Contents

1	Introduction		
	1.1	Motivations, Goals and Results	1
	1.2	List of Examples with Special Properties	6
Pa	rt I Pi	reliminaries	
2	The T	Copology of a Hypersurface Germ f in Three Variables	11
	2.1	The Link and the Milnor Fiber F of Hypersurface	
		Singularities	11
	2.2	Germs with 1-Dimensional Singular Locus: Transversal Type	13
	2.3	The Decomposition of the Boundary of the Milnor Fiber	14
3	The T	Topology of a Pair (f,g)	17
	3.1	Basics of ICIS: Good Representatives	17
	3.2	The Milnor Open Book Decompositions of ∂F	20
	3.3	The Decomposition of ∂F Revisited	20
	3.4	Relation with the Normalization of the Zero Locus of f	22
4	Plumbing Graphs and Oriented Plumbed 3-Manifolds		25
	4.1	Oriented Plumbed Manifolds	25
	4.2	The Plumbing Calculus	30
	4.3	Examples: Resolution Graphs of Surface Singularities	35
	4.4	Examples: Multiplicity Systems and Milnor Fibrations	40
5	Cyclic Coverings of Graphs		
	5.1	The General Theory of Cyclic Coverings	45
	5.2	The Universal Cyclic Covering of $\Gamma(X, f)$	47
	5.3	The Resolution Graph of $f(x, y) + z^N = 0$	51
6	The Graph $\Gamma_{\mathscr{C}}$ of a Pair (f,g) : The Definition		55
	6.1	The Construction of the Curve $\mathscr C$ and Its Dual Graph	55
	6.2	Summary of Notation for $\Gamma_{\mathscr{C}}$ and Local Equations	57
	6.3	Assumption A	60

ix

x Contents

7	The C	Graph $arGamma_{\mathscr{C}}$: Properties	63
	7.1	Why One Should Work with \mathscr{C} ?	63
	7.2	A Partition of $\Gamma_{\mathscr{C}}$ and Cutting Edges	65
	7.3	The Graph $arGamma^1_{\mathscr{C}}$	66
	7.4	The Graph $\Gamma_{\mathscr{C}}^{2}$	68
	7.5	Cutting Edges Revisited	73
8	Exam	ples: Homogeneous Singularities	79
	8.1	The General Case	79
	8.2	Line Arrangements	81
9	Examples: Families Associated with Plane Curve Singularities		
	9.1	Cylinders of Plane Curve Singularities	83 83
	9.2	Germs of Type $f = zf'(x, y)$	84
	9.3	Double Suspensions	85
	9.4	The $T_{a,*,*}$ -Family	95
Par	tII P	lumbing Graphs Derived from $arGamma_{\mathscr C}$	
40	7173 X	~	
10		/Iain Algorithm	101
	10.1	Preparations for the Main Algorithm	101
	10.2	The Main Algorithm: The Plumbing Graph of ∂F	102
	10.3	Plumbing Graphs of $\partial_1 F$ and $\partial_2 F$	107
	10.4	First Examples of Graphs of ∂F , $\partial_1 F$ and $\partial_2 F$	110
11	Proof	of the Main Algorithm	117
	11.1	Preliminary Remarks	117
	11.2	The Guiding Principle and the Outline of the Proof	118
	11.3	The First Step: The Real Varieties \mathscr{S}_k	119
	11.4	The Strict Transform \mathcal{F}_k of \mathcal{S}_k Via r	121
	11.5	Local Complex Algebraic Models for the Points of \mathscr{S}_k	122
	11.6	The Normalization \mathscr{S}_k^{norm} of $\widetilde{\mathscr{S}}_k$	123
	11.7	The "Resolution" $\overline{\mathscr{S}_k}$ of $\widetilde{\mathscr{S}}_k$	127
	11.8	The Plumbing Graph: The End of the Proof	128
	11.9	The "Extended" Monodromy Action	129
12	The C	follapsing Main Algorithm	131
	12.1	Elimination of Assumption B	131
	12.2	The Collapsing Main Algorithm	136
	12.3	The Output of the Collapsing Main Algorithm	137
13	Vertic	al/Horizontal Monodromies	139
	13.1	The Monodromy Operators	139
	13.2	General Facts	140
	13.3	Characters: Algebraic Preliminaries	141

Contents xi

	13.4 13.5 13.6	The Divisors Div_{Φ} , Div_{j}^{Φ} and Div_{j}^{\prime} in Terms of $\Gamma_{\mathscr{C}}$	145 148 149
		•	
14		gebraic Monodromy of $H_1(\partial F)$: Starting Point	153
	14.1	The Pair $(\partial F, \partial F \setminus V_g)$	153
	14.2	The Fibrations $arg(g)$	154
15	The Ra	anks of $H_1(\partial F)$ and $H_1(\partial F \setminus V_g)$ via Plumbing	157
	15.1	Plumbing Homology and Jordan Blocks	157
	15.2	Bounds for corank A and corank (A, \mathfrak{I})	159
16	The C	haracteristic Polynomial of ∂F Via $P^{\#}$ and $P^{\#}_{j}$	161
	16.1	The Characteristic Polynomial of $G \to \Gamma_{\mathscr{C}}$ and $\widehat{G} \to \widehat{\Gamma_{\mathscr{C}}}$	161
	16.2	The Characteristic Polynomial of ∂F	162
17	The Pr	roof of the Characteristic Polynomial Formulae	167
	17.1	Counting Jordan Blocks of Size 2	167
	17.2	Characters	171
18	The M	ixed Hodge Structure of $H_1(\partial F)$	173
	18.1	Generalities: Conjectures	173
		·	
Par	t III E	Examples	
		•	
19	Homo	geneous Singularities	179
	Homo;	The First Specific Feature: $M_{ver} = (M_{hor})^{-d}$	179
		The First Specific Feature: $M_{ver} = (M_{hor})^{-d}$	179 180
	19.1	The First Specific Feature: $M_{ver} = (M_{hor})^{-d}$	179 180 182
	19.1 19.2 19.3 19.4	The First Specific Feature: $M_{ver} = (M_{hor})^{-d}$	179 180 182 184
	19.1 19.2 19.3 19.4 19.5	The First Specific Feature: $M_{ver} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{i,hor}$, $M'_{i,ver}$, $M^{\phi}_{i,hor}$, $M^{\phi}_{i,ver}$, $M_{\phi,hor}$ and $M_{\phi,ver}$.	179 180 182 184 186
	19.1 19.2 19.3 19.4 19.5 19.6	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere?	179 180 182 184 186 187
	19.1 19.2 19.3 19.4 19.5 19.6 19.7	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small.	179 180 182 184 186 187 188
	19.1 19.2 19.3 19.4 19.5 19.6 19.7	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small Rational Unicuspidal Curves with One Puiseux Pair.	179 180 182 184 186 187 188 191
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9	The First Specific Feature: $M_{ver} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure.	179 180 182 184 186 187 188 191
	19.1 19.2 19.3 19.4 19.5 19.6 19.7	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small Rational Unicuspidal Curves with One Puiseux Pair.	179 180 182 184 186 187 188 191 194
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure Line Arrangements. Hers of Plane Curve Singularities: $f = f'(x, y)$.	179 180 182 184 186 187 188 191 194 197
19	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 Cylind 20.1	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure. Line Arrangements. lers of Plane Curve Singularities: $f = f'(x, y)$. Using the Main Algorithm: The Graph G .	179 180 182 184 186 187 188 191 194 197 201 201
19	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 Cylind 20.1 20.2	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure. Line Arrangements. lers of Plane Curve Singularities: $f = f'(x, y)$. Using the Main Algorithm: The Graph G . Comparing with a Different Geometric Construction.	179 180 182 184 186 187 188 191 194 197 201 201 203
19	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 Cylind 20.1	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure. Line Arrangements. lers of Plane Curve Singularities: $f = f'(x, y)$. Using the Main Algorithm: The Graph G .	179 180 182 184 186 187 188 191 194 197 201 201
19	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 Cylind 20.1 20.2 20.3	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure. Line Arrangements. lers of Plane Curve Singularities: $f = f'(x, y)$. Using the Main Algorithm: The Graph G . Comparing with a Different Geometric Construction.	179 180 182 184 186 187 188 191 194 197 201 201 203
20	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 Cylind 20.1 20.2 20.3	The First Specific Feature: $M_{ver} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynamial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure Line Arrangements. lers of Plane Curve Singularities: $f = f'(x, y)$. Using the Main Algorithm: The Graph G . Comparing with a Different Geometric Construction. The Mixed Hodge Structure on $H_1(\partial F)$.	179 180 182 184 186 187 188 191 194 197 201 201 203 204
19 20 21	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 Cylind 20.1 20.2 20.3 Germs 21.1	The First Specific Feature: $M_{ver} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure. Line Arrangements. lers of Plane Curve Singularities: $f = f'(x, y)$. Using the Main Algorithm: The Graph G . Comparing with a Different Geometric Construction. The Mixed Hodge Structure on $H_1(\partial F)$. If of Type $zf'(x, y)$. A Geometric Representation of F and ∂F .	179 180 182 184 186 187 188 191 194 197 201 203 204 205
20	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 Cylind 20.1 20.2 20.3 Germs 21.1	The First Specific Feature: $M_{yer} = (M_{hor})^{-d}$. The Second Specific Feature: The Graphs $\overline{G_{2,j}}$. The Third Specific Feature: The d -Covering. The Characteristic Polynomial of ∂F . $M'_{j,hor}, M'_{j,ver}, M^{\phi}_{j,hor}, M^{\phi}_{j,ver}, M_{\phi,hor}$ and $M_{\phi,ver}$. When is ∂F a Rational/Integral Homology Sphere? Cases with d Small. Rational Unicuspidal Curves with One Puiseux Pair. The Weight Filtration of the Mixed Hodge Structure Line Arrangements. Hers of Plane Curve Singularities: $f = f'(x, y)$. Using the Main Algorithm: The Graph G . Comparing with a Different Geometric Construction. The Mixed Hodge Structure on $H_1(\partial F)$.	179 180 182 184 186 187 188 191 194 197 201 203 204 205

xii Contents

23		ns f of Type $\tilde{f}(x^a y^b, z)$: Suspensions		
		f of Type $\hat{f}(xy,z)$		
	23.2	f of Type $\tilde{f}(x^a y^b, z)$	212	
Par	t IV	What Next?		
24	Pecu	liar Structures on ∂F : Topics for Future Research		
	24.1	Contact Structures	217	
	24.2	Triple Product: Resonance Varieties	218	
	24.3	Relations with the Homology of the Milnor Fiber	219	
	24.4	Open Problems	220	
List of Examples			223	
List of Notations				