of the Technology for Alloying 45 Steel				
		with Lead from a Flux	374			
	8.4	Selecting the Compositions of Alloying and Ceramic Fluxes				
		Based on Mathematical Modeling of the Processes Involved				
		in the Interaction of the Metal and the Slag During Welding	382			

Contents ix

8.5	Practical Implementation of the Concept of Creating				
	Advar	ced Welding Materials	9		
	8.5.1	Design, Preparation, and Testing of an Experimental			
		Batch of Surfacing Materials	9		
	8.5.2	Creation of Advanced Welding Materials 40	0		
8.6	Concl	usion	1		
Refe	References		1		
Index .			5		