
Inhaltsverzeichnis

Erste Schritte

1 Grundlegende Konzepte. 1
1.1 Dezentrale Versionsverwaltung -a l les anders? 1
1.2 Das Repository- die Grundlage dezentralen Arbeitens 3
1.3 Branching und Merging - g a n z einfach! 5
1.4 Zusammenfassung 7

2 Erste Schritte 9
2.1 Git einrichten 9
2.2 Das erste Projekt mit Git 9
2.3 Zusammenarbeit mi t Git 13
2.4 Zusammenfassung 18

Arbeiten mit Git J
3 Was sind Commits? 19
3.1 Zugriffsberechtigungen und Zeitstempel 19
3.2 Die Befehle add und commit 20
3.3 Exkurs: Mehr über Commit-Hashes 20
3.4 Eine Historie von Commits 21
3.5 Eine etwas andere Sichtweise auf Commits 22
3.6 Viele unterschiedliche Historien desselben Projekts 22
3.7 Zusammenfassung 25

4 Commits zusammenstellen 27
4.1 Der Status-Befehl 27
4.2 Stage-Bereich speichert Momentaufnahmen 30
4.3 Was tun mi t Änderungen, die nicht übernommen werden

sollen? 32
4.4 Mit .gi t ignore Dateien unversionier.tlassen 33
4.5 Stashing: Änderungen Zwischenspeichern 33
4.6 Zusammenfassung 35

http://d-nb.info/1017740089

http://d-nb.info/1017740089

Inhaltsverzeichnis

5 Das Repository 37
5.1 Ein einfaches und effizientes Speichersystem 37
5.2 Verzeichnisse speichern: Blob &Tree 38
5.3 Gleiche Daten werden nur einmal gespeichert 39
5.4 Kompression ähnlicher Inhalte 39
5.5 Ist es schlimm, wenn verschiedene Daten zufällig denselben

Hashwert bekommen? 39
5.6 Commits 40
5.7 Wiederverwendung von Objekten in der Commit-Historie . . . 40
5.8 Umbenennen, verschieben und kopieren 41
5.9 Zusammenfassung 44

6 Branches verzweigen 45
6.1 Parallele Entwicklung 45
6.2 Bugfixes in älteren Versionen 46
6.3 Branches 46
6.4 Swimlanes 47
6.5 Aktiver Branch 47
6.6 Branchzeiger umsetzen 49
6.7 Branch löschen 50
6.8 ... und was ist, wenn man die Commit-Objekte wirklich

loswerden will? 51
6.9 Zusammenfassung 52

7 Branches zusammenführen 53
7.1 Was passiert bei einem Merge? 54
7.2 Konflikte 55
7.3 Bearbeitungskonflikte 56
7.4 Konfliktmarkierungen 56
7.5 Bearbeitungskonflikte lösen 57
7.6 Und was ist mit den inhaltlichen Konflikten? 58
7.7 Fast-Forward-Merges 59
7.8 Knifflige Merge-Conflikte 60
7.9 Ach egal, wird schon irgendwie gehen 62
7.10 Zusammenfassung 62

8 Mit Rebasing die Historie glätten 65
8.1 Das Prinzip: Kopieren von Commits 65
8.2 »Diamantenketten« vermeiden 66
8.3 ... und wenn es zu Konflikten kommt? 67
8.4 Branches umpflanzen 68
8.5 Was passiert mit den ursprünglichen Commits nach dem

Rebasing? 70

Inhaltsverzeichnis

8.6 Warum ist es problematisch, Original und Kopie eines
Commits im gleichen Repository zu haben? 70

8.7 Cherry-Picking 71
8.8 Zusammenfassung 71

9 Austausch zwischen Repositorys 73
9.1 Repositorys klonen 73
9.2 Wie sagt man Git, wo das andere Repository liegt? 74
9.3 Anderen Repositorys einen Namen geben 75
9.4 Abholen von Daten 75
9.5 Remote-Tracking-Branches: Wissen, was in anderen

Repositorys »los« ist 77
9.6 Lokal mit Branches aus anderen Repositorys arbeiten 78
9.7 Pull = Fetch + Merge 78
9.8 Für Diamantenhasser: --rebase 79
9.9 Push - das Gegenstück zu Pull 79
9.10 Jeder, wie er mag 81
9.11 Zusammenfassung 81

10 Versionen markieren 83
10.1 Arbeiten mi t Tags erstellen 83
10.2 Welche Tags gibt es? 84
10.3 Die Hos/ies zu den Tags ausgeben 84
10.4 Log-Ausgabe, um Tags anreichern 85
10.5 In welcher Version ist es »drin«? 85
10.6 Wie verschiebt man ein Tag? 85
10.7 Und wenn ich ein »Floating Tag« brauche? 86
10.8 Zusammenfassung 86

11 Submodule 87
11.1 Submodule 87
11.2 Zusammenfassung 93

Workflows

12 Workflow-Einführung 95
12.1 Warum Workflows? 95
12.2 Welche Workflows sind wann sinnvoll? 96
12.3 Aufbau der Workflows 97

Inhaltsverzeichnis

I Workflows: Entwickeln mit Git

13 Ein Projekt aufsetzen 99
13.1 Ablauf und Umsetzung 102
13.2 Warum nicht anders? 113

14 Gemeinsam auf einem Branch entwickeln 115
14.1 Ablauf und Umsetzung 118
14.2 Warum nicht anders? .' 120

15 Mit Feature-Branches entwickeln 123
15.1 Ablauf und Umsetzung 125
15.2 Warum nicht anders? 134

16 Mit Bisection Fehler suchen 141
16.1 Ablauf und Umsetzung 143
16.2 Warum nicht anders? 150

Workflows: Entwicklungsprozess

17 Mit einem Build-Server arbeiten 153
17.1 Ablauf und Umsetzung 156
17.2 Warum nicht anders? 165

18 Ein Release durchführen 167
18.1 Ablauf und Umsetzung 170
18.2 Warum nicht anders? 177

Workflows: Repositorys pflegen

19 Große Projekte aufteilen 179
19.1 Ablauf und Umsetzung 182
19.2 Warum nicht anders? 185

20 Kleine Projekte zusammenführen 187
20.1 Ablauf und Umsetzung 190
20.2 Warum nicht anders? 192

21 Lange Historien auslagern 193
21.1 Ablauf und Umsetzung 196
21.2 Warum nicht anders? 201

Inhaltsverzeichnis

Workflows: Umstieg auf Git

22 Andere Versionsverwaltungen parallel nutzen 203
22.1 Ablauf und Umsetzung 206
22.2 Warum nicht anders? 213

23 Ein Projekt nach Git migrieren 215
23.1 Ablauf und Umsetzung 218
23.2 Warum nicht anders? 228

I Mehr über Git j
i J

24 Was gibt es sonst noch? 231
24.1 Interaktives Rebasing - Historie verschönern 231
24.2 Umgang mit Patches 232
24.3 Patches per Mail versenden 232
24.4 Bundles - Pull im Offline-Modus 233
24.5 Archive erstellen 234
24.6 Grafische Werkzeuge für Git 234
24.7 Repository im Webbrowser anschauen 235
24.8 Zusammenarbeit mit Subversion 235
24.9 Aliase für Befehle 236
24.10 Notizen an Commits 237
24.11 Hooks - Git erweitern 237
24.12 Github - Hosting von Repositorys 237

25 Grenzen von Git 239
25.1 Hohe Komplexität 239
25.2 Komplizierter Umgang mit Submodulen 240
25.3 Ressourcenverbrauch bei großen binären Dateien 241
25.4 Repositorys können nur vollständig verwendet werden 242
25.5 Autorisierung nur auf dem ganzen Repository 243
25.6 Mäßige grafische Werkzeuge für Historienauswertung 244

Index & Verzeichnisse i
• __ J

»Schritt für Schritt«-Anleitungen 245

Workflow-Verzeichnis 247

Index 253

