
Inha l t sverze ichn i s

Abkürzungsverzeichnis 8

Kurzfassung 11

Abstract 12

1. Einleitung 1 3
1.1. Motivation 13
1.2. Methoden und Werkzeuge zum Testen 14
1.3. Beitrag 17

1.3.1. Beitrag durch das Framework 18
1.3.2. Beitrag durch die methodische Testsequenzerstellung 19
1.3.3. Beitrag durch die formale Testbeschreibung 20
1.3.4. Beitrag durch die Adaption an die Plattformen . . . 20
1.3.5. Erwarteter Nutzen 21

1.4. Aufbau der Arbeit 21

2. Prozesse, M e t h o d e n u n d Werkzeuge 2 2
2.1. Aufgaben und Aufbau der Software 22
2.2. Softwareentwicklungs- und Testprozess 23
2.3. Entwicklungsparadigmen 27

2.3.1. Steuerungs- und regelungstechnische Aspekte 27
2.3.2. Kommunikation r 28
2.3.3. Berücksichtigung der Hardware 28
2.3.4. Programmierung 29

2.4. Modelle in der Softwareentwicklung 30
2.4.1. Unified Modeling Language 31

2.4.1.1. Klassendiagramm 31
2.4.1.2. Zustandsdiagramm 32

2.4.2. Extensible Markup Language 33
2.4.3. Generative Programmierung 34

2.4.3.1. Model Driven Architecture 34

4

http://d-nb.info/1020820047

http://d-nb.info/1020820047

2.4.3.2. Model Driven Software Development 35
2.4.3.3. Nutzen der Vorgehensweise 37

2.4.4. Relevanz für den Test 38
2.5. Potenzielle Softwarefehler 39
2.6. Testentwurfsmethoden 40

2.6.1. Statische Testentwurfsmethoden 41
2.6.2. Dynamische Testentwurfsmethoden 42
2.6.3. White-box Testentwurfsmethoden 43

2.6.3.1. Kontrollflussbezogene Kriterien 43
2.6.3.2. Datenflussbezogene Kriterien 46
2.6.3.3. Bewertung 46

2.6.4. Black-box Testentwurfsmethoden 48
2.6.4.1. Äquivalenzklassenbildung 49
2.6.4.2. Auswahlstrategien 50
2.6.4.3. Zustandsbasierter Test 58
2.6.4.4. Erfahrungsbasiertes Testen 58

2.7. Aufgabenstellung 58

3. Testframework 6 1
3.1. Artefakte aus dem Entwicklungsprozess 61

3.1.1. Strukturartefakte 61
3.1.2. Verhalten 62
3.1.3. Daten 63

3.2. Technologische Realisierung 63
3.2.1. Das Testspezifikations-Meta-Modell 65
3.2.2. Das Testbericht Meta-Modell 68
3.2.3. Codegenerierung 70
3.2.4. Zusammenfassung 71

4. Leitanwendung 73
4.1. Physikalische Grundlagen 73
4.2. Software-Design und Implementierung 76

4.2.1. Klassendiagramm 76
4.2.2. Zustandsdiagramm 78

4.3. Testausführungsplattform 79
4.4. Aufgaben für die Testimplementierung 80

5

5. Heurist ik zur model lbasierten Testsequenzgenerierung 8 1
5.1. Prinzip der Testsequenzgenerierung aus Zustandsmaschinen . 82

5.1.1. Generierungsstrategien 83
5.1.2. Auffindbare Fehler 83
5.1.3. Auswahl einer Strategie zur Testsequenzgenerierung . 84
5.1.4. Umgang mit erweiterten endlichen Zustandsmaschinen 85

5.1.4.1. Auflösen von Hierarchie 86
5.1.4.2. Auflösen von Orthogonalität 86

5.2. Integration in das Framework 88
5.2.1. Allgemeine Schnittstelle der Heuristik 88
5.2.2. Verfügbare Artefakte der Leitanwendung 92
5.2.3. Konzeption des ßcc/iange-Meta-Modells 93
5.2.4.' Instanziierung der Leitanwendung 94

5.3. Heuristik 96
5.3.1. Bedatung 97
5.3.2. Berechnung der Initialisierungs-Testsequenz 100
5.3.3. Berechnung der Transitionsüberdeckung 102
5.3.4. Vervollständigung der Transitionsfolgen 105

5.3.4.1. Umgang mit Superzuständen 106
5.3.4.2. Umgang mit orthogonalen Zuständen 109

5.3.5. Zusammenfassung der strukturellen Aspekte 114
5.3.6. Synthese von Bedatung und Struktur 114

5.4. Uberführen der Testspezifikation in ausführbaren Code . . .119
5.5. Anwendung 121

6. Einsatz des Testframeworks 124
6.1. Methoden und deren Einbindung 125
6.2. Formale Testspezifikation und Transformation 128
6.3. Nutzen und Potenziale 130

7. Zusammenfassung u n d Ausblick 131

A. Algori thmen zur Testsequenzinitialisierung 134
A.l. Dijkstra-Algorithmus 136

B . Entwicklung des Algorithmus zur Transitionsüberdeckung 138

6

Abbildungsverzeichnis 141

Tabellenverzeichnis 142

Literaturverzeichnis 144

7

