Contents

Preface xi

1	Introductions of Nucleic Acid-Based Nanomaterials 1		
	Shaojingya Gao and Yunfeng Lin		
1.1	History of DNA-Based Nanomaterials – Design and Construction 3		
1.1.1	DNAzymes 4		
1.1.2	Aptamers 5		
1.1.3	Triplex DNA 5		
1.1.4	DNA Origami and DNA Tiles 6		
	References 9		
2	The Methods to Improve the Stability of Nucleic Acid-Based		
	Nanomaterials 15		
	Xueping Xie		
2.1	Introduction 15		
2.2	Methods to Improve Stability 16		
2.2.1	Artificial Nucleic Acids 17		
2.2.2	Backbone Modification of Nucleic Acids 18		
2.2.2.1	Phosphate Group Modifications 18		
2.2.2.2	Nucleobase or Ribose Modifications 19		
2.2.3	Coating with Protective Structures 20		
2.2.4	Covalent Crosslinking 22		
2.2.5	Tuning Buffer Conditions 23		
2.2.6	Construction of Novel NAN 26		
2.3	Conclusion and Recommendations 26		
	References 27		
3	Framework Nucleic Acid-Based Nanomaterials: A Promising Vehicle		
	for Small Molecular Cargos 37		
	Yanjing Li		
3.1	Basis of FNAs as Potential Drug Carriers 38		
3.1.1	Classification and Construction of FNAs 38		
3.1.2	Physical and Chemical Properties 40		

'i	Contents	
	3.1.3	Biological Properties 40
	3.2	Small-molecule Cargos 41
	3.2.1	Antitumor Agents 42
	3.2.1.1	Chemotherapeutic Drugs 42
	3.2.1.2	Phototherapeutic Agents 43
	3.2.2	Antibiotic Agents 44
	3.2.3	Phytochemicals 45
	3.3	Merits of FNA Delivery Systems in Biomedical Application 46
	3.3.1	Efficient Drug Delivery 46
	3.3.2	Targeted Drug Delivery 46
	3.3.3	Controlled Drug Release 49
	3.3.4	Overcoming Drug Resistance 51
	3.4	Conclusions and Prospects 52
		References 54
	4	The Application of Framework Nucleic Acid-Based Nanomaterials
	7	in the Treatment of Mitochondrial Dysfunction 61
		Lan Yao and Tao Zhang
	4.1	Introduction 61
	4.2	Treatment Mechanisms in Mitochondrial Dysfunction 61
	4.2.1	Treating in mtDNA 62
	4.2.1.1	-
	4.2.1.2	Inhibiting Replication 64
	4.2.2	Treating in mRNA, tRNA, and rRNA 64
	4.2.2.1	Increase Normal RNA 64
	4.2.2.2	Silencing Abnormal RNA 64
	4.2.2.3	Treating in Noncoding RNA 65
	4.3	Nucleic Acid Nanomaterial-Based Delivery System in Mitochondrial
		Treatment 65
	4.3.1	Cell and Mitochondria Targeting 66
	4.3.1.1	Cell Targeting 66
	4.3.1.2	Mitochondria Targeting 66
	4.3.2	Framework Nucleic Acid-Based Delivery System in Mitochondria
		Treatment 68
	4.4	Challenges and Prospectives 71
		Funding 72
		References 72
	5	Regeneration of Bone-Related Diseases by Nucleic Acid-Based
		Nanomaterials: Perspectives from Tissue Regeneration and
		Molecular Medicine 81
		Xiaoru Shao
	5.1	Introduction 81
	5.2	The Development Process of Functional Nucleic Acid 82
	5.2.1	DNA Tile 83

5.2.2	DNA Origami 83			
5.2.3	Three-dimensional DNA Self-assembly 83 DNA Nanobots and DNA Microchips 84			
5.2.4				
5.3	Nucleic Acid-Based Functional Nanomaterials 84			
5.3.1	Nanomaterials That Can Bind to Functional Nucleic Acids 84			
5.3.1.1	Metal-Based Nanomaterials 84			
5.3.1.2	Carbon-Based Nanomaterials 85			
5.3.1.3	Bionanomaterials 86			
5.3.1.4	Quantum Dots 86			
5.3.1.5	Magnetic Nanomaterials 86			
5.3.1.6	Composite Nanomaterials 87			
5.3.2	Combination of Functional Nucleic Acids and Nanomaterials 87			
5.4	Multiple Roles of Nucleic Acid-Based Functional Nanomaterials in Bone Tissue			
	Repair and Regeneration 89			
5.4.1	Sustained Release 89			
5.4.2	Bone Targeting 91			
5.4.3	Scaffold Material for Bone Regeneration 92			
5.4.4	Bioimaging of Bone Tissue Regeneration 93			
5.5	Conclusion and Perspectives 94			
	References 94			
6	In Situ Fluorescence Imaging and Biotherapy of Tumor Based			
	on Hybridization Chain Reaction 101			
	Ye Chen, Songhang Li, and Taoran Tian			
6.1	Hybridization Chain Reaction 102			
6.2	Nucleic Acid Detection 102			
6.2.1	miRNA Detection 103			
6.2.1.1	Autocatalytic HCR Biocircuit 103			
6.2.1.2	Nonlinear HCR System 104			
6.2.2	Single-Nucleotide Variants Detection 105			
6.3	Protein Detection 107			
6.3.1	Antibody-Based HCR System 107			
6.3.2	Aptamer-Based HCR System 108			
6.4	Multiple Target Detection 109			
6.4.1	Combined HCR-Based Probe 109			
6.4.2	HCR-Based Logic Gate 110			
6.5	HCR-Based Assembly Nanoplatforms 113			
6.6	HCR-Based Tumor Biotherapy 115			
6.6.1	Chemotherapy 115			
6.6.2	Photodynamic Therapy 115			
6.6.3	•			
	RNA Interfering Therapy 116			
6.7	•			

viii	Contents
	•

7	Application and Prospects of Framework Nucleic Acid-Based Nanomaterials in Tumor Therapy 123 Tigging Chan and Vicentias Gri
7.1	Tianyu Chen and Xiaoxiao Cai
7.1	Development of Nucleic Acid Nanomaterials 124
7.2	Properties and Applications of Nucleic Acid Nanomaterials 125
7.2.1	tFNAs 125
7.2.2	DNA Origami 127
7.2.3	Dynamic DNA Nanostructure 130
7.3	Conclusion 133
	References 133
8	Application of Framework Nucleic Acid-Based Nanomaterials in the Treatment of Endocrine and Metabolic Diseases 139 Jingang Xiao
8.1	Endocrine and Metabolic Diseases 139
8.2	Nucleic Acid Nanomaterials 141
8.3	Nucleic Acid and Drugs 141
8.4	Nucleic Acid Nanomaterials for Endocrine and Metabolic Diseases 144
8.4.1	Diabetes Mellitus 144
8.4.2	Osteoporosis 146
8.4.3	Obesity 147
8.4.4	Nonalcoholic Fatty Liver Disease 148
8.5	Conclusion and Outlook 149
	References 151
9	The Antibacterial Applications of Framework Nucleic Acid-Based Nanomaterials: Current Progress and Further Perspectives 161 Zhiqiang Liu and Yue Sun
9.1	Some Advantages of DNA Nanostructures in the Antibacterial Field 163
9.1.1	Compatibility of DNA Nanostructures 163
9.1.2	Stability of DNA Nanostructures 163
9.1.3	Editability of DNA Nanostructures 163
9.1.4	Drug-loading Performance of DNA Nanostructures 164
9.2	Application of 2D Nanostructures in the Antibacterial Field 164
9.2.1	Five "Holes" DNA Nanostructure 164
9.2.2	Super Silver Nanoclusters Based on Branched DNA 164
9.2.3	Melamine-DNA-AgNC Complex 165
9.2.4	NET-like Nanogel Based on 2D DNA Networks 166
9.2.5	ε-poly-L-lysine-DNA Nanocomplex 166
9.3	Application of 3D DNA Nanostructures in the Antibacterial Field 166
9.3.1	Tetrahedral Framework DNA 166
9.3.1.1	Delivery of Traditional Antibiotics Based on Tetrahedral Framework DNA 168
9.3.1.2	Delivery of Nucleic Acid Antibiotics Based on Tetrahedral Framework
	DNA 168

9.3.1.3	Delivery of Polypeptide Antibiotics Based on Tetrahedral Framework DNA 169		
9.3.2	DNA Six-Helix Bundle 169		
9.3.2	DNA Nanoribhon 170		
9.3.4	DNA Pom-Pom Nanostructure 170		
9.4	Application of DNA Hydrogel Nanostructures in the Antibacterial Field	170	
9.5	Challenges and Further Perspectives 172	170	
9.5	References 174		
10	Framework Nucleic Acid Nanomaterial-Based Therapy		
	for Osteoarthritis: Progress and Prospects 181		
	Yangxue Yao, Hongxiao Huang, and Sirong Shi		
10.1	Introduction 181		
10.2	Pathology of OA 181		
10.3	Risk Factors of OA 183		
10.4	Challenges for OA Therapy 183		
10.5	Nucleic Acid Nanomaterial-Based Therapy for OA 184		
10.5.1	Vector-Independent Nucleic Acid Nanomaterials for OA Therapy 184		
10.5.1.1	Tetrahedral Framework Nucleic Acids (tFNAs) 184		
10.5.1.2	Antisense Oligonucleotides (ASOs) 187		
10.5.1.3	Aptamers 187		
10.5.2	Vector-Dependent Nucleic Acid Nanomaterials for OA Therapy 188		
10.5.2.1	MicroRNA (miRNA) Mimics 188		
10.5.2.2	Small Interfering RNA (siRNA) 188		
10.5.2.3	cDNA 192		
10.5.2.4	mRNA 192		
10.5.2.5	Circular RNA (CircRNA) 192		
10.5.3	Nucleic Acid Nanomaterials as Carriers for OA Therapy 194		
10.6	Conclusion and Prospects 194		
	References 195		

Index 205