Contents

1	Founda	tions, Definitions and Concepts 1
	1.1 1.2	Ions, Electrolytes and the Quantisation of Electrical Charge 1 Transition from Electronic to Ionic Conductivity in an Electrochemical Cell 3
	1.3	Electrolysis Cells and Galvanic Cells: The Decomposition Potential and the Concept of \psc EMF 4
	1.4	Faraday's Laws 7
	1.5	Systems of Units 9
2	Electric	cal Conductivity and Interionic Interactions 12
	2.1	Fundamentals 12
	2.1.1	The Concept of Electrolytic Conductivity 12
	2.1.2	The Measurement of Electrolyte Conductance 13
	2.1.3	The Conductivity 17
	2.1.4	Numerical Values of Conductivity 18
	2.2	Empirical Laws of Electrolyte Conductivity 20
	2.2.1	The Concentration Dependence of the Conductivity 20
	2.2.2	Molar and Equivalent Conductivities 21
	2.2.3	Kohlrausch's Law and the Determination of the Limiting Conductivities
		of Strong Electrolytes 21
	2.2.4	The Law of Independent Migration of Ions and the Determination of the
		Molar Conductivity of Weak Electrolytes 23
	2.3	Ionic Mobility and Hittorf Transport 26
	2.3.1	Transport Numbers and the Determination of Limiting Ionic
		Conductivities 26
	2.3.2	Experimental Determination of Transport Numbers 28
	2.3.3	Magnitudes of Transport Numbers and Limiting Ionic Conductivities 29
	2.3.4	Hydration of Ions 30
	2.3.5	The Enhanced Conductivity of the Proton, the Structure of the H ₃ O ⁺ Ion and the Hydration Number of the Proton 32
	2.3.6	The Determination of Ionic Mobilities and Ionic Radii: Walden's Rule
	2.3.0	35
	2.4	The Theory of Electrolyte Conductivity: The Debye-Hückel-Onsager
		Theory of Dilute Electrolytes 36
	2.4.1	Introduction to the Model: Ionic Cloud, Relaxation and Electrophoretic
		Effects 36
	2.4.2	The Calculation of the Potential due to the Central Ion and its Ionic

Cloud: Ionic Strength and Radius of the Ionic Cloud 37

3

2.4.3	The Debye-Onsager Equation for the Conductivity of Dilute Electrolyte
2.4.4	Solutions 42 The Influence of Alternating Electric Fields and Strong Electric Fields on
	the Electrolyte Conductivity 43
2.5	The Concept of Activity from the Electrochemical Viewpoint 44
2.5.1	The Activity Coefficient 44
2.5.2	Calculation of the Concentration Dependence of the Activity
2.0.2	Coefficient 45
2.5.3	Activity Coefficients in Concentrated Electrolytes and Activity
2.3.3	Coefficients of Neutral Molecules 48
2.6	The Properties of Weak Electrolytes 51
2.6.1	The Ostwald Dilution Law 51
2.6.2	The Dissociation Field Effect 53
2.7	The Concept of pH and the Idea of Buffer Solutions 54
2.8	Non-aqueous Solutions 57
2.8.1	Ion Solvation in Non-aqueous Solvents 57
2.8.2	Electrolytic Conductivity in Non-aqueous Solutions 58
2.8.3	The pH-Scale in Protonic Non-aqueous Solvents 59
2.8.3	Simple Applications of Conductivity Measurements 60
2.9.1	The Determination of the Ionic Product of Water 60
2.9.1	The Determination of the folial Product of water 60 The Determination of the Solubility Product of a Slightly Soluble Salt 62
2.9.2	The Determination of the Solution of a Slightly Soluble Salt 62
2.9.3	The Determination of the Heat of Solution of a Singility Solution Said of The Determination of the Thermodynamic Dissociation Constant of a
2.9.4	Weak Electrolyte 63
2.9.5	The Principle of Conductivity Titrations 63
2.9.3	The Thicipie of Conductivity Thranons 05
Electro	ode Potentials and Double-layer Structure at Phase Boundaries 66
3.1	Electrode Potentials and their Dependence on Concentration,
	Gas-pressure and Temperature 66
3.1.1	The EMF of Galvanic Cells and the Maximum Useful Energy from
	Chemical Reactions 66
3.1.2	The Origin of Electrode Potentials, Galvani Potential Differences and the
	Electrochemical Potential 67
3.1.3	Calculation of the Electrode Potential and the Equilibrium Galvani
	Potential Difference Between a Metal and a Solution of its Ions –
	The Nernst Equation 70
3.1.4	The Nernst Equation for Redox Electrodes 71
3.1.5	The Nernst Equation for Gas Electrodes 72
3.1.6	The Measurement of Electrode Potentials and Cell Voltages 73
3.1.7	Calculation of Cell \psc EMF's from Thermodynamic Data 77
3.1.8	The Temperature Dependence of the Cell Voltage 79
3.1.9	The Pressure Dependence of the Cell Voltage – Residual Current for the
J.1.7	Electrolysis of Aqueous Solutions 80
3.1.10	Reference Electrodes and the Electrochemical Series 82

3.1.11	Reference Electrodes of the Second Kind 86
3.1.12	The Electrochemical Series in Non-aqueous Solvents 91
3.1.13	Reference Electrodes in Non-aqueous Systems and Usable Potential
	Ranges 92
3.2	Liquid-junction Potentials 93
3.2.1	The Origin of Liquid-junction Potentials 93
3.2.2	The Calculation of Diffusion Potentials 95
3.2.3	Concentration Cells with and without Transference 96
3.2.4	Henderson's Equation 97
3.2.5	The Elimination of Diffusion Potentials 99
3.3	Membrane Potentials 101
3.4	The Electrolyte Double-layer and Electrokinetic Effects 103
3.4.1	Helmholtz and Diffuse Double Layer: the Zeta Potential 104
3.4.2	Adsorption of Ions, Dipoles and Neutral Molecules – the Point of Zero
	Charge 108
3.4.3	The Double-layer Capacity 110
3.4.4	Some Data for Electrolytic Double Layers 111
3.4.5	Electrocapillarity 113
3.4.5.1	Other Methods for the Determination of the Point of Zero Charge
	(pzc) 115
3.4.6	Electrokinetic Effects – Electrophoresis, Electro-osmosis, Dorn-effect
	and Streaming Potential 117
3.5	Potential and Phase Boundary Behaviour at Semiconductor
	Electrodes 119
3.5.1	Metallic Conductors, Semiconductors and Insulators 119
3.5.2	Electrochemical Equilibria on Semiconductor Electrodes 123
3.6	Simple Applications of Potential Difference Measurements 125
3.6.1	The experimental determination of Standard Potentials and Mean
	Activity Coefficients 125
3.6.2	Solubility Products of Slightly Soluble Salts 128
3.6.3	The Determination of the Ionic Product of Water 128
3.6.4	Dissociation Constants of Weak Acids 128
3.6.5	The Determination of the Thermodynamic State Functions ($\Delta_r G^0$, $\Delta_r H^0$
	and $\Delta_r S^0$) and the Corresponding Equilibrium Constants for Chemical
	Reactions 130
3.6.6	pH Measurement with the Hydrogen Electrode 131
3.6.7	pH Measurement with the Glass Electrode 135
3.6.8	The Principle of Potentiometric Titrations 140

4 Electrical Potentials and Electrical Current 143

- 4.1 Cell Voltage and Electrode Potential During Current Flow: an Overview 143
- 4.1.1 The Concept of Overpotential 145

4.1.2	The Measurement of Overpotential: the Current-potential Curve for a Single Electrode 146
4.2	The Electron-transfer Region of the Current-potential Curve 148
4.2.1	Understanding the Origin of the Current-potential Curve in the Electron-Transfer-Limited Region with the help of the Arrhenius Equation. 148
4.2.2	The Meaning of the Exchange Current Density j_0 and the Asymmetry Parameter β 152
4.2.3	The Concentration Dependence of the Exchange Current Density 155
4.2.4	Electrode Reactions with Consecutive Transfer of Several Electrons 156
4.2.5	Electron Transfer with Coupled Chemical Equilibria: the Electrochemical Reaction Order 159
4.2.6	Further Theoretical Considerations of Electron Transfer 161
4.2.6.1	Calculation of the Critical Ligand-ion Separation x_S 161
4.2.6.2	Reorganisation Energy and the Electrochemical Rate Constant 163
4.2.6.3	Exchange Current Density and Current-voltage Curves 165
4.2.7	Determination of Activation Parameters and the Temperature Dependence of Electrochemical Reactions 166
4.3	The Concentration Overpotential – The Effect of Transport of Material on the Current-voltage Curve 167
4.3.1	The Relationship Between the Concentration Overpotential and the Butler-Volmer Equation 168
4.3.2	Diffusion Overpotential and the Diffusion layer 169
4.3.3	Current-time Behaviour at Constant Potential and Constant Surface
	Concentration c^s 171
4.3.4	Potential-time Behaviour at Constant Current: Galvanostatic Electrolysis 172
4.3.5	Transport by Convection 173
4.3.6	Mass Transport Through Migration – the Nernst-Planck Equation 178
4.3.7	Spherical Diffusion 179
4.3.8	Micro-electrodes 180
4.3.8.1	Time Dependence of the Current at a Microelectrode 181
4.3.8.2	Further Advantages of Microelectrodes 182
4.4	The Effect of Simultaneous Chemical Processes on the Current Voltage Curve 182
4.4.1	Reaction Overpotential, Reaction-limited Current and Reaction Layer Thickness 184
4.5	Adsorption Processes 186
4.5.1	Forms of Adsorption Isotherms 187
4.5.2	Adsorption Enthalpies and Pauling's Equation 190
4.5.3	Current-potential Behaviour and Adsorption-limited Current 190
4.5.4	Dependence of Exchange Current Density on Adsorption Enthalpy 191
4.6	Electrocrystallisation – Metal Deposition and Dissolution 192
4.6.1	Simple Model of Metal Deposition 193
4.6.1.1	Electrodeposition with Surface Diffusion 193

	4.6.1.2	Direct Discharge onto Line Defects 195
	4.6.1.3	Two-dimensional Nucleation 195
	4.6.2	Crystal Growth in the Presence of Screw Dislocations 195
	4.6.3	Under-potential Deposition 196
	4.6.4	The Kinetics of Metal Dissolution and Metal Passivation 198
	4.6.5	Electrochemical Materials Science and Electrochemical Surface
		Technology 199
	4.6.5.1	Preparation of Metal Powders 199
	4.6.5.2	Electrochemical Machining and Polishing 200
	4.6.5.3	Galvanoplastics 201
	4.7	Mixed Electrodes and Corrosion 202
	4.7.1	Mechanism of Acid Corrosion 202
	4.7.2	Oxygen Corrosion 203
	4.7.3	Potential-pH Diagrams or Pourbaix Diagrams 204
	4.7.4	Corrosion Protection 205
	4.7.4.1	Cathodic Corrosion Protection 206
	4.7.4.2	Inhibition of Corrosion Through Film Formation 206
	4.7.4.3	Electrophoretic Coating of Metals 207
	4.8	Current Flows on Semiconductor Electrodes 207
	4.8.1	Photoeffects in Semiconductors 209
	4.8.2	Photoelectrochemistry 211
	4.8.3	Photogalvanic Cells 212
	4.8.4	Detoxification Using Photoelectrochemical Technology 213
_	3.6.41	1 6 4 C4 1 64 Flore 1 6Flore 1 4 1 4 Transfer 214
5	Method	ls for the Study of the Electrode/Electrolyte Interface 216
	5.1	The Measurement of Stationary Current-potential Curves 216
	5.1.1	The Potentiostat 216
	5.1.2	Measurements with Controlled Mass Transport 217
	5.1.3	Stationary Measurement of Very Rapid Reactions with Turbulent
		Flow 219
	5.2	Quasi-stationary Methods 221
	5.2.1	Cyclic Voltammetry: Studies of Electrode Films and Electrode Processes
		- "Electrochemical Spectroscopy" 222
	5.2.1.1	The Cyclic Voltammogram 222
	5.2.1.2	Cyclic Voltammetry in the Presence of an Electrochemically Active
		Substance in the Electrolyte 225
	5.2.1.3	The Theory of Cyclic Voltammetry I – Single Potential Sweep in
		Unstirred Solutions 227
	5.2.1.4	The Theory of Cyclic Voltammetry II: Multiple Potential Sweeps 229
	5.2.1.5	Multiple Potential Sweeps – Experimental Considerations 232
	5.2.1.6	
	5.2.2	AC Measurements 236
	5.2.2.1	Influence of Transport Processes on the ac Impedance of an
		•
		Electrochemical Cell 237

6

5.2.2.2	Equivalent Circuit for an Electrode – Diffusion-limited Reaction 239
5.2.2.3	AC Impedance of an Electrode Where the Electron Transfer Process is Rate Limiting 240
5.2.2.4	Logarithmic or Bode Plot Representations 242
5.2.2.5	Electrode Reactions Under Mixed Control 242
5.3	Electrochemical Methods for the Study of Electrode Films 244
5.3.1	Measurement of Charge Passed 244
5.3.2	Capacitance Measurements 247
5.4	Spectroelectrochemical and Other Non-classical Methods 247
5.4.1	Introduction 247
5.4.2	Infra-red Spectroelectrochemistry 249
5.4.2.1	Basics 249
5.4.2.2	Spectroelectrochemical Cells 251
5.4.2.3	Examples of Different Methodologies in IR and Some Results 251
5.4.3	Electron Spin Resonance 255
5.4.3.1	Basics 255
5.4.3.2	Electrochemical Electron Spin Resonance 256
5.4.4	Electrochemical Mass Spectroscopy 259
5.4.4.1	Basis of Mass Spectroscopy 259
5.4.4.2	The Coupling of the Electrochemical Experiment to the Mass
511.2	Spectrometer 260
5.4.5	Additional Methods of Importance 263
5.4.5.1	Radiotracer Methods 263
5.4.5.2	Microbalance Methods 265
5.4.5.3	Scanning Tunnelling Microscopy (STM) 265
5.4.5.4	Optical Methods 268
Reactio	on Mechanisms 275
<i>c</i> 1	Silver Demoition from Conside Solution 275
6.1	Silver Deposition from Cyanide Solution 275
6.2	The Hydrogen Electrode 277
6.2.1	Influence of Adsorbed Intermediates on <i>i</i> -V Curves 278
6.2.2	Influence of the pH-value of the Solution and the Catalyst Surface 280
6.3	The Oxygen Electrode 281
6.3.1	Investigation of the Oxygen Reduction Reaction with Rotating
	Ring-disk Electrode 282
6.4	Reaction Mechanisms in Electro-organic Chemistry 283
6.4.1	General Issues 283
6.4.2	Classification of Electrode Processes 284
6.4.3	Oxidation Processes: Potentials, Intermediates and End
	Products 285
6.4.4	Reduction Processes: Potentials, Intermediates and Products 287
6.4.5	Electrochemical Polymerisation 288

7 Solid and Molten-salt Ionic Conductors as Electrolytes 291 7.1

- Ionically Conducting Solids 291
- 7.1.1 Origins of Ionic Conductivity in Solids 291
- Current/Voltage Measurements on Solid Electrodes 294 7.1.2
- 7.2 Solid Polymer Electrolytes (SPE's) 295
- 7.2.1 Current/Voltage Measurements with SPE's 297
- Ionically-conducting Melts 298 7.3
- 7.3.1 Conductivity 298
- 7.3.2 Current-voltage Studies 299

8 Industrial Electrochemical Processes 301

- 8.1 Introduction and Fundamentals 301
- Special Features of Electrochemical Processes 301 8.1.1
- Classical Cell Designs and the Space-time Yield 302 8.1.2
- 8.1.3 Morphology of Electrocatalysts 305
- 8.1.4 The Activation Overpotential 306
- The Electrochemical Preparation of Chlorine and NaOH 307 8.2
- Electrode Reactions During the Electrolysis of Aqueous NaCl 308 8.2.1
- The Diaphragm Cell 308 8.2.2
- 8.2.3 The Amalgam Cell 309
- 8.2.4 The Membrane Process 312
- Additional Comments 313 8.2.5
- 8.3 The Electrochemical Extraction and Purification of Metals 315
- 8.3.1 Extraction from Aqueous Solution 315
- Metal Purification in Aqueous Solution 316 8.3.2
- 8.3.3 Molten Salt Electrolysis 317
- Special Preparation Methods for Inorganic Chemicals 318 8.4
- Hypochlorite, Chlorate and Perchlorate 319 8.4.1
- Hydrogen Peroxide and Peroxodisulphate 320 8.4.2
- 8.4.3 Classical Water Electrolysis 320
- 8.4.4 Modern Water Electrolysis and Hydrogen Technology
- 8.5 Electro-organic Synthesis 323
- An Overview of Processes and Specific Features 323 8.5.1
- Adiponitrile The Monsanto Process 323 8.5.2
- Modern Cell Designs 325 8.6
- Future Possibilities for Electrocatalysis 327 8.7
- 8.7.1 Electrochemical Modification of Catalytic Activity in Heterogeneous Chemical Reactions – the NEMCA Effect 328
- 8.8 Component Separation Methods 330
- Treatment of Waste Water 330 8.8.1
- Electro-dialysis 331 8.8.2
- Electrophoresis 332 8.8.3
- Electrochemical Separation Procedures in the Nuclear Industry 333 8.8.4

9

Galvanic Cells 338		
9.1	Basics 338	
9.2	Properties, Components and Characteristics of Batteries 340	
9.2.1	Function and Construction of Lead-acid Batteries 340	
9.2.2	Function and Construction of Leclanché Cells 341	
9.2.3	Electrolyte and Self-discharge 342	
9.2.4	Open-circuit Voltage, Specific Capacity and Energy Density 343	
9.2.5	Current-voltage Characteristics, Power Density and	
	Power-density/Energy-density Diagrams 344	
9.2.6	Battery Discharge Characteristics 345	
9.2.7	Charge Characteristics, Current and Energy Yield and Cycle	
	Number 346	
9.2.8	Cost of Electrical Energy and of Installed Battery Power 348	
9.3	Secondary Systems 348	
9.3.1	Conventional Secondary Batteries 348	
9.3.1.1	The Nickel-Cadmium and Nickel-Iron Batteries 348	
9.3.1.2	The Silver-Zinc Battery 350	
9.3.2	New Developments 351	
9.3.2.1	Developments in Conventional Systems 351	
9.3.2.2	Experimental Secondary Batteries with Zinc Anodes 352	
9.3.2.3	Sodium-sulfur and Sodium nickel Chloride (ZEBRA)	
	Batteries 353	
9.3.2.4	Lithium Secondary Batteries 355	
9.3.3	Summary of Data for Secondary Battery Systems 358	
9.4	Primary Systems other than Leclanché Batteries 362	
9.4.1	Alkaline-Manganese Cells 362	
9.4.2	The Zinc-Mercury Oxide Battery 362	
9.4.3	Lithium Primary Batteries 363	
9.4.4	Electrode and Battery Characteristics for Primary Systems 364	
9.5	Fuel Cells 365	
9.5.1	Fuel Cells with Gaseous Fuels 366	
9.5.1.1		
9.5.1.2	The Apollo Cell 368	
9.5.2	More Recent Developments 369	
9.5.2.1	Summary of Fuel-cell Characteristics 373	
9.5.3	Fuel Cells with Liquid Fuels 376	
9.5.4	The Problems of Electrical Vehicles 377	
9.5.4.1	Requirements of Power and Energy Density in Electric-vehicle Batteries 378	
9.5.4.2	Realisable Vehicle Types with Secondary Batteries as Energy Sources 378	
9.5.4.3	Fuel Cells as Power Sources 379	

9.5.4.4 Economics of Electric Vehicles 380

9.6

Primary and Secondary Air Batteries 383

	9.6.1 9.6.2 9.7	Metal-air Primary Batteries 383 Metal-air Secondary Systems 384 Efficiency of Batteries and Fuel Cells 384
10	Analyti	cal Applications 388
	10.1	Titration Processes Using Electrochemical Indicators 388
	10.2	Electro-analytical Methods 391
		Polarography and Voltammetry 391
	10.2.1.1	The Principles of dc Polarography 391
	10.2.1.2	Modern Instrumental Improvements in Sensitivity and Resolution in
		Polarography 394
	10.2.1.3	Polarographic Methods Using a Stationary Mercury Electrode 397
	10.2.1.4	Final Remarks on Polarography 399
	10.2.2	Further Methods - Coulometry, Electrogravimetry and
		Chronopotentiometry 399
	10.3	Electrochemical Sensors 401
		Conductivity and pH Measurement 402
		Redox Electrodes 402
	10.3.3	Ion-sensitive Electrodes 403
		Glass-membrane Electrodes 404
		Solid and Liquid Membrane Electrodes 404
		ISFETs 406
		Sensors for the Analysis of Gases 407
	10.3.4.1	Conductimetric Sensors 407
		Potentiometric Gas Sensors 407
	10.3.4.3	Amperometric Gas Sensors 408

Index 415