Contents

I.	GENERATED FUNCTIONS	
1 §.	Introduction	
1.	The Classes S and S(b)	1
2.	On Sets and Sequences of Functions	3
2 §.	Löwner-functions	
1.	One-slit Discs and Their Kernel	6
2.	Differential Equation of One-slit Functions	8
3.	The Solutions $\in S(e^{-t})$	17
4.	Löwner's Equation of Second Kind	19
5.	Determining the Coefficients	21
6.	Integrated Recursion Formulae for a	24
7.	The Coefficients of the Inverse Function	27
8.	Comparison of the Coefficients a and $\boldsymbol{\alpha}_n$	29
з§.	Generalized Löwner-functions	
1.	On an Extremum Function of a ₃ (b)	38
2.	Replacing the Generating Function by a Piecewice	
	Continuous Function	41
3.	The Class of Slit-functions Given by Step-functions	42
4.	Sequence and Extremum Function	44
5.	An Effort to Vary an Arbitrary Function by Aid of Approximation	47
6.	Variation of a ₃ in S _L ,(b)	49
7.		52
8.	Differential Equation for Bounded Real Functions	61
9.	An Extremum Function f for a ₃	71
4 §.	A Generalization of the Class S(b)	
1.	Definition of the Class $S(R,c)$	78
2.	Coefficients of the Inverse Function	82
3.	The Koebe Constant	85
4.	The Coefficient a ₂	87
5.	The Coefficient a ₃	88
5 § .	Functions with Bounded Boundary Rotation	
1.	On Poisson Presentation for Functions with Bounded Character	99
2.	Definition of the Class $B_{f k}$	101

3.	Step-functions	106
4.	The Coefficient a ₃	110
II.	VARIATION OF THE EXTREMUM FUNCTION	
1 §.	Variation of Green's Function	
1,	Notations	117
2.	The Varied Domain and Alteration in Green's Function	119
3.	Transforming the Result to the Inverse Function	123
2 §.	The Schiffer-condition for S(b)-functions	
1.	A Bounded Variation of a Unit Disc	126
2.	The Variational Formula of the Mapping Function	130
3.	The Schiffer-condition Obtained by Comparing the Coefficients	137
4.	The Slit-character of the Extremum Domain	144
з§.	The Coefficient a ₃	
1.	Types of the Solution	148
2.	The Case 2:2	149
3.	The Case 1:2	154
4.	The Case 1:1	161
III.	THE AREA PRINCIPLE	
1 §.	The Power Inequality	
1.	Green's Formula	163
2.	The Choice of D and g	166
3.	The Integrations	171
4.	Different Forms of the Inequality	175
5.	Changing Parameters	178
6.	Special Cases	181
7.	The Power Inequality for the Class S	182
2 §.	Application to the Coefficient a_3 and a_4	
1.		188
2.	The Power Inequality for $V_f(z^2)$ When $N = 3$	191
3.	The Coefficient a ₄ for b Close to 1	197
4.	The Coefficient a _{ll} for b Close to O	202
5.	The Coefficient a_{\downarrow} in the Real Class	211
3 §.	Optimization of Parameters for N = 1	
1.	The Optimized Condition for $S_{R}(b)$	220
2.	Completion by Aid of Löwner-functions	227

3.	The Optimized Condition for S(b)	235
4.	The Extremum Functions	242
5.	The Extremum Domains	247
6.	The Special Case Im $a_2 = 0$	263
4 §.	Optimization in the Case N = 3	
1.	The Optimized Bilinear Condition for $\sqrt{f(z^2)}$	266
2.	The Equality Condition. The Class $S_{R}(b)$	272
IV.	LÖWNER-FUNCTIONS AND GRUNSKY-TYPE INEQUALITIES	
1 §.	The Power Inequality	
1.	Differential Equations for the y,-functions	287
2.	Differentiation to the Left Side of the Power Inequality	290
2 §.	On Generalizing the Power Inequality	
1.	Schiffer's Differential Equation for Boundary Functions	
	of the Coefficient Body (a3,a2)	294
2.	The Case 2:2	298
3.	The Case 1:2	301
4.	The Case 1:1	304
5.	Conclusions	308
	References	311