Contents

1	Intro	duction	1
2	Schr	ödinger Theory from a "Newtonian" Perspective	15
	2.1	Time-Independent Schrödinger Theory	
	2.2	Schrödinger Theory from a "Newtonian" Perspective:	
		The Pure State Differential Virial Theorem	17
	2.3	Definitions of Quantal Sources	18
		2.3.1 Electron Density $\rho(r)$	
		2.3.2 Spinless Single-Particle Density Matrix $\gamma(rr')$	18
		2.3.3 Pair-Correlation Density $g(rr')$	
		and Fermi–Coulomb Hole $ ho_{xc}(rr')$	20
	2.4	Definitions of "Classical" Fields	
		2.4.1 Electron-Interaction Field $\mathcal{E}_{ee}(r)$	
		2.4.2 Differential Density Field $\mathcal{D}(r)$	23
		2.4.3 Kinetic Field $\mathcal{Z}(r)$	23
	2.5	Energy Components in Terms of Quantal Sources and Fields	24
		2.5.1 Electron-Interaction Potential Energy E_{ee}	24
		2.5.2 Kinetic Energy T	25
		2.5.3 External Potential Energy E_{ext}	25
	2.6	Integral Virial, Force, and Torque Sum Rules	26
	2.7	Coalescence Constraints	29
3	Quar	ntal Density Functional Theory	35
	3.1	Quantal Density Functional Theory	
		from a "Newtonian" Perspective	36
	3.2	Definitions of Quantal Sources Within Quantal	
		Density Functional Theory	37
		3.2.1 Electron Density $\rho(\mathbf{r})$	
		3.2.2 Dirac Spinless Single-Particle Density Matrix $\gamma_s(rr')$	38
		3.2.3 Pair-Correlation Density $g_s(rr')$;	
		Fermi $\rho_{\mathbf{x}}(\mathbf{r}\mathbf{r}')$ and Coulomb $\rho_{c}(\mathbf{r}\mathbf{r}')$ Holes	38

digitalisiert durch DEUTSCHE NATIONAL BIBLIOTHEK

xii Contents

	3.3	Definitions of "Classical" Fields Within Quantal	
		Density Functional Theory	41
		3.3.1 Electron-Interaction Field $\mathcal{E}_{ee}(r)$,	
		and Its Hartree $\mathcal{E}_{\mathrm{H}}(r)$, Pauli $\mathcal{E}_{\mathrm{x}}(r)$, and	
		Coulomb $\mathcal{E}_{c}(r)$ Components	41
		3.3.2 Differential Density Field $\mathcal{D}(r)$	42
		3.3.3 Kinetic $\mathcal{Z}_s(r)$ and Correlation–Kinetic $\mathcal{Z}_{t_c}(r)$ Fields	42
	3.4	Total Energy and Its Components in Terms of Quantal	
		Sources and Fields	43
		3.4.1 Electron-Interaction Potential Energy $E_{\rm ee}$,	
		and Its Hartree $E_{\rm H}$, Pauli $E_{\rm x}$, and Coulomb	
		E_{c} Components	
		3.4.2 Kinetic T_s , and Correlation-Kinetic T_c Energies	44
		3.4.3 External Potential Energy $E_{\rm ext}$	45
		3.4.4 Total Energy <i>E</i>	46
	3.5	Effective Field $\mathcal{F}^{\text{eff}}(r)$ and Electron-Interaction	
		Potential Energy $v_{ee}(r)$	47
	3.6	Integral Virial, Force, and Torque Sum Rules	48
	3.7	Highest Occupied Eigenvalue ϵ_m	49
	3.8	Quantal Density Functional Theory of Degenerate States	51
4	New	Perspectives on Hohenberg–Kohn–Sham Density	
		tional Theory	53
	4.1	The Hohenberg–Kohn Theorems and Corollary	54
	4.2	Kohn-Sham Density Functional Theory	59
		4.2.1 Endnote	64
	4.3	Generalization of the Fundamental Theorem	
		of Hohenberg-Kohn	67
		4.3.1 The Unitary Transformation	67
		4.3.2 New Insights as a Consequence of the Generalization	70
5	Nonu	niqueness of the Effective Potential Energy and	
	Wave	Function in Quantal Density Functional Theory	73
	5.1	The Interacting System: Hooke's Atom in a Ground State	76
	5.2	Mapping to the S system in Its 1 ¹ S Ground State	76
	5.3	Mapping to an S system in Its 2 ¹ S Singlet Excited State	82
	5.4	Nonuniqueness of the Wave Function of the S system	
		in an Excited State	85
		5.4.1 The Single Slater Determinant Case	
		5.4.2 The Linear Combination of Slater Determinants Case	
	5.5	Proof that Nonuniqueness of Effective Potential	
		Energy Is Solely Due to Correlation-Kinetic Effects	94

Contents xiii

6	Ad H	Hoc Approximations Within Quantal Density	
		ctional Theory	99
	6.1	The Q-DFT of Hartree Theory	103
		6.1.1 The Q-DFT Hartree Uncorrelated Approximation.	106
		6.1.2 Endnote	107
	6.2	The Q-DFT of Hartree–Fock Theory	107
		6.2.1 The Q-DFT Pauli Approximation	
		6.2.2 Endnote	
	6.3	Time-independent Quantal-Density Functional Theory	
		6.3.1 The Q-DFT Pauli–Coulomb Approximation	
		6.3.2 The Q-DFT Fully Correlated Approximation	
	6.4	The Case of Nonconservative Fields	
		6.4.1 The Central Field Approximation	
		6.4.2 The Irrotational Component Approximation	121
7	Anal	lytical Asymptotic Structure in the Classically	
•		oidden Region of Atoms	125
	7.1	The Wave Function	
	7.2	The Single-Particle Density Matrix and Density	
	7.3	The Pair-Correlation Density	
	7.4	The Work Done in the Electron-Interaction Field	
		7.4.1 The Hartree, Pauli, and Coulomb Potential Energie	
	7.5	The Correlation-Kinetic Potential Energy	
	7.6	Endnotes	
8	Anal	lytical Asymptotic Structure At and Near the Nucleus	
o		toms	141
	8.1	Proof of Finiteness of Potential Energies $v_{ee}(r)$	
	0.1	and $v_{\text{ee}}^B(\mathbf{r})$ at the Nucleus	143
	8.2	Criticality of the Electron–Nucleus Coalescence	
	0.2	Condition to Local Effective Potential Energy Theories	145
	8.3	General Structure of $v_{ee}(r)$ Near the Nucleus	
	0.0	of Spherically Symmetric and Sphericalized Systems	148
	8.4	Exact Structure of $v_{ee}(r)$ Near the Nucleus of	
	0	Spherically Symmetric and Sphericalized Systems	153
		8.4.1 Near Nucleus Structure of the Wave Functions	
		and the Density	154
		8.4.2 Electron-Interaction Field $\mathcal{E}_{ee}(r)$ at the Nucleus	
		8.4.3 Kinetic "Force" $z(r; \gamma)$ Near the Nucleus	
		8.4.4 Kinetic "Force" $z_s(r; \gamma_s)$ Near the Nucleus	
		8.4.5 Correlation-Kinetic Field $\mathcal{Z}_{t_c}(r)$ Near the Nucleus	
		8.4.6 Structure of Potential Energy $v_{ee}(r)$ Near the Nucle	
	8.5	Endnote	

xiv Contents

9	Appli	ication of the Q-DFT Hartree Uncorrelated	
	Appr	oximation to Atoms	167
	9.1	Electronic Structure of the Neon Atom	168
	9.2	Atomic Shell Structure and Core-Valence Separation	175
		9.2.1 Endnote	178
	9.3	Total Ground State Energies	
	9.4	Highest Occupied Eigenvalues	
		9.4.1 Satisfaction of the Aufbau Principle	
10	Appl	ication of the Q-DFT Pauli Correlated	
	Appr	oximation to Atoms and Negative Ions	187
	10.1	Ground State Properties of Atoms	
		10.1.1 Electronic Structure of the Argon Atom	
		10.1.2 Atomic Shell Structure and Core-Valence Separation	
		10.1.3 Total Ground State Energies	199
		10.1.4 Highest Occupied Eigenvalues	
		10.1.5 Satisfaction of the Aufbau Principle	207
		10.1.6 Single-Particle Expectation Values	209
	10.2	Ground State Properties of Mononegative Ions	214
		10.2.1 Total Ground State Energies	215
		10.2.2 Highest Occupied Eigenvalues	216
	10.3	Static Polarizabilities of the Neon Isoelectronic Sequence	217
11		ital Density Functional Theory of the Density	
	Amp	litude: Application to Atoms	221
	11.1	Quantal Density Functional Theory	
		of the Density Amplitude	222
	11.2	Application to Atoms	226
	11.3	Conclusions and Endnotes	231
	11.4	Consequences for Traditional Density Functional Theory	232
12		ication of the Irrotational Component Approximation	
		onspherical Density Atoms	235
	12.1	Scalar Effective Fermi Hole Source $ ho_{ m x}^{ m eff}(r)$	
		12.1.1 Spherically Symmetric Density Atoms	
		12.1.2 Nonspherical Density Atoms	
	12.2	Vector Vortex Fermi Hole Source $\mathcal{J}_{\mathbf{x}}(\mathbf{r})$	239
	12.3	Irrotational $\mathcal{E}_{\mathrm{x}}^{\mathrm{I}}(r)$ and Solenoidal $\mathcal{E}_{\mathrm{x}}^{\mathrm{S}}(r)$ Components	
		of the Pauli Field $\mathcal{E}_{\mathrm{x}}(r)$	
	12.4	Path-Independent Pauli Potential Energy $W_{x}^{I}(r)$	245
	12.5	Endnotes on the Approximation	
13		cation of Q-DFT to Atoms in Excited States	249
	13.1	The Triplet 2 ³ S State Isoelectronic Sequence of He	
	13.2	One-electron Excited States of Li	
	133	One-electron Excited States of Na	254

Contents xv

	13.4	Multiplet Structure of C and Si	.256
	13.5	Doubly Excited Autoionizing States of He	
	13.6	Endnote	
14	Appli	cation of the Multi-Component	
	Q-DF	T Pauli Approximation to the Anion-Positron	
		plex: Energies, Positron and Positronium Affinities	.263
	14.1	Equations of the Multi-Component Q-DFT Pauli Approximation.	
	14.2	Brief Remarks on Hartree–Fock Theory	
		of Positron Binding to Anions	.267
	14.3	Total Energy of the Anion-Positron Complex	
		and Positron Affinities	.268
	14.4	Positronium Affinities	.272
15	Appli	ication of the Q-DFT Fully Correlated	
		oximation to the Helium Atom	.275
	15.1	The Interacting System: Helium Atom in Its Ground State	.276
	15.2	Mapping to an S System in Its 1 ¹ S Ground State	.277
		15.2.1 Coulomb Hole Charge Distribution $\rho_c(rr')$.277
		15.2.2 Pauli–Coulomb $\mathcal{E}_{xc}(r)$, Pauli $\mathcal{E}_{x}(r)$,	
		and Coulomb $\mathcal{E}_{c}(r)$ Fields, and	
		the Pauli-Coulomb E_{xc} , Pauli E_x ,	
		and Coulomb $E_{\mathbf{c}}$ Energies	.281
		15.2.3 Pauli–Coulomb $W_{xc}(r)$, Pauli $W_x(r)$,	
		and Coulomb $W_c(r)$ Potential Energies	.283
		15.2.4 Correlation-Kinetic Field $\mathcal{Z}_{t_c}(r)$, Potential	
		Energy $W_{t_c}(\mathbf{r})$, and Energy T_c	
		15.2.5 Total Energy and Ionization Potential	
	15.3	Endnotes	.287
16	Appli	cation of the Q-DFT Fully Correlated	
	Appr	oximation to the Hydrogen Molecule	.289
	16.1	The Interacting System: Hydrogen Molecule	
		in Its Ground State	.289
	16.2	Mapping to an S System in Its $(\sigma_g 1s)^2$ Ground	
		State Configuration	.290
		16.2.1 Fermi–Coulomb $\rho_{xc}(rr')$, Fermi $\rho_x(rr')$,	
		and Coulomb $ ho_{\rm c}(\boldsymbol{r}\boldsymbol{r}')$ Hole Charge Distributions	.291
		16.2.2 Electron Interaction $\mathcal{E}_{ee}(r)$	
		and Correlation-Kinetic $\mathcal{Z}_{t_c}(r)$ Fields	
		16.2.3 Electron-Interaction Potential Energy $v_{ee}(\mathbf{r})$.298
		16.2.4 Total Energy and Ionization Potential	
	16.3	Endnotes	.301

xvi Contents

17	Applic	cation of Q-DFT to the Metal-Vacuum Interface	303
	17.1	Jellium Model of a Metal Surface	
	17.2	Surface Model Effective Potential Energies and Orbitals	311
		17.2.1 The Finite Linear Potential Model	311
		17.2.2 The Linear Potential Model	312
	17.3	Accuracy of the Model Potentials	
	17.4	Structure of the Fermi Hole at a Metal Surface	
		17.4.1 General Expression for the Planar Averaged	
		Fermi Hole $\rho_{\mathbf{x}}(xx')$	317
		17.4.2 Structure of the Planar Averaged Fermi	
		Hole $\rho_x(xx')$	321
		17.4.3 Structure of Fermi Hole in Planes Parallel to	
		the Surface	325
	17.5	General Expression for the Pauli Field $\mathcal{E}_{x}(x)$	
		and Potential Energy $W_x(x)$	328
	17.6	Structure of the Pauli Field $\mathcal{E}_{\mathbf{x}}(x)$ and Potential	
		Energy $W_{\mathbf{x}}(x)$	332
	17.7	Analytical Structure of the Pauli Potential Energy $W_x(x)$	
	17.8	Analytical Structure of the Lowest Order Correlation-	
		Kinetic Potential Energy $W_{\rm t_c}^{(1)}(x)$ in the Classically	
		Forbidden Region	338
		17.8.1 Analytic Asymptotic Structure of the Slater	
		Function $V_{\mathbf{x}}^{\mathbf{S}}(x)$.339
		17.8.2 Analytical Asymptotic Structure of the	
		Kohn–Sham "Exchange" Potential Energy $v_x(\mathbf{r})$	340
		17.8.3 Analytical Asymptotic Structure of the	
		Lowest-Order Correlation-Kinetic Potential	
		Energy $W_{\mathbf{t}_c}^1(\mathbf{r})$	343
	17.9	Analytical Structure of the Coulomb $W_c(x)$	
	- , . ,	and Second-and Higher-Order Correlation	
		Kinetic $W_{t_c}^2(x)$, $W_{l_c}^3(x)$ Potential Energies	
		in the Classically Forbidden Region	344
		17.9.1 New Expression for Kohn–Sham "Exchange-	,
		Correlation" v (r) Potential Energy	
		in Classically Forbidden Region	345
		17.9.2 Analytical Asymptotic Structure	
		of the Orbital $\phi_k(x)$, Dirac Density Matrix	
		$\gamma_s(xx')$, and Density $\rho(x)$	3/17
		17.9.3 Analytical Asymptotic Structure	,547
		of the Kohn–Sham "Correlation" Potential	
		Energy $v_c(x)$	3/18
	17.10		
	17.10	Potential Energy $v_s(x)$ in the Classically Forbidden Region	350
	17 11	Endnote on Image-Potential-Bound Surface States	
	17.11	Enduce on imagest official bound buriace states	

Contents xvii

18	-	y-Body and Pseudo Møller-Plesset Perturbation				
	Theo	ry within Quantal Density Functional Theory				
	18.1	Many-Body Perturbation Theory within Q-DFT	356			
		18.1.1 Quantal Sources in Terms of Green's Functions	356			
		18.1.2 Perturbation Series for the Electron-Interaction				
		Field ${\cal E}_{ m ee}(r)$	360			
		18.1.3 Perturbation Series for the Correlation-Kinetic				
		Field ${\mathcal Z}_{\operatorname{t}_c}(r)$				
		18.1.4 Approximations within the Perturbation Theory				
		18.1.5 Endnote	366			
	18.2	Pseudo Møller-Plesset Perturbation Theory				
		Within Q-DFT				
		18.2.1 Pseudo Møller–Plesset Q-DFT Perturbation Theory				
		18.2.2 Endnote	371			
			252			
19	Epilo	gue	373			
	0	And Donniday Francis and The course of Donning and Change	275			
A	Quar	tal Density Functional Theory of Degenerate States	373			
В	Gene	ralization of the Runge-Gross Theorem				
D		ne-Dependent Density Functional Theory	383			
	OI III	ne-Dependent Density Punctional Theory				
C	Analytical Asymptotic Structure of the Correlation-					
•		ic Potential Energy in the Classically Forbidden				
		on of Atoms	387			
	~~~B.					
D	The I	Pauli Field $\mathcal{E}_{\mathrm{x}}(r)$ and Potential Energy $W_{\mathrm{x}}(r)$				
		Central Field Approximation	393			
E	Equa	tions of the Irrotational Component Approximation				
		plied to the Carbon Atom	397			
	E.1	Electron Density $\rho(\mathbf{r})$				
	E.2	Fermi Hole $\rho_{\mathbf{x}}(\mathbf{r}\mathbf{r}')$	398			
	E.3	Gradient of Fermi Hole $\nabla \rho_{\mathbf{x}}(\mathbf{r}\mathbf{r}')$				
	E.4	Pauli Field $\mathcal{E}_{\mathbf{x}}(r)$				
	E.5	Scalar Effective Fermi Hole $\rho_{\mathbf{x}}^{\text{eff}}(\mathbf{r})$	399			
	E.6	Vector Vortex Fermi Hole $\mathcal{J}_{\mathrm{x}}(r)$				
	E.7	Irrotational Component $\mathcal{E}_{\mathrm{x}}^{\mathrm{I}}(r)$ of the Pauli Field $\mathcal{E}_{\mathrm{x}}(r)$	400			
	E.8	Solenoidal Component $\mathcal{E}_{\mathrm{x}}^{\mathrm{S}}(r)$ of the Pauli Field $\mathcal{E}_{\mathrm{x}}(r)$	400			
	E.9	The Potential Energy $W_{\mathbf{x}}^{\mathbf{I}}(\mathbf{r})$	401			
F		nd State Properties of the Helium Atom				
		termined by the Kinoshita Wave Function				
	F.1	Wave Function $\psi(r_1r_2)$				
	F.2	Electron Density $\rho(\mathbf{r})$				
	F.3	Coulomb Hole $ ho_{ m c}({m r}{m r}')$	405			

xviii Co	ntents
----------	--------

	F.4	Coulomb Field $\mathcal{E}_{c}(r)$	405
	F.5	Coulomb Potential Energy $W_c(r)$	
G	App	roximate Wave Function for the Hydrogen Molecule	407
Ref	ferenc	<b>es</b>	409
Ind	lex		423