Contents

1	Intr	oduction	1
	1.1	Heat Transfer Processes Containing Periodic Oscillations	1
		1.1.1 Oscillation Internal Structure of Convective	
		Heat Transfer Processes	1
		1.1.2 Problem of Correct Averaging the Heat Transfer	
		Coefficients	3
	1.2	Physical Examples	6
	1.3	Numerical Modeling of Conjugate	
		Convective-Conductive Heat Transfer	10
	1.4	Mechanism of Hydrodynamic Oscillations in a Medium	
		Flowing Over a Body	11
		1.4.1 Van Driest Model	11
		1.4.2 Periodic Model of the Reynolds Analogy	13
		1.4.3 Model of Periodical Contacts	15
	1.5	Hydrodynamic HTC	17
	1.6	Previous Investigations of Heat Transfer Processes	
		with Periodic Intensity	19
	1.7	Analytical Methods	19
	Refe	rences	20
2	Con	struction of a General Solution of the Problem	25
	2.1	Boundary Value Problem for the Heat Conduction Equation	25
	2.2	Spatial and Temporal Types of Oscillations	28
	2.3	Interrelation Between the Two Averaged Coefficients	
		of Heat Transfer	29
	2.4	Dimensionless Parameters	32
	2.5	Factor of Conjugation (FC): An Analysis of Limiting Variants	33
	Refe	erences	34
3	Solu	tion of Characteristic Problems	37
_	3.1	Construction of the General Solution	37
	3.2	Harmonic Law of Oscillations	39

xii Contents

	3.3	Inverse Harmonic Law of Oscillations	45
	3.4	Delta-Like Law of Oscillations	53
	3.5	Step Law of Oscillations	55
	3.6	Comparative Analysis of the Conjugation Effects	
		(Smooth and Step Oscillations)	69
	3.7	Particular Exact Solution	70
	Refe	rences	71
4	Universal Algorithm of Computation of the Factor of Conjugation		73
	4.1	Smooth Oscillations (Approximate Solutions)	73
	4.2	BC on a Heat Transfer Surface (Series Expansion	
		in a Small Parameter)	75
	4.3	Derivation of a Computational Algorithm	77
	4.4	Phase Shift Between Oscillations	80
	4.5	Method of a Small Parameter	83
	4.6	Application of the Algorithm for an Arbitrary Law	
		of Oscillations	85
	4.7	Filtration Property of the Computational Algorithm	91
	4.8	Generalized Parameter of the Thermal Effect	92
	4.9	Advantages of the Computational Algorithm	93
	Refe	erences	93
5	Solu	tion of Special Problems	95
	5.1	Complex Case of Heating or Cooling	95
	5.2	Heat Transfer on the Surface of a Cylinder	102
	5.3	Heat Transfer on the Surface of a Sphere	103
	5.4	Parameter of Thermal Effect for Different Geometrical Bodies	104
	5.5	Overall ATHTC	106
		5.5.1 Overall EHTC	106
		5.5.2 Bilateral Spatiotemporal Periodicity of Heat	
		Transfer (A Qualitative Analysis)	109
	Refe	erences	111
6	Step	and Nonperiodic Oscillations of the Heat Transfer Intensity	113
	6.1	Asymmetric Step Oscillations.	113
	6.2	Nonperiodic Oscillations	119
	Refe	erences	122
7			
′		Model Experience	123
	7.1 7.2	Model Experiment	123 124
	7.3	Dropwise Condensation	
	1.3	Nucleate Boiling	129
		7.3.1 Theory of Labuntsov	129
	D ~f~	7.3.2 Periodic Model of Nucleate Boiling	131
	Kele	rences	138

Contents xiii

8	Wal	l's Thermal Effect on Hydrodynamic Flow Stability	141
	8.1	Flow of a Liquid with Supercritical Parameters	
		in a Heated Channel	141
	8.2	Density Wave Instability Phenomena	142
	8.3	Scenario of Evolution of the Density Wave Instability	148
	8.4	Basic Equations of the Density Wave Instability	149
	8.5	Computation of Wall's Thermal Effect	150
	8.6	Analytical Problem Solution	151
	Refe	rences	158
9	Peri	odical Model of Turbulent Heat Transfer	159
-	9.1	Surface Rejuvenation Model	159
		9.1.1 Investigation of Turbulent Heat Transfer	10)
		by Means of the Bursting Effect	159
		9.1.2 Variable Thermophysical Properties of Fluid	160
	9.2	Method of Relative Correspondence	162
	9.3	Integral Methods for Simulation of Heat and Mass	102
	7.5	Transfer in a Boundary Layer	165
	9.4	Differential Equation for the Heat Flux	167
	2.4	9.4.1 Exact Solution	167
		9.4.2 Approximate Analytical Solution	168
		9.4.3 Validation of the Method. Laminar Boundary Layer	171
	9.5	Supercritical Pressures Region	173
	9.5	9.5.1 Thermophysical Properties	173
		2 7 2	176
	ъ с		
	Keie	rences	178
A	Proc	of of the Fundamental Inequalities	181
	A .1	Proof of the First Fundamental Inequality	181
	A.2	Proof of the Second Fundamental Inequality	186
n	•	ctions of Thickness	189
В			
	B.1	Spatial Type of Oscillations	190
	B.2	Temporal Type of Oscillations	190
C	Infin	ite Chain Fractions	193
	C.1	Fundamental Theorems of Khinchin	193
	C.2	Generalization of the Third Theorem of Khinchin	194
D	Proc	of of Divergence of the Infinite Series	197
**	D.1	Spatial Type of Oscillations	197
	D.1	Temporal Type of Oscillations	198
		•	
E		ctions of Thickness for Special Problems	201
	E.1	Heat Transfer from the Ambience	201
	E.2	Heat Transfer from an External Semi-infinite Body	202

xiv Contents

F	Periodicity in Nanoscopic Scale				
G	Rise	Velocity of a Taylor Bubble in a Round Tube	209		
	G.1	Solutions of Prandtl and Taylor	209		
	G.2	Correct Approximate Statement of the Problem	211		
	G.3	Flow in the Vicinity of the Critical Point	215		
	G.4	Solution by the Method of Collocations	217		
	G.5	Asymptotical Solution	218		
	G.6	Plane Taylor Bubble	22!		
	Refe	rences	223		
ĺ'n	ndex				