

Contents

1	Introduction	1
2	Perturbation Method: Lindstedt-Poincaré	9
2.1	The Oscillator with Cubic Elastic Restoring Force	14
2.1.1	The Exact Solution of Duffing Equation	14
2.1.2	Use of the Perturbation Method for Duffing Oscillator with Small Parameter	17
2.1.3	Use of the Perturbation Method for Duffing Oscillators with Strong Parameter	19
3	The Method of Harmonic Balance	31
3.1	Free Vibrations of Cantilever Beam	35
3.2	Rational Harmonic Balance Method	40
4	The Method of Krylov and Bogolyubov	47
4.1	Oscillator with Linear and Cubic Elastic Restoring Force and Weak Asymmetric Quadratic Damping	53
4.2	Use of the Method of Krylov-Bogolyubov and Iteration Method to Weakly Nonlinear Oscillators	60
4.2.1	“Nonresonance” Case ($\omega \neq \frac{p}{q}\Omega$)	61
4.2.2	“Resonance” Case $\omega \approx \frac{p}{q}\Omega$	66
4.2.3	Numerical Examples	72
5	The Method of Multiple Scales	83
5.1	Duffing Oscillator with Softening Nonlinearity	89
5.2	A Parametric System with Cubic Nonlinearity Coupled with a Lanchester Damper	96
6	The Optimal Homotopy Asymptotic Method	103
6.1	Basic Idea of OHAM	106
6.2	Duffing Oscillator	112
6.2.1	Numerical Examples	114

6.3	Thin Film Flow of a Fourth Grade Fluid Down a Vertical Cylinder	116
6.4	Damped Oscillator with Fractional-Order Restoring Force	120
6.4.1	Numerical Examples	125
6.5	Nonlinear Equations Arising in Heat Transfer	127
6.5.1	Cooling of a Lumped System with Variable Specific Heat	127
6.5.2	The Temperature Distribution Equation in a Thick Rectangular Fin Radiation to Free Space	131
6.6	Blasius' Problem	133
6.7	Oscillations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia	143
6.8	Oscillations of an Electrical Machine	151
6.9	Oscillations of a Mass Attached to a Stretched Elastic Wire	156
6.10	Nonlinear Oscillator with Discontinuities	162
6.11	Nonlinear Jerk Equations	168
6.12	The Motion of a Particle on a Rotating Parabola	173
6.13	Nonlinear Oscillator with Discontinuities and Fractional-Power Restoring Force	184
6.14	Oscillations of a Flexible Cantilever Beam with Support Motion	191
6.15	The Jeffery-Hamel Flow Problem	197
6.15.1	Numerical Examples	206
7	The Optimal Homotopy Perturbation Method	211
7.1	Homotopy Perturbation Method	211
7.2	Modified Homotopy Perturbation Method	214
7.3	Basic Idea of Optimal Homotopy Perturbation Method and Some Applications	227
7.4	A Heat Transfer Problem	230
7.5	Thin Film Flow of a Fourth Grade Fluid Down a Vertical Cylinder	234
7.6	Nonlinear Dynamics of an Electrical Machine Rotor-Bearing System	240
7.7	A Non-conservative Oscillatory System of a Rotating Electrical Machine	252
8	The Optimal Variational Iteration Method	259
8.1	The Variational Iteration Method and Applications	259
8.1.1	Nonlinear Oscillator with Quadratic and Cubic Nonlinearities	264
8.1.2	A Family of Nonlinear Differential Equations	270
8.1.3	The Duffing Equation	271
8.2	Mathematical Description of the Optimal Variational Iteration Method	275

8.3	Duffing-Harmonic Oscillator	275
8.4	Oscillations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia	281
8.5	Thin Film Flow of a Fourth-Grade Fluid Down a Vertical Cylinder	286
8.6	Dynamic Analysis of a Rotating Electric Machine	292
8.7	Oscillators with Fractional-Power Nonlinearities	297
8.8	A Boundary Layer Equation in Unbounded Domain	305
9	Optimal Parametric Iteration Method	313
9.1	Short Considerations	313
9.1.1	A Combination of Mickens and He Iteration Methods	315
9.1.2	An Iteration Procedure with Application to Van der Pol Oscillator	326
9.2	Basic Idea of Optimal Parametric Iteration Method	334
9.3	Thin Film Flow of a Fourth Grade Fluid Down a Vertical Cylinder	335
9.4	Thermal Radiation on MHD Flow over a Stretching Porous Sheet	338
9.5	The Oscillator with Cubic and Harmonic Restoring Force	342
9.6	Oscillations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia	351
9.7	A Modified Van der Pol Oscillator	356
9.8	Volterra's Population Model	363
9.9	Thomas-Fermi Equation	368
9.10	Swirling Flow Downstream of a Turbine Runner	373
9.11	Lotka-Volterra Model with Three Species	378
References	385	
Index	393	