Contents

Prologue 1

Part I. The Euclidean Manifold as a Paradigm

1.1		nce at History
1.2		aic Basic Ideas
	1.2.1	Symmetrization and Antisymmetrization
	1.2.2	Cramer's Rule for Systems of Linear Equations
	1.2.3	Determinants and the Inverse Matrix
	1.2.4	The Hilbert Space Structure
	1.2.5	Orthogonality and the Dirac Calculus
	1.2.6	The Lie Algebra Structure
	1.2.7	The Metric Tensor
	1.2.8	The Volume Form
	1.2.9	Grassmann's Alternating Product
	1.2.10	Perspectives
1.3	The SI	ew-Field H of Quaternions
	1.3.1	The Field \mathbb{C} of Complex Numbers
	1.3.2	The Galois Group $\operatorname{Gal}(\mathbb{C} \mathbb{R})$ and Galois Theory
	1.3.3	A Glance at the History of Hamilton's Quaternions.
	1.3.4	Pauli's Spin Matrices and the Lie Algebras $su(2)$
		and $sl(2,\mathbb{C})$
	1.3.5	Cayley's Matrix Approach to Quaternions
	1.3.6	The Unit Sphere $U(1, \mathbb{H})$ and the Electroweak Gauge
		Group $SU(2)$
	1.3.7	The Four-Dimensional Extension of the Euclidean
		Space E_3
	1.3.8	Hamilton's Nabla Operator
	1.3.9	The Indefinite Hilbert Space $\mathbb H$ and the Minkowski
		Space M_4
1.4	Riesz I	Duality between Vectors and Covectors

	1.5	The H	leisenberg Group, the Heisenberg Algebra, and	
		Quant	tum Physics	106
	1.6	The H	leisenberg Group Bundle and Gauge Transformations.	112
2.			and Duality (Tensor Algebra, Grassmann	
	Alge		Clifford Algebra, Lie Algebra)	115
	2.1	Multil	linear Functionals	115
		2.1.1	The Graded Algebra of Polynomials	115
		2.1.2	Products of Multilinear Functionals	118
		2.1.3	Tensor Algebra	120
		2.1.4	Grassmann Algebra (Alternating Algebra)	121
		2.1.5	Symmetric Tensor Algebra	121
		2.1.6	The Universal Property of the Tensor Product	122
		2.1.7	Diagram Chasing	124
	2.2	The C	Clifford Algebra $\bigvee(E_1)$ of the One-Dimensional	
		Euclid	lean Space E_1	126
	2.3	Algeb	ras of the Two-Dimensional Euclidean Space E_2	127
		2.3.1	The Clifford Algebra $\bigvee(E_2)$ and Quaternions	128
		2.3.2	The Cauchy–Riemann Differential Equations	
			in Complex Function Theory	129
		2.3.3	The Grassmann Algebra $\bigwedge(E_2)$	131
		2.3.4	The Grassmann Algebra $\bigwedge(E_2^d)$	132
		2.3.5	The Symplectic Structure of E_2	132
		2.3.6	The Tensor Algebra $\bigotimes(E_2)$	133
		2.3.7	The Tensor Algebra $\bigotimes(E_2^d)$	133
	2.4	Algeb	ras of the Three-Dimensional Euclidean Space $E_3 \ldots$	133
		2.4.1	Lie Algebra	133
		2.4.2	Tensor Algebra	133
		2.4.3	Grassmann Algebra	134
		2.4.4	Clifford Algebra	134
	2.5		ras of the Dual Euclidean Space E_3^d	135
		2.5.1	Tensor Algebra	135
		2.5.2	Grassmann Algebra	135
	2.6		Iixed Tensor Algebra	136
	2.7		lilbert Space Structure of the Grassmann Algebra	
			e Duality)	138
			The Hilbert Space $\bigwedge(E_3)$	139
		2.7.2	The Hilbert Space $\bigwedge(E_3^d)$	140
		2.7.3	Multivectors	142
	2.8		lifford Structure of the Grassmann Algebra	
		(Exter	ior–Interior Kähler Algebra)	144
		2.8.1	The Kähler Algebra $\bigwedge (E_3)_{\vee} \dots \dots$	144
		2.8.2	The Kähler Algebra $\bigwedge (E_3^d)_{\vee}$	145
	2.9		*-Algebra $\operatorname{End}(E_3)$ of the Euclidean Space	145
	2.10	Linear	• Operator Equations	146

		2.10.1	The Prototype	146
		2.10.1	The Grassmann Theorem	148
		2.10.2	The Superposition Principle	151
		2.10.3	Duality and the Fredholm Alternative	153
		2.10.1 2.10.5	The Language of Matrices	157
		2.10.6	The Gaussian Elimination Method	163
	2.11		ing the Basis and the Cobasis	164
	2.11	2.11.1	Similarity of Matrices	165
		2.11.2	Volume Functions	166
		2.11.3	The Determinant of a Linear Operator	167
		2.11.4	The Reciprocal Basis in Crystallography	168
		2.11.5	Dual Pairing	170
		2.11.6	The Trace of a Linear Operator	170
		2.11.7		171
	2.12		rategy of Quotient Algebras and Universal Properties	174
	2.13		ce at Division Algebras	176
	2.10	2.13.1	From Real Numbers to Cayley's Octonions	176
		2.13.2	Uniqueness Theorems	177
		2.13.3	The Fundamental Dimension Theorem	178
3.	Rep	resenta	tions of Symmetries in Mathematics and	
	Phys	sics		181
	3.1	The Sy	mmetric Group as a Prototype	181
	3.2	Incredi	ible Cancellations	184
	3.3	The Sy	mmetry Strategy in Mathematics and Physics	186
	3.4	Lie Gr	oups and Lie Algebras	187
	3.5		Notions of Representation Theory	189
		3.5.1	Linear Representations of Groups	189
		3.5.2	Linear Representations of Lie Algebras	193
	3.6	The R	effection Group \mathcal{Z}_2 as a Prototype	194
		3.6.1	Representations of \mathcal{Z}_2	194
		3.6.2	Parity of Elementary Particles	195
		3.6.3	Reflections and Chirality in Nature	196
		3.6.4	Parity Violation in Weak Interaction	196
		3.6.5	Helicity	196
	3.7	Permu	tation of Elementary Particles	197
		3.7.1	The Principle of Indistinguishability of Quantum	
			Particles	197
		3.7.2	The Pauli Exclusion Principle	197
		3.7.3	Entangled Quantum States	198
	3.8		iagonalization of Linear Operators	199
		3.8.1	The Theorem of Principal Axes in Geometry and	
			in Quantum Theory	200
		3.8.2	The Schur Lemma in Linear Representation Theory	202
		3.8.3	The Jordan Normal Form of Linear Operators	202

	3.8.4	The Standard Maximal Torus of the Lie Group $SU(n)$	
		and the Standard Cartan Subalgebra	
		of the Lie Algebra $su(n)$	204
	3.8.5	Eigenvalues and the Operator Strategy for Lie	
		Algebras (Adjoint Representation)	204
3.9	The A	ction of a Group on a Physical State Space, Orbits,	
	and Ga	auge Theory	205
3.10	The In	trinsic Symmetry of a Group	206
3.11	Linear	Representations of Finite Groups and the Hilbert	
	Space of	of Functions on the Group	207
3.12	The Te	ensor Product of Representations and Characters	211
3.13	Applica	ations to the Symmetric Group $Sym(n) \dots \dots$	214
	3.13.1	The Characters of the Symmetric Group $Sym(2)$	214
	3.13.2	The Characters of the Symmetric Group $Sym(3)$	216
	3.13.3	Partitions and Young Frames	217
	3.13.4	Young Tableaux and the Construction of a Complete	
		System of Irreducible Representations	222
3.14	Applica	ation to the Standard Model in Elementary Particle	
		S	225
	3.14.1	Quarks and Baryons	225
	3.14.2	Antiquarks and Mesons	236
	3.14.3	The Method of Highest Weight for Composed	
		Particles	239
	3.14.4	The Pauli Exclusion Principle and the Color	
		of Quarks	241
3.15	The Co	omplexification of Lie Algebras	244
	3.15.1	Basic Ideas	246
	3.15.2	The Complex Lie Algebra $sl_{\mathbb{C}}(3,\mathbb{C})$ and Root	
		Functionals	248
	3.15.3	Representations of the Complex Lie Algebra $sl_{\mathbb{C}}(3,\mathbb{C})$	
		and Weight Functionals	252
3.16	Classifi	ication of Groups	253
	3.16.1	Simplicity	253
	3.16.2	Direct Product and Semisimplicity	255
	3.16.3	Solvablity	255
	3.16.4	Semidirect Product	256
3.17		ication of Lie Algebras	259
0.1.	3.17.1	The Classification of Complex Simple Lie Algebras .	259
	3.17.2	Semisimple Lie Algebras	261
	3.17.3	Solvability and the Heisenberg Algebra in Quantum	
	312110	Mechanics	263
	3.17.4	Semidirect Product and the Levi Decomposition	264
	3.17.5	The Casimir Operators	266
3.18		etric and Antisymmetric Functions	260 267
0.10	Symme	the and musymmetric runchous	201

	3.18.1	Symmetrization and Antisymmetrization	268
	3.18.2	Elementary Symmetric Polynomials	270
	3.18.3	Power Sums	271
	3.18.4	Completely Symmetric Polynomials	271
	3.18.5	Symmetric Schur Polynomials	272
	3.18.6	Raising Operators and the Creation and	
		Annihilation of Particles	274
3.19	Formal	Power Series Expansions and Generating Functions.	275
	3.19.1	The Fundamental Frobenius Character Formula	276
	3.19.2	The Pfaffian	278
3.20	Froben	ius Algebras and Frobenius Manifolds	278
3.21	Histori	cal Remarks	279
3.22	Supers	ymmetry	287
	3.22.1	Graduation in Nature	287
	3.22.2	General Strategy in Mathematics	287
	3.22.3	The Super Lie Algebra of the Euclidean Space	288
3.23	Artin's	Braid Group	290
	3.23.1	The Braid Relation	290
	3.23.2	The Yang–Baxter Equation	291
	3.23.3	The Geometric Meaning of the Braid Group	292
	3.23.4	The Topology of the State Space of n Indistinguish-	
		able Particles in the Plane	294
3.24		OMFLY Polynomials in Knot Theory	295
3.25	Quantı	ım Groups	297
	3.25.1	Quantum Mechanics as a Deformation	297
	3.25.2	Manin's Quantum Planes \mathbb{R}^2_q and \mathbb{C}^2_q	298
	3.25.3	The Coordinate Algebra of the Lie Group $SL(2,\mathbb{C})$.	300
	3.25.4	The Quantum Group $SL_q(2, \mathbb{C})$	301
	3.25.5	The Quantum Algebra $sl_q(2,\mathbb{C})$	302
	3.25.6	The Coaction of the Quantum Group $SL_q(2,\mathbb{C})$	
		on the Quantum Plane \mathbb{C}_q^2	303
	3.25.7	Noncommutative Euclidean Geometry and Quantum	
		Symmetry	304
3.26		ve Groups, Betti Numbers, Torsion Coefficients, and	
		ogical Products	306
3.27	Lattice	s and Modules	309
m1		N	001
		ean Manifold \mathbb{E}^3	321
4.1		y Vectors and the Tangent Space	321
4.2		v and Cotangent Spaces	323
4.3		l Transport and Acceleration	323
4.4		n's Law of Motion	324
4.5		s Over the Euclidean Manifold	324
	4.5.1	The Tangent Bundle and Velocity Vector Fields	325
	4.5.2	The Cotangent Bundle and Covector Fields	325

4.

		4.5.3	Tensor Bundles and Tensor Fields	326
		4.5.4	The Frame Bundle	327
	4.6	Histor	ical Remarks	327
		4.6.1	Newton and Leibniz	327
		4.6.2	The Lebesgue Integral	329
		4.6.3	The Dirac Delta Function and Laurent Schwartz's	
			Distributions	330
		4.6.4	The Algebraization of the Calculus	330
		4.6.5	Formal Power Series Expansions and the Ritt	
			Theorem	331
		4.6.6	Differential Rings and Derivations	331
		4.6.7	The <i>p</i> -adic Numbers	332
		4.6.8	The Local–Global Principle in Mathematics	336
		4.6.9	The Global Adelic Ring	337
		4.6.10	Solenoids, Foliations, and Chaotic Dynamical	
			Systems	339
		4.6.11	Period Three Implies Chaos	345
		4.6.12	Differential Calculi, Noncommutative Geometry, and	
			the Standard Model in Particle Physics	346
		4.6.13	BRST-Symmetry, Cohomology, and the Quantiza-	
			tion of Gauge Theories	347
		4.6.14	Itô's Stochastic Calculus	348
-	7 11 -		III)	
5.			coup $U(1)$ as a Paradigm in Harmonic Analysis	
5.	\mathbf{and}	Geome	etry	355
5.	and 5.1	Geome Lineari	etry ization and the Lie Algebra $u(1)$	355 355
5.	and 5.1 5.2	Geome Linear The U	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$	355 355 356
5.	and 5.1	Geome Linear The U Left-In	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$	355 355 356 356
5.	and 5.1 5.2	Geome Linear The U Left-In 5.3.1	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$	355 355 356 356 356 357
5.	and 5.1 5.2 5.3	Geome Lineari The U Left-In 5.3.1 5.3.2	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer–Cartan Form of $U(1)$ The Maurer–Cartan Structural Equation	355 355 356 356 357 358
5.	and 5.1 5.2 5.3 5.4	Geome Linear The U Left-In 5.3.1 5.3.2 The Ri	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer–Cartan Form of $U(1)$ The Maurer–Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure	355 355 356 356 357 358 358
5.	and 5.1 5.2 5.3	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri The D	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer–Cartan Form of $U(1)$ The Maurer–Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform	355 355 356 356 357 358 358 358 359
5.	and 5.1 5.2 5.3 5.4	Geome Linear The U Left-In 5.3.1 5.3.2 The Ri The D 5.5.1	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$	355 355 356 356 357 358 358 358 359 359
5.	and 5.1 5.2 5.3 5.4	Geome Lineari The U Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ wariant Velocity Vector Fields on $U(1)$ The Maurer–Cartan Form of $U(1)$ The Maurer–Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo–Differential Operators	355 355 356 356 357 358 358 358 359 359 360
5.	and 5.1 5.2 5.3 5.4 5.5	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.2 5.5.3	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$	355 355 356 356 357 358 358 358 359 359 360 361
5.	and 5.1 5.2 5.3 5.4 5.5	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.3 The G	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$ roup of Motions on the Gaussian Plane	355 355 356 356 357 358 358 358 359 360 361 361
5.	and 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.3 The G Rotatio	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$ roup of Motions on the Gaussian Plane ons of the Euclidean Plane	355 356 356 357 358 358 359 360 361 361 362
5.	and 5.1 5.2 5.3 5.4 5.5	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.3 The G Rotatio	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$ roup of Motions on the Gaussian Plane	355 355 356 356 357 358 358 358 359 360 361 361
5.	and 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.3 The Gi Rotatic Pontry	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$ roup of Motions on the Gaussian Plane ons of the Euclidean Plane	355 356 356 357 358 358 359 360 361 361 362
	and 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.3 The Gi Rotatio Pontry	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$ roup of Motions on the Gaussian Plane ons of the Euclidean Plane agin Duality for $U(1)$ and Quantum Groups	355 356 356 357 358 359 359 360 361 361 362 369
	and 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Infit	Geome Lineari The U Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.3 The G Rotatio Pontry nitesima	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ wariant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$ roup of Motions on the Gaussian Plane agin Duality for $U(1)$ and Quantum Groups al Rotations and Constraints in Physics	355 355 356 356 357 358 358 359 360 361 361 362 369 371
	and 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Infin 6.1	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.3 The Gi Rotatio Pontry itesim The Gi Euler's	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ wariant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation iemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$ roup of Motions on the Gaussian Plane agin Duality for $U(1)$ and Quantum Groups al Rotations and Constraints in Physics roup $U(E_3)$ of Unitary Transformations	355 355 356 356 357 358 359 360 361 361 362 369 371 371
	and 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Infin 6.1 6.2	Geome Lineari The U: Left-In 5.3.1 5.3.2 The Ri 5.5.1 5.5.2 5.5.3 The G Rotatio Pontry hitesima The G Euler's The Li	etry ization and the Lie Algebra $u(1)$ niversal Covering Group of $U(1)$ variant Velocity Vector Fields on $U(1)$ The Maurer-Cartan Form of $U(1)$ The Maurer-Cartan Structural Equation itemannian Manifold $U(1)$ and the Haar Measure iscrete Fourier Transform The Hilbert Space $L_2(U(1))$ Pseudo-Differential Operators The Sobolev Space $W_2^m(U(1))$ roup of Motions on the Gaussian Plane ons of the Euclidean Plane agin Duality for $U(1)$ and Quantum Groups Rotations and Constraints in Physics Rotation Formula	3555 3556 3566 3576 3588 3599 3600 3611 3612 3612 3622 3699 3711 3731

		6.4.2	d'Alembert's Principle of Virtual Power	377
		6.4.3	d'Alembert's Principle of Virtual Work	378
		6.4.4	The Gaussian Principle of Least Constraint and	
			Constraining Forces	378
		6.4.5	Manifolds and Lagrange's Variational Principle	383
		6.4.6	The Method of Perturbation Theory	384
		6.4.7	Further Reading on Perturbation Theory and	
			its Applications	385
	6.5	Applic	cation to the Motion of a Rigid Body	388
		6.5.1	The Center of Gravity	389
		6.5.2	Moving Orthonormal Frames and Infinitesimal	
			Rotations	389
		6.5.3	Kinetic Energy and the Inertia Tensor	391
		6.5.4	The Equations of Motion – the Existence and	
			Uniqueness Theorem	393
		6.5.5	Euler's Equation of the Spinning Top	395
		6.5.6	Equilibrium States and Torque	397
		6.5.7	The Principal Bundle $\mathbb{R}^3 \times SO(3)$ – the Position	
			Space of a Rigid Body	397
	6.6	A Gla	nce at Constraints in Quantum Field Theory	398
		6.6.1	Gauge Transformations and Virtual Degrees	
			of Freedom in Gauge Theory	399
		6.6.2	Elimination of Unphysical States (Ghosts)	400
		6.6.3	Degenerate Minimum Problems	401
		6.6.4	Variation of the Action Functional	404
		6.6.5	Degenerate Lagrangian and Constraints	408
		6.6.6	Degenerate Legendre Transformation	408
		6.6.7	Global and Local Symmetries	411
		6.6.8	Quantum Symmetries and Anomalies	414
	6.7	-	ectives	417
		6.7.1	Topological Constraints in Maxwell's Theory	
			of Electromagnetism	417
		6.7.2	Constraints in Einstein's Theory of General	
			Relativity	417
		6.7.3	Hilbert's Algebraic Theory of Relations (Syzygies) .	417
	6.8	Furthe	er Reading	418
	Dat		Quatanniana the Universal Counting Crown	
7.			Quaternions, the Universal Covering Group,	495
	and 7.1		ectron Spin rnions and the Cayley–Hamilton Rotation Formula	$\begin{array}{c} 425 \\ 425 \end{array}$
	$7.1 \\ 7.2$	•		420
			niversal Covering Group $SU(2)$	420
	7.3		cible Unitary Representations of the Group $SU(2)$ and bin	427
		7.3.1	The Spin Quantum Numbers	427
			• •	428 434
		7.3.2	The Addition Theorem for the Spin	434

		7.3.3	The Model of Homogeneous Polynomials	435
		7.3.4	The Clebsch–Gordan Coefficients	436
	7.4	Heisen	berg's Isospin	437
8.	Cha	nging (Observers – A Glance at Invariant Theory	
			he Principle of the Correct Index Picture	439
	8.1		nce at the History of Invariant Theory	439
	8.2	The Ba	asic Philosophy	440
	8.3		Inemonic Principle of the Correct Index Picture	443
	8.4		Valued Physical Fields	444
		8.4.1	The Chain Rule and the Key Duality Relation	445
		8.4.2	Linear Differential Operators	446
		8.4.3	Duality and Differentials	447
		8.4.4	Admissible Systems of Observers	449
		8.4.5	Tensorial Families and the Construction of Invariants	
			via the Basic Trick of Index Killing	452
		8.4.6	Orientation, Pseudo-Tensorial Families, and	
			the Levi-Civita Duality	460
	8.5	Differe	ential Forms (Exterior Product)	464
		8.5.1	Cartan Families and the Cartan Differential	464
		8.5.2	Hodge Duality, the Hodge Codifferential, and	
			the Laplacian (Hodge's Star Operator)	469
	8.6		ähler–Clifford Calculus and the Dirac Operator	
			or Product)	473
		8.6.1	The Exterior Differential Algebra	475
		8.6.2	The Interior Differential Algebra	477
		8.6.3	Kähler Duality	479
		8.6.4	Applications to Fundamental Differential Equations in Physics	480
		8.6.5	The Potential Equation and the Importance	
			of the de Rham Cohomology	481
		8.6.6	Tensorial Differential Forms	482
	8.7	Integra	als over Differential Forms	483
	8.8	Deriva	tives of Tensorial Families	484
		8.8.1	The Lie Algebra of Linear Differential Operators and	
			the Lie Derivative	487
		8.8.2	The Inverse Index Principle	493
		8.8.3	The Covariant Derivative (Weyl's Affine Connec-	
			tion)	494
	8.9	The Ri	iemann–Weyl Curvature Tensor	503
		8.9.1	Second-Order Covariant Partial Derivatives	504
		8.9.2	Local Flatness	506
		8.9.3	The Method of Differential Forms (Cartan's Struc-	
			tural Equations)	507
		8.9.4	The Operator Method	510

8.10	The Ri		511
	8.10.1	The Levi-Civita Metric Connection	512
	8.10.2	Levi-Civita's Parallel Transport	513
	8.10.3	Symmetry Properties of the Riemann-Christoffel	
		Curvature Tensor	515
	8.10.4	The Ricci Curvature Tensor and the Einstein Tensor	516
	8.10.5	The Conformal Weyl Curvature Tensor	517
	8.10.6	The Hodge Codifferential and the Covariant Partial	
		Derivative	519
	8.10.7	The Weitzenböck Formula for the Hodge Laplacian .	519
	8.10.8	The One-Dimensional σ -Model and Affine Geodesics	520
8.11	The Be	eauty of Connection-Free Derivatives	522
	8.11.1	The Lie Derivative	523
	8.11.2	The Cartan Derivative	523
	8.11.3	The Weyl Derivative	524
8.12			526
8.13	Summa	ary of Notation	527
8.14	Two St	trategics in Invariant Theory	529
8.15	Intrins	ic Tangent Vectors and Derivations	529
8.16	Furthe	r Reading on Symmetry and Invariants	534
App 9.1	The M	ethod of Orthonormal Frames on the Euclidean	557
			557
			557
			559
	9.1.3		
		,	560
			561
			563
0.0		-	565
9.2			567
			567
			568
			569
		-	569
9.3			574
			574
. .			575
9.4			576
			577
			577
	9.4.3	Curves of Minimal Length	579
	9.4.4	The Gauss Equations of Moving Frames	580
	8.12 8.13 8.14 8.15 8.16 App	$\begin{array}{c} 8.10.1\\ 8.10.2\\ 8.10.3\\ \\8.10.3\\ \\8.10.5\\ 8.10.5\\ \\8.10.6\\ \\8.10.7\\ \\8.10.6\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.10.7\\ \\8.11.1\\ \\8.11.2\\ \\8.11.3\\ \\8.11.2\\ \\8.11.3\\ $	 8.10.1 The Levi-Civita Metric Connection

9

	9.4.5	Parallel Transport of a Velocity Vector and Cartan's	
		Propagator Equation	581
	9.4.6	The Dual Cartan Equations of Moving Frames	584
	9.4.7	Global Parallel Transport on Lie Groups and	
		the Maurer-Cartan Form	585
	9.4.8	Cartan's Global Connection Form	
		on the Frame Bundle of the Euclidean Manifold	587
	9.4.9	The Relation to Gauge Theory	590
	9.4.10	The Reduction of the Frame Bundle	
		to the Orthonormal Frame Bundle	593
9.5	The Sp	ohere as a Paradigm in Riemannian Geometry and	
		Theory	593
	9.5.1	The Newtonian Equation of Motion and Levi-Civita's	
		Parallel Transport	595
	9.5.2	Geodesic Triangles and the Gaussian Curvature	599
	9.5.3	Geodesic Circles and the Gaussian Curvature	600
	9.5.4	The Spherical Pendulum	600
	9.5.5	Geodesics and Gauge Transformations	603
	9.5.6	The Local Hilbert Space Structure	606
	9.5.7	The Almost Complex Structure	607
	9.5.8	The Levi-Civita Connection on the Tangent Bundle	
		and the Riemann Curvature Tensor	608
	9.5.9	The Components of the Riemann Curvature Tensor	
		and Gauge Fixing	617
	9.5.10	Computing the Riemann Curvature Operator via	
		Parallel Transport Along Loops	619
	9.5.11	The Connection on the Frame Bundle and Parallel	
		Transport	620
	9.5.12	Poincaré's Topological No-Go Theorem for Velocity	
		Vector Fields on a Sphere	623
9.6	Gauss'	Theorema Egregium	623
	9.6.1	The Natural Basis and Cobasis	623
	9.6.2	Intrinsic Metric Properties	627
	9.6.3	The Extrinsic Definition of the Gaussian Curvature	628
	9.6.4	The Gauss–Weingarten Equations for Moving	
		Frames	630
	9.6.5	The Integrability Conditions and the Riemann	
		Curvature Tensor	631
	9.6.6	The Intrinsic Characterization of the Gaussian	
		Curvature (Theorema Egregium)	632
	9.6.7	Differential Invariants and the Existence and	
		Uniqueness Theorem of Classical Surface Theory	633
	9.6.8	Gauss' Theorema Elegantissimum and the	
		Gauss-Bonnet Theorem	634

		9.6.9	Gauss' Total Curvature and Topological Charges	635
		9.6.10	Cartan's Method of Moving Orthonormal Frames	636
	9.7	Paralle	l Transport in Physics	638
	9.8	Finsler	Geometry	638
	9.9	Furthe	r Reading	640
10.	Tem	peratu	re Fields on the Euclidean Manifold \mathbb{E}^3	645
	10.1	The Di	rectional Derivative	645
	10.2	The Li	e Derivative of a Temperature Field along the Flow	
		of Flui	d Particles	647
		10.2.1	The Flow	647
		10.2.2	The Linearized Flow	650
		10.2.3	The Lie Derivative	651
		10.2.4	Conservation Laws	652
	10.3	Higher	Variations of a Temperature Field and the Taylor	
		Expans	sion	652
	10.4		échet Derivative	653
	10.5		Linearization of Smooth Maps and the Tangent	
				654
	10.6		obal Chain Rule	657
	10.7	The Tr	ansformation of Temperature Fields	657
11.	Velo	city Ve	ector Fields on the Euclidean Manifold $\mathbb{E}^3 \dots$	659
	11.1	The Tr	ansformation of Velocity Vector Fields	661
	11.2	The Li	e Derivative of an Electric Field along the Flow	
		of Flui	d Particles	663
		11.2.1	The Lie Derivative	663
		11.2.2	Conservation Laws	663
		11.2.3	The Lie Algebra of Velocity Vector Fields	664
12.	Cove	ector F	ields and Cartan's Exterior Differential –	
	the l	Beauty	of Differential Forms	665
	12.1	Ariadn	e's Thread	666
		12.1.1	One Dimension	666
		12.1.2	Two Dimensions	670
		12.1.3	Three Dimensions	677
		12.1.4	Integration over Manifolds	681
		12.1.5	Integration over Singular Chains	684
	12.2		ations to Physics	685
		12.2.1	Single-Valued Potentials and Gauge Transformations	685
		12.2.2	Multi-Valued Potentials and Riemann Surfaces	687
		12.2.3	The Electrostatic Coulomb Force and the Dirac Delta	
			Distribution	690
		12.2.4	The Magic Green's Function and the Dirac Delta	
			Distribution	691

	12.2.5	Conservation of Heat Energy – the Paradigm	
		of Conservation Laws in Physics	695
	12.2.6	The Classical Predecessors of the Yang–Mills	
		Equations in Gauge Theory (Fluid Dynamics and	
		Electrodynamics)	698
	12.2.7	Thermodynamics and the Pfaff Problem	698
	12.2.8	Classical Mechanics and Symplectic Geometry	700
	12.2.9	The Universality of Differential Forms	700
	12.2.10	Cartan's Covariant Differential and the Four	
		Fundamental Interactions in Nature	700
12.3	Cartan	's Algebra of Alternating Differential Forms	701
	12.3.1	The Geometric Approach	701
	12.3.2	The Grassmann Bundle	704
	12.3.3	The Tensor Bundle	705
	12.3.4	The Transformation of Covector Fields	705
12.4	Cartan	's Exterior Differential	706
	12.4.1	Invariant Definition via the Lie Algebra of Velocity	
		Vector Fields	707
	12.4.2	The Supersymmetric Leibniz Rule	709
	12.4.3	The Poincaré Cohomology Rule	710
	12.4.4	The Axiomatic Approach	710
12.5	The Li	e Derivative of Differential Forms	712
	12.5.1	Invariant Definition via the Flow of Fluid Particles .	712
	12.5.2	The Contraction Product between Velocity Vector	
		Fields and Differential Forms	714
	12.5.3	Cartan's Magic Formula	714
	12.5.4	The Lie Derivative of the Volume Form	715
	12.5.5	The Lie Derivative of the Metric Tensor Field	715
	12.5.6	The Lie Derivative of Linear Operator Fields	716
12.6	Diffeon	norphisms and the Mechanics of Continua –	
	the Pro	ototype of an Effective Theory in Physics	717
	12.6.1	Linear Diffeomorphisms and Deformation Operators	718
		Local Diffeomorphisms	719
	12.6.3	Proper Maps and Hadamard's Theorem	
		on Diffeomorphisms	720
	12.6.4	Monotone Operators and Diffeomorphisms	720
	12.6.5	Sard's Theorem on the Genericity of Regular	
		Solution Sets	721
	12.6.6	The Strain Tensor and the Stress Tensor	
		in Cauchy's Theory of Elasticity	722
	12.6.7	The Rate-of-Strain Tensor and the Stress Tensor	
		in the Hydrodynamics of Viscous Fluids	725
	12.6.8	Vorticity Lines of a Fluid	728
	12.6.9	The Lie Derivative of the Covector Field	728

12.7	The Generalized Stokes Theorem (Main Theorem					
	of Calculus)					
12.8		vation Laws	731			
	12.8.1	х				
		Fields)	732			
	12.8.2	Absolute Integral Invariants and Incompressible				
		Fluids	734			
	12.8.3	Relative Integral Invariants and the Vorticity				
		Theorems for Fluids due to Thomson and Helmholtz	735			
	12.8.4	The Transport Theorem	735			
	12.8.5	The Noether Theorem – Symmetry Implies				
		Conservation Laws in the Calculus of Variations	737			
12.9	The Ha	amiltonian Flow on the Euclidean Manifold –				
	a Parac	digm of Hamiltonian Mechanics	744			
	12.9.1	Hamilton's Principle of Critical Action	746			
	12.9.2	Basic Formulas	748			
	12.9.3	The Poincaré–Cartan Integral Invariant	749			
	12.9.4	Energy Conservation and the Liouville Integral				
		Invariant	749			
	12.9.5	Jacobi's Canonical Transformations, Lie's Contact				
		Geometry, and Symplectic Geometry	750			
	12.9.6	Hilbert's Invariant Integral	753			
	12.9.7	Jacobi's Integration Method	753			
	12.9.8	Legendre Transformation	754			
	12.9.9	Carathéodory's Royal Road to the Calculus				
		of Variations	755			
	12.9.10	Geometrical Optics	759			
12.10	The Ma	ain Theorems in Classical Gauge Theory (Existence				
	of Pote	entials)	760			
	12.10.1	Contractible Manifolds (the Poincaré–Volterra				
		Theorem)	762			
	12.10.2	Non-Contractible Manifolds and Betti Numbers				
		(De Rham's Theorem on Periods)	764			
	12.10.3	The Main Theorem for Velocity Vector Fields	766			
12.11		s of Differential Forms	767			
	12.11.1	Integrability Condition	767			
	12.11.2	The Frobenius Theorem for Pfaff Systems	769			
		The Dual Frobenius Theorem	770			
	12.11.4	The Pfaff Normal Form and the Second Law				
		of Thermodynamics	770			
12.12	Hodge	Duality	771			
		The Hodge Codifferential	772			
		The Hodge Homology Rule	773			

12.12.3 The Relation between the Cartan–Hodge Calculus	
and Classical Vector Analysis via Riesz Duality	773
12.12.4 The Classical Prototype of the Yang–Mills Equation	
in Gauge Theory	774
12.12.5 The Hodge–Laplace Operator and Harmonic Forms.	775
12.13 Further Reading	775
12.14 Historical Remarks	777

Part II. Ariadne's Thread in Gauge Theory

13.	3. The Commutative Weyl $U(1)$ -Gauge Theory and					
	the	the Electromagnetic Field 81				
	13.1	.1 Basic Ideas				
	13.2	The Fundamental Principle of Local Symmetry Invariance				
		in Modern Physics	814			
		13.2.1 The Free Meson	814			
		13.2.2 Local Symmetry and the Charged Meson				
		in an Electromagnetic Field	818			
	13.3	The Vector Bundle $\mathbb{M}^4 \times \mathbb{C}$, Covariant Directional Derivative,				
		and Curvature	820			
	13.4	The Principal Bundle $\mathbb{M}^4 \times U(1)$ and the Parallel Transport				
		of the Local Phase Factor	825			
	13.5	Parallel Transport of Physical Fields – the Propagator				
		Approach	827			
	13.6	The Wilson Loop and Holonomy	829			
14.	Sym	metry Breaking	831			
	14.1	The Prototype in Mechanics	831			
	14.2	The Goldstone-Particle Mechanism	832			
	14.3	The Higgs-Particle Mechanism	834			
	14.4	Dimensional Reduction and the Kaluza-Klein Approach	835			
	14.5	Superconductivity and the Ginzburg–Landau Equation	836			
	14.6	The Idea of Effective Theories in Physics	840			
15.	The	Noncommutative Yang–Mills $SU(N)$ -Gauge Theory	843			
	15.1	The Vector Bundle $\mathbb{M}^4 \times \mathbb{C}^N$, Covariant Directional				
		Derivative, and Curvature	843			
	15.2	The Principal Bundle $\mathbb{M}^4 \times \mathcal{G}$ and the Parallel Transport				
		of the Local Phase Factor	847			
	15.3	Parallel Transport of Physical Fields – the Propagator				
		Approach	852			
	15.4	The Principle of Critical Action and the Yang–Mills				
		Equations	854			
	15.5	The Universal Extension Strategy via the Leibniz Rule	858			

	15.6	Tensor Calculus on Vector Bundles	859
		15.6.1 Tensor Algebra	860
		15.6.2 Connection and Christoffel Symbols	863
		15.6.3 Covariant Differential for Differential Forms	
		of Tensor Type	864
			867
16.	Cocy	ycles and Observers	871
	16.1	Cocycles	871
	16.2		872
	16.3	Local Phase Factors via the Cocycle Strategy	873
17.	The	Axiomatic Geometric Approach to Bundles	875
	17.1	Connection on a Vector Bundle	875
	17.2	Connection on a Principal Bundle	879
	17.3	The Philosophy of Parallel Transport	883
		17.3.1 Vector Bundles Associated to a Principal Bundle	884
		17.3.2 Horizontal Vector Fields on a Principal Bundle	887
		17.3.3 The Lifting of Curves in Fiber Bundles	888
	17.4	A Glance at the History of Gauge Theory	891
		17.4.1 From Weyl's Gauge Theory in Gravity	
		to the Standard Model in Particle Physics	891
		17.4.2 From Gauss' Theorema Egregium to Modern	
		0 0	896
		5	900
		-	

Part III. Einstein's Theory of Special Relativity

18.	18. Inertial Systems and Einstein's Principle of Special			
	Rela	tivity		905
	18.1	The Pri	inciple of Special Relativity	908
		18.1.1	The Lorentz Boost	909
	-	18.1.2	The Transformation of Velocities	910
		18.1.3	Time Dilatation	911
		18.1.4	Length Contraction	911
		18.1.5	The Synchronization of Clocks	912
		18.1.6	General Change of Inertial Systems in Terms	
			of Physics	912
	18.2	Matrix	Groups	914
		18.2.1	The Group $O(1,1)$	914
		18.2.2	The Lorentz Group $O(1,3)$	916
	18.3	Infinites	simal Transformations	918
		18.3.1	The Lie Algebra $o(1,3)$ of the Lorentz Group $O(1,3)$	918
		18.3.2	The Lie Algebra $p(1,3)$ of the Poincaré Group $P(1,3)$	921

	18.4	The M	linkowski Space M_4	923
		18.4.1	Pseudo-Orthonormal Systems and Inertial Systems.	923
		18.4.2	Orientation	926
		18.4.3	Proper Time and the Twin Paradox	926
		18.4.4	The Free Relativistic Particle and the Energy-Mass	
			Equivalence	927
		18.4.5	The Photon	929
	18.5	The M	linkowski Manifold \mathbb{M}^4	929
		18.5.1	Causality and the Maximal Signal Velocity	930
		18.5.2	Hodge Duality	931
		18.5.3	Arbitrary Local Coordinates	932
10	ጥኩል	Dolot	vistia Invenience of the Mourrell Franctions	0.25
19.	19.1		vistic Invariance of the Maxwell Equations	935 936
	19.1	19.1.1	The Coulomb Force and the Gauss Law	930 937
		19.1.1 19.1.2		937 941
			The Ampère Force and the Ampère Law	941 944
		19.1.3	Joule's Heat Energy Law	944 944
		19.1.4	Faraday's Induction Law	
		19.1.5	Electric Dipoles	945
		19.1.6	Magnetic Dipoles	947
		19.1.7	The Electron Spin	$948 \\ 951$
		19.1.8	The Dirac Magnetic Monopole	
	10.0	19.1.9	Vacuum Polarization in Quantum Electrodynamics .	$952 \\ 954$
	19.2		axwell Equations in a Vacuum	904
		19.2.1	The Global Maxwell Equations Based on Electric	955
		10 9 9	and Magnetic Flux	900
		19.2.2	The Local Maxwell Equations Formulated	957
		1000	in Maxwell's Language of Vector Calculus	957 958
	10.9	19.2.3	Discrete Symmetries and <i>CPT</i>	900
	19.3		nt Formulation of the Maxwell Equations	960
			Einstein's Longuege of Tongon Coloulus	960
		19.3.1	Einstein's Language of Tensor Calculus	900
		19.3.2	The Language of Differential Forms and Hodge .	962
		10 9 9	Duality De Rham Cohomology and the Four-Potential	902
		19.3.3		964
		1094	of the Electromagnetic Field	967
	10.4	19.3.4		967
	19.4		ransformation Law for the Electromagnetic Field	969
	19.5		omagnetic Waves	969
	19.6		The Motion of a Charged Particle and the Lorentz	909
		19.6.1		970
		1069	Force The Energy Density and the Energy-Momentum	510
		19.6.2		971
		10 0 0	Tensor Conservation Laws	972
		19.6.3	Conservation Laws	514

	19.7	The Prin	ciple of Critical Action	976
		19.7.1 Т	The Electromagnetic Field	976
			fotion of Charged Particles and Gauge	
		Г	ransformations	977
	19.8	Weyl Du	ality and the Maxwell Equations in Materials	979
		•	The Maxwell Equations in the Rest System	980
		19.8.2 T	ypical Examples of Constitutive Laws	980
		19.8.3 T	The Maxwell Equations in an Arbitrary Inertial	
			ystem	982
	19.9		Units	983
		-	`he SI System	983
			The Universal Approach	985
	19.10		Reading	986
20.	The	Relativis	stic Invariance of the Dirac Equation and	
	the]	Electron	Spin	995
	20.1	The Dira	c Equation	995
	20.2		the Inertial System	997
	20.3		tron Spin	999

Part IV. Ariadne's Thread in Cohomology

21.	The	Language of Exact Sequences	1003
	21.1	Applications to Linear Algebra	1003
	21.2	The Fredholm Alternative	1005
	21.3	The Deviation from Exact Sequences and Cohomology	1007
		Perspectives	
22.	Elec	trical Circuits as a Paradigm in Homology and	
	Coh	omology	1009
	22.1	Basic Equations	
	22.2	Euler's Bridge Problem and the Kirchhoff Rules	1015
	22.3	Weyl's Theorem on Electrical Circuits	1018
	22.4	Homology and Cohomology in Electrical Circuits	1019
	22.5	Euler Characteristic and Betti Numbers	1024
	22.6	The Discrete de Rham Theory	1026
23.	The	Electromagnetic Field and the de Rham	
	Coh	omology	1027
	23.1	The De Rham Cohomology Groups	1027
		23.1.1 Elementary Examples	1027
		23.1.2 Advanced Examples	1030
		23.1.3 Topological Invariance of the de Rham Cohomology	
		Groups	1032

	23.1.4	Homotopical Invariance of the de Rham Cohomology		
		Groups	1033	
23.2		indamental Potential Equation in Gauge Theory		
		e Analytic Meaning of the Betti Numbers	1036	
23.3		Hodge Theory (Representing Cohomology Classes		
		monic Forms)		
23.4		opology of the Electromagnetic Field and Potentials .		
23.5		nalysis of the Electromagnetic Field	1045	
	23.5.1	The Main Theorem of Electrostatics, the Dirichlet		
		Principle, and Generalized Functions	1045	
	23.5.2	The Coulomb Gauge and the Main Theorem		
	a a a a	of Magnetostatics		
00.4	23.5.3	The Main Theorem of Electrodynamics		
23.6	-	ant Tools	1053	
	23.6.1	The Exact Mayer-Vietoris Sequence and the Com-	1050	
	00.00	putation of the de Rham Cohomology Groups		
00 7	23.6.2	The de Rham Cohomology Algebra	1055	
23.7		eauty of Partial Differential Equations in Physics,	1055	
02.0		is, and Topology	1055	
23.8		nce at Topological Quantum Field Theory	1050	
<u> </u>	•	tics for Mathematical Structures)		
23.9	Further	r Reading	1001	
Appendi	i x		1069	
A.1		lds and Diffeomorphisms		
	A.1.1	Manifolds without Boundary	1071	
	A.1.2	Manifolds with Boundary	1072	
	A.1.3	Submanifolds	1076	
	A.1.4	Partition of Unity and the Globalization		
		of Physical Fields	1077	
A.2		lution of Nonlinear Equations		
	A.2.1	Linearization and the Rank Theorem		
	A.2.2	Violation of the Rank Condition and Bifurcation		
A.3		trix Groups		
A.4	The Ma	ain Theorem on the Global Structure of Lie Groups .	1085	
Epilogue			1087	
Defense			1000	
References 108				
List of S	ymbols	5	1091	
Index	Index 109			