## **Contents**

## Foreword to the first edition ---- VII

## Foreword to the second edition —— IX

## Notes to the reader ---- XI

| 1     | Introduction/background —— 1                                           |
|-------|------------------------------------------------------------------------|
| 1.1   | What is multivariable and vector calculus? —— 1                        |
| 1.2   | Vectors, lines, and planes in $\mathbb{R}^3$ — 2                       |
| 1.2.1 | Vectors —— 2                                                           |
| 1.2.2 | Planes in ℝ <sup>3</sup> —— <b>8</b>                                   |
| 1.2.3 | Lines in $\mathbb{R}^3$ —— <b>9</b>                                    |
| 1.2.4 | Projections —— 11                                                      |
| 1.3   | Basic surfaces in $\mathbb{R}^3$ — 13                                  |
| 1.3.1 | Quadratic surfaces —— 14                                               |
| 1.4   | Polar, cylindrical, and spherical coordinates —— 15                    |
| 1.4.1 | Polar coordinates in $\mathbb{R}^2$ —— <b>16</b>                       |
| 1.4.2 | Cylindrical and spherical coordinates in $\mathbb{R}^3$ —— <b>18</b>   |
| 2     | Vector functions —— 25                                                 |
| 2.1   | Limits, derivatives, and integrals for vector functions —— 25          |
| 2.2   | Parametric curves in $\mathbb{R}^2$ and $\mathbb{R}^3$ —— 28           |
| 2.3   | Particle motion in $\mathbb{R}^2$ and $\mathbb{R}^3$ —— 33             |
| 2.3.1 | Tangent vectors —— 34                                                  |
| 2.3.2 | Normal vectors —— 35                                                   |
| 2.3.3 | Acceleration —— <b>37</b>                                              |
| 2.4   | Arc length —— 38                                                       |
| 2.4.1 | Arc length between fixed points $\alpha$ and $\omega$ —— 38            |
| 2.4.2 | Arc length as a function of time: $s(t)$ —— 41                         |
| 2.4.3 | When it all goes wrong: a nonrectifiable curve —— 42                   |
| 2.5   | Acceleration decomposition —— 44                                       |
| 2.6   | A twist: motion in $\mathbb{R}^3$ and the binormal vector —— <b>47</b> |
| 3     | Multivariable derivatives—differentiation in $\mathbb{R}^n$ —— 53      |
| 3.1   | Limits in $\mathbb{R}^n$ —— 53                                         |
| 3.1.1 | Definitions and the basics —— 53                                       |
| 3.1.2 | 0/0 indeterminate form —— <b>57</b>                                    |
| 3.1.3 | Something that does not work —— 62                                     |
| 3.2   | Continuity in $\mathbb{R}^n$ — 63                                      |
| 3.2.1 | Definition and examples —— 63                                          |



| 3.2.2 | Types of discontinuities —— 66                                                     |
|-------|------------------------------------------------------------------------------------|
| 3.2.3 | Piecewise continuity —— <b>67</b>                                                  |
| 3.3   | The derivative in $\mathbb{R}^n$ —— <b>67</b>                                      |
| 3.3.1 | Partial derivatives —— <b>69</b>                                                   |
| 3.3.2 | Higher-order partial derivatives —— <b>70</b>                                      |
| 3.3.3 | Tangent planes and <i>unique</i> tangent planes —— <b>71</b>                       |
| 3.3.4 | Existence of the tangent plane —— 74                                               |
| 3.3.5 | Multivariable derivatives —— 76                                                    |
| 3.3.6 | Linear approximations —— 76                                                        |
| 3.4   | The chain rule in $\mathbb{R}^n$ —— <b>79</b>                                      |
| 3.4.1 | The basic chain rule —— <b>79</b>                                                  |
| 3.4.2 | Several interesting extensions —— 81                                               |
| 3.4.3 | Implicit partial differentiation —— 83                                             |
| 3.5   | Directional derivatives —— <b>84</b>                                               |
| 4     | Implications of multivariable derivatives —— 94                                    |
| 4.1   | Level curves, level surfaces —— 94                                                 |
| 4.2   | The gradient $\nabla F$ for the surface $F(x, y, z) = 0$ — 95                      |
| 4.3   | Maximums and minimums for continuous functions on closed and bounded               |
|       | domains <b>—— 97</b>                                                               |
| 4.4   | Local extrema —— 100                                                               |
| 4.5   | Lagrange multipliers —— <b>104</b>                                                 |
| 5     | Multiple integrals-integration in $\mathbb{R}^n$ —— 109                            |
| 5.1   | Riemann integration versus iterated integrals —— 109                               |
| 5.1.1 | Single-variable Riemann integration —— 109                                         |
| 5.1.2 | Multivariable Riemann integration —— 111                                           |
| 5.1.3 | Iterated integrals —— 113                                                          |
| 5.1.4 | The Fubini theorem and the relationship between Riemann and iterated               |
|       | integrals <b>—— 113</b>                                                            |
| 5.1.5 | When it all goes wrong: functions that are not Riemann integrable —— 115           |
| 5.2   | Double integrals: integration over domains in $\mathbb{R}^2$ —— <b>116</b>         |
| 5.2.1 | Integration using rectangular coordinates —— 117                                   |
| 5.2.2 | Polar integration —— <b>120</b>                                                    |
| 5.2.3 | What does dA or dx dy become? —— 122                                               |
| 5.2.4 | What does it all mean? What do double integrals represent? —— 124                  |
| 5.3   | Triple integrals: integration over domains in $\mathbb{R}^3$ —— 125                |
| 5.3.1 | Integration using rectangular coordinates —— 126                                   |
| 5.3.2 | Integration using cylindrical and spherical coordinates —— <b>130</b>              |
| 6     | Vector fields and vector calculus —— 143                                           |
| 6.1   | Line integrals: integration along curves in $\mathbb{R}^2$ or $\mathbb{R}^3$ — 143 |

| 6.1.1 | Direct evaluation of line integrals —— 145                              |
|-------|-------------------------------------------------------------------------|
| 6.1.2 | Path dependence; path independence —— 146                               |
| 6.1.3 | Flow crossing a curve —— 150                                            |
| 6.2   | Surface integrals: integration over surfaces in $\mathbb{R}^3$ — 151    |
| 6.3   | Differential operators — 154                                            |
| 6.3.1 | Definitions —— 154                                                      |
| 6.3.2 | Why is div( <i>u</i> ) actually divergence? —— 155                      |
| 6.4   | The theorems of Gauss, Green, and Stokes —— 157                         |
| 6.4.1 | The divergence theorem —— 157                                           |
| 6.4.2 | Green's identities —— 161                                               |
| 6.4.3 | Stokes' theorem —— 161                                                  |
| 6.5   | The power of the divergence theorem: the Laplace and Poisson equations, |
|       | and the Neumann problem —— 165                                          |
| 6.6   | All together now: a unified theorem —— 167                              |

Bibliography —— 175

Index ---- 177