CONTENTS

1. CREATION OF LIVING TISSUE: AN ENGINEERING FEAT	1
1.1. OPTIONS ON THE TABLE	1
1.2. COMPLEXITY OF BIOLOGICAL ORGANS	
1.3. SIZING UP THE CHALLENGE	
1.4. TISSUE ENGINEERING	
2. CLASSICAL AND QUANTUM INFORMATION PROCESSING	
IN DNA-PROTEIN CODING	9
2.1. INTRODUCTION	9
2.2 BASIC FACTS	.11
2.3. DNA-PROTEIN SYSTEM MODELING	. 13
2.3.1. Energy approach	. 13
2.3.2. Information approach	
2.3.3. Synergy approach	. 16
2.4 HOW DOES THE DNA-PROTEIN INFORMATION SYSTEM WORK?	
2.4.1. New considerations in mechanisms of DNA action	
2.4.2. Hydrogen bonds as a central enigma of life	
2.4.3. Synergy of classical and quantum information	
2.4.4. Violation of the synergetic DNA-protein information channel and cancer	.21
2.5. SUMMARY	. 23
3. UNRAVELING THE MEMBRANE FUSION IN SECRETORY CELLS AT TI	
NM-LEVEL: A NANOBIOENGINEERING APPROACH	. 27
3.1. INTRODUCTION	.27
3.2. POROSOME: A NEW CELLULAR STRUCTURE	.30
3.3. POROSOME: ISOLATION AND RECONSTITUTION	.34
3.4. SNARE-INDUCED MEMBRANE FUSION	
3.5. REGULATION OF SECRETORY VESICLE SWELLING: INVOLVEMENT IN	
EXPULSION OF VESICULAR CONTENTS	
3.6. MOLECULAR UNDERSTANDING OF CELL SECRETION	.40
4. BIOPHYSICAL AND BIOCHEMICAL DETERMINANTS OF CONTRACTION	LE
FORCE GENERATION, REGULATION, AND FUNCTION	
4.1. THE FUNDAMENTAL PROBLEM OF MUSCLE CONTRACTION	
4.1.1 Structure of skeletal muscle	. 44
4.1.2. What makes muscles shorten?	
4.1.3. The cross-bridge cycle	
4.1.4. Swinging lever arm and power stroke	
4.1.5. Atomic structures of actin and myosin	
4.2. BUILDING A COMPREHENSIVE MODEL OF MUSCLE CONTRACTION	.51
4.2.1. What is the appropriate model to start with?	
4.2.2 Energy landscape of myosin binding to actin	
4.2.3. Extensibility of actin and myosin filaments	
4.2.4. Calcium regulation	. 55
4.3 MATHEMATICAL FOUNDATIONS OF SLIDING FILA-MENT THEORY ANI)
COMPUTATIONAL METHODS THEORETICAL MODELS OF MUSCLE	
CONTRACTION	
4.3.1. Basic concepts and definitions	57

4.3.2. A probabilistic formulation of cross-bridge kinetics	58
4.3.3. Rules for strain-dependent cross-bridge transition rates	
4.3.4. Stochastic strain dependent binding in 3D sarcomere lattice	
4.3.5. Probabilistic and stochastic numerical solutions	
4.4. THEORETICAL MODELS OF MUSCLE CONTRACTION	63
4.4.1 Huxley's sliding filament model in extensible filament lattice	
4.4.2. Stochastic strain dependent binding in 3D sarcomere lattice	
4.4.3. Thin filament regulation in skeletal muscle	72
4.4.4. The latch regulatory scheme in smooth muscle	
5. CYTOSKELETAL PRESTRESS AS A DETERMINANT OF	
DEFORMABILITY AND RHEOLOGY OF ADHERENT CELLS	92
5.1. INTRODUCTION	
5.2. WHAT IS PRESTRESS?	
5.3. STATICS: PRESTRESS AND CELL DEFORMABILITY	
5.3.1. Measurements of cytoskeletal prestress and stiffness	
5.2.1. Traction Microscom.	90
5.3.1.1. Traction Microscopy	90
5.3.1.2. Magnetic Twisting Cylometry	9/
5.3.2. Modeling of the steady-state mechanical behavior of the CSK	98
5.3.2.2. Presiress induced stiffness of the CSK	
5.4.1. Mechanisms that link cytoskeletal prestress to rheology	
5.4.1.1. Tensegrity and cytoskeletal rheology	
5.4.1.2. Myosin cross-bridge kinetics	
5.4.1.3. Cytoskeletal remodeling	
5.4.1.5. Actin network dynamics	
5.4.1.6. Dynamics of individual polymer chains under sustained tension	
5.4.1.0. Dynamics of individual polymer chains under sustained tension	
6. CELL AND TISSUE ORGANIZATION IN SOFT MATERIALS: INSIG	
FROM MATHEMATICAL AND BIOPHYSICAL MODELLING	119
6.1. INTRODUCTION	119
6.1.1. Overview of cell and tissue organization principles for adherent cells	119
6.1.2. Classification of mechanical signals and biological responses	120
6.1.3. Effect of substrate mechanics on cell behavior	121
6.1.4. Sensing substrate mechanics: Active mechanosensing	121
6.2. A PRIMER ON ELASTICITY THEORY	123
6.3. TOWARDS A SYSTEM UNDERSTANDING OF THE INFLUENCE OF	
SUBSTRATE MECHANICS ON CELL AND TISSUE ORGANIZATION	
6.3.1. Modeling cellular scale effects	125
6.3.2. Modeling tissue scale effects	128
6.3.3. Modeling subcellular scale effects	130
6.4. OUTLOOK	132
7. SUBSTRATE STRETCHING AND ORIENTATION OF ACTIVE CELI	1212
STABILITY PROBLEM	
7.1. INTRODUCTION	133
7.2. MECHANICS PRELIMINARIES	139
7.3. THE NONLINEAR HOMOGENEOUS STRAIN FIELD	1.40
OF A STRESS FIBER	142
7.4. THE EQUILIBRIUM PLACEMENTS OF THE STRESS-FIBERS	145
7.5. GLOBALLY STABLE EQUILIBRIUM PLACEMENTS	148

7.6. APPLICATIONS	
8. ROLES OF MECHANICAL FORCES AND EXTRACELLULAR MATRIX PROPERTIES IN CELLULAR SIGNALING IN THE LUNG	. 158
8.1. INTRODUCTION	. 158
8.2. MAIN CONSTITUENTS OF THE LUNG CONNECTIVE TISSUE	. 160
8.2.1. Properties of collagens	. 160
8.2.2. Properties of elastic fibers	. 161
8.2.3. Properties of proteoglycans	
8.2.4. Interstitial cells	
8.2.5. Air-liquid interface and surface tension	
8.2.6. Interaction among the tissue components	. 163
8.3. MECHANICAL PROPERTIES OF THE NORMAL LUNG	
8.3.1. Molecular, fibril and fiber elasticity	. 164
8.3.2. Elasticity of lung collagen, alveolar wall, tissue strip and whole lung	
8.4. EFFECTS OF MECHANICAL FORCES ON THE LUNG PARENCHYMA	
8.4.1. Mechanical forces, cell signaling and biomechanical properties of the ECM	
8.4.2. Mechanical forces in the diseased lung	
8.5. SUMMARY	. I /Z
9. ENZYME SIGNALING: IMPLICATIONS FOR TISSUE ENGINEERING 9.1. INTRODUCTION	
9.2. GENERAL PROPERTIES OF ENZYMES.	
9.3. METALLOPROTEINASES IN SIGNALING	
9.3. METALLOPROTEINASES IN SIGNALING	
9.3.2. Types and Structure of MMPs.	
9.3.3. Activation and inhibition of MMPs.	
9.3.4. Pharmacological manipulations of MMPs	
9.4. GENERAL CONSIDERATIONS FOR TISSUE ENGINEERING	
10. HYDROGELS IN TISSUE ENGINEERING	
10.1. INTRODUCTION	
10.2. WHAT IS A HYDROGEL?	
10.3. METHODS OF PREPARATION	
10.3.1. Chemical hydrogel preparation	
10.3.2. Physical hydrogel preparation	.201
10.3.2.1. Hydrogels obtained by ionic interactions	
10.3.2.2. Hydrogels obtained by crystallization	
10.3.2.3. Hydrogels obtained from amphiphilic block and graft co-polymers	
10.3.2.4. Hydrogels obtained by hydrogen bond interactions	204
10.3.2.5. Hydrogels obtained by protein interactions	
10.4. HYDROGEL PROPERTIES	
10.4.1. Swelling	
10.4.2. Responsive hydrogels	
10.4.3. Surface properties	
10.4.4. Degradability	. 208
10.5. METHODS OF CHARACTERIZATION	. 208
10.6. BIOMEDICAL / TISSUE ENGINEERING APPLICATIONS	
11. BIOREACTORS IN TISSUE ENGINEERING	. 217
11.1. INTRODUCTION: WHAT ARE TISSUE-ENGINEERING BIOREACTORS?	.217
11.2. MASS TRANSPORT CONSIDERATIONS	.218

11.2 DIODUVCICAL DECLIFATION	2
11.3. BIOPHYSICAL REGULATION	
11.3.2. Engineered Cartilage	
11.3.3. Engineered Myocardium	
11.4. SUMMARY	
12. APPROACHES TO MATHEMATICAL MODELING O	F TISSUE
ENGINEERING SYSTEMS	
12.1. INTRODUCTION	
12.2. CHARACTERIZATION OF IN VITRO CULTIVATING	
12.2.1. Hydrodynamic environment	
12.2.2. Modeling of mass transfer	
12.2.2.1. Mass transport through the tissue by diffusion	
12.2.2.2. Enhancement of mass transport through the tissue b	
12.3. CORRELATIONS OF CULTIVATING CONDITIONS W	
RESPONSE AND TISSUE PROPERTIES	
12.3.1. Correlations of hydrodynamic conditions with the tissue	
12.3.2. Mathematical model of GAG accumulation in engineer	
12.4. CONCLUSION	
13. COMPUTATIONAL MODELING OF TISSUE SELF-ASSE	
13.1. THE MODELING APPROACH TO MORPHOGENESIS.	
13.2. IN SILICO TISSUE ENGINEERING	2
13.3. A LATTICE MODEL OF LIVING TISSUES	
13.4. MONTE CARLO SIMULATIONS OF THE SELF	