Contents

1	Ele	ments	of Interaction	1
	Far	had Arl	bab	
	1	Introd	duction	2
	2	Intera	action Centric Concurrency	5
	3	An O	verview of Reo	9
	4	Exam	ples	12
		4.1	Alternator	13
		4.2	Sequencer	14
		4.3	Exclusive Router	15
		4.4	Shift-Lossy FIFO1	16
		4.5	Dataflow Variable	16
		4.6	Decoupled Alternating Producers and Consumer	17
		4.7	Flexibility	18
	5	Semai	ntics	18
		5.1	Timed Data Streams	18
		5.2	Constraint Automata	20
		5.3	Connector Coloring	20
		5.4	Other Models	21
	6	Tools		22
	7	Concl	uding Remarks	23
	Ref	erences		24
2	En	terpris	e Architecture as Language	29
	Ga	ry F. Si	mons, Leon A. Kappelman, John A. Zachman	
	1	On th	e Verge of Major Business Re-Engineering	29
	2	Nothi	ng so Practical As Good Theory	30
	3	Archit	tecture Out of Control	32
	4	Enter	prise Architecture as a Language Problem	34
	5	GEM:	: A Language for Enterprise Modeling	35

XII Contents

	6	The Repository of Enterprise Models 3
	7	Progress to Date
	8	Lessons Learned
	Re	ferences 4
_	_	
3		al-Time Animation for Formal Specification 4
		minique Méry, Neeraj Kumar Singh
	1	Introduction
	2	Overview of Brama 5
	3	Description of the Architecture
	4	Applications and Case Studies
	5	Conclusion and Future Work
	Ref	ferences 6
4	Πe	ing Simulink Design Verifier for Proving Behavioral
-1		operties on a Complex Safety Critical System in the
		ound Transportation Domain
		F. Etienne, S. Fechter, E. Juppeaux
	1	Introduction
	2	MATLAB Environment
	_	2.1 SIMULINK/EMBEDDED MATLAB
		2.2 SIMULINK DESIGN VERIFIER
	3	Case Study
	4	
	4	
	_	4.3 Properties
	5	Proof Methodology
	6	Results Obtained
	7	Conclusion 7
	Rei	ferences 7
5	Sm	ART: An Application Reconfiguration Framework
-		rvé Paulino, João André Martins, João Lourenço, Nuno Duro
	1	Introduction
	2	An Analysis of Application Configuration Files
	3	
	3	- 11
		, ,
		3.1.1 Architecture
		3.1.2 Execution Flow
		3.1.3 Extensibility 7
		3.1.4 Implementation
		3.2 Generic to Original Representation (G2O)
	4	Evaluation 8
	5	VIRTU Integration

	6 7	Conc	ted Work	83
	Refe	erences	3	8
6	Sea	rchine	g the Best (Formulation, Solver, Configuration)	
Ŭ			tured Problems	8
			rangioni, Luis Perez Sanchez	Č
	1		duction	8
	$\frac{1}{2}$		ch Spaces	8
	3		RE(control): Controlling the Search in the	
	•		nulation, Solver, Configuration) Space	8
		$\stackrel{\circ}{3}.1$	Objective Function Computation	8
		3.2	Training and Meta-learning	9
		3.3	The Overall Search Process	9
	4	Expe	eriments	9
	5	-	lusions	9
	Refe	erences	3	9
7			ion Model for Model Driven Safety	
			nents Management of Complex Systems	9
	R. (m, H. Demmou, N. Sadou	
	1		duction	5
	2	Syste	em Engineering Approach	10
		2.1	System Engineering Approach	10
				-
		2.2	EIA-632 Standard	10
	3	2.2	ration Approach	10
	3	2.2	ration Approach	10 10 10
	3	2.2 Integ	Integration Approach	10 10 10
	3	2.2 Integ 3.1	Integration Approach System Design Processes 3.2.1 Requirement Definition Process	10 10 10 10
	3	2.2 Integ 3.1	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process	10 10 10 10 10
	3	2.2 Integ 3.1	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes	10 10 10 10 10 10
	3	2.2 Integ 3.1 3.2	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process	10 10 10 10 10 10
	3	2.2 Integ 3.1 3.2	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process	10 10 10 10 10 10
	3	2.2 Integ 3.1 3.2	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process	10 10 10 10 10 10 10
	3	2.2 Integ 3.1 3.2	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process 3.3.3 System Verification Process mation Model	10 10 10 10 10 10 10 10 10 10
		2.2 Integ 3.1 3.2	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process 3.3.3 System Verification Process	10 10 10 10 10 10 10 10 10 10 10
		2.2 Integ 3.1 3.2 3.3	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process 3.3.3 System Verification Process mation Model	10 10 10 10 10 10 10 10 10 10 10 10
		2.2 Integ 3.1 3.2 3.3 Infor 4.1	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process 3.3.3 System Verification Process mation Model Requirements Management	10 10 10 10 10 10 10 10 10 10 10 10
		2.2 Integ 3.1 3.2 3.3 Infor 4.1 4.2	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process 3.3.3 System Verification Process mation Model Requirements Management Supporting the Design	10 10 10 10 10 10 10 10 10 10 10 10
		2.2 Integ 3.1 3.2 3.3 Infor 4.1 4.2	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process 3.3.3 System Verification Process mation Model. Requirements Management Supporting the Design Requirements Modeling and Management for	10 10 10 10 10 10 10 10 10 10 10 10 10 1
		2.2 Integ 3.1 3.2 3.3 Infor 4.1 4.2 4.3	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process 3.3.3 System Verification Process mation Model. Requirements Management Supporting the Design Requirements Modeling and Management for Safety.	100 100 100 100 100 100 100 100 100 100
		2.2 Integ 3.1 3.2 3.3 Infor 4.1 4.2 4.3 4.4	Integration Approach System Design Processes 3.2.1 Requirement Definition Process 3.2.2 Solution Definition Process Technical Evaluation Processes 3.3.1 System Analysis Process 3.3.2 Requirements Validation Process 3.3.3 System Verification Process mation Model Requirements Management Supporting the Design Requirements Modeling and Management for Safety Proposition	100 100 100 100 100 100 100 100 100 100

XIV Contents

Martin Fuchs, Arnold Neumaier 1 Introduction 113 2 Design Optimization 115 3 Convex Relaxation Based Splitting Strategy 116 4 A Simple Solver 120 5 A Real-Life Application 121 References 121 9 Software Architectures for Flexible Task-Oriented Program Execution on Multicore Systems 123 7 Thomas Rauber, Gudula Rünger 1 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 7 References <t< th=""><th>8</th><th></th><th></th><th>Search in Design Optimization</th><th>113</th></t<>	8			Search in Design Optimization	113	
2 Design Optimization 115 3 Convex Relaxation Based Splitting Strategy 116 4 A Simple Solver 120 5 A Real-Life Application 121 References 121 9 Software Architectures for Flexible Task-Oriented Program Execution on Multicore Systems 123 Thomas Rauber, Gudula Rünger 1 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture <td< td=""><td></td><td></td><td></td><td>·</td><td>110</td></td<>				·	110	
3 Convex Relaxation Based Splitting Strategy 116 4 A Simple Solver 120 5 A Real-Life Application 121 References 121 9 Software Architectures for Flexible Task-Oriented Program Execution on Multicore Systems 123 Thomas Rauber, Gudula Rünger 1 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 138 2.1 Elements of Information System Architecture		_				
4 A Simple Solver 120 5 A Real-Life Application 121 References 121 9 Software Architectures for Flexible Task-Oriented Program Execution on Multicore Systems 123 Thomas Rauber, Gudula Rünger 1 1 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 128 4 Runtime Experiments 131 13 5 Related Work 132 6 Conclusions 133 13 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 138 2.2 Evolution System Architecture				•		
5 A Real-Life Application 121 References 121 9 Software Architectures for Flexible Task-Oriented Program Execution on Multicore Systems 123 Thomas Rauber, Gudula Rünger 1 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 137 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture Evolution 140 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>						
8 Software Architectures for Flexible Task-Oriented Program Execution on Multicore Systems 123 Thomas Rauber, Gudula Rünger 1 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolutions 138 2.3 Management of Information System Architecture 139 2.4 The Information System Architecture Evolution 140		-				
9 Software Architectures for Flexible Task-Oriented Program Execution on Multicore Systems 123 Thomas Rauber, Gudula Rünger 1 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution <		_		• •		
Program Execution on Multicore Systems 123 Thomas Rauber, Gudula Rünger 1 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture Evolution 140 2.4 The Information System Architecture Evolution 140 <td< th=""><th></th><th>Refe</th><th>erences</th><th>3</th><th>121</th></td<>		Refe	erences	3	121	
Thomas Rauber, Gudula Rünger 1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolutions 140 2.3 Management of Information System Architecture 14	9					
1 Introduction 123 2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolutions 140 2.3 Management of Information System Architecture 140 2.4					123	
2 Programming Models with Tasks 124 2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolutions 140 2.3 Management of Information System Architecture 139 2.3 Management Problem 140 3 Mathematical Programming Based Approach 141		Tho				
2.1 Task Decomposition 125 2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 139 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Varia		_				
2.2 Task Execution and Interaction 126 2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2		2	Progr			
2.3 Internal and External Variables 127 2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture Evolution 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computationa			2.1	Task Decomposition	125	
2.4 Coordination Language 127 3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146			2.2	Task Execution and Interaction		
3 Software Architectures of Task-Based Programs 128 3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146			2.3	Internal and External Variables	127	
3.1 Task Scheduler 129 4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146			2.4	Coordination Language	127	
4 Runtime Experiments 131 5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146		3	Softw	vare Architectures of Task-Based Programs	128	
5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146			3.1	Task Scheduler	129	
5 Related Work 132 6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146		4	Runt	ime Experiments	131	
6 Conclusions 133 References 134 10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146		5			132	
10 Optimal Technological Architecture Evolutions of Information Systems 137 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 1 Introduction 137 2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146		6			133	
Information Systems		Refe	erences	8	134	
Information Systems	10	0		Taskuslasias Auskitastuma Evalutions of		
Vassilis Giakoumakis, Daniel Krob, Leo Liberti, Fabio Roda 1 Introduction	10					
2 Operational Model of an Evolving Information System 138 2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Management Problem 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146					191	
2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146		1	Intro	duction	137	
2.1 Elements of Information System Architecture 138 2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146		2	Oper	ational Model of an Evolving Information System	138	
2.2 Evolution of an Information System Architecture 139 2.3 Management of Information System Architecture 140 2.4 The Information System Architecture Evolution 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146			_		138	
2.3 Management of Information System Architecture Evolutions 140 2.4 The Information System Architecture Evolution Management Problem 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146			2.2	Evolution of an Information System Architecture	139	
Evolutions			2.3			
2.4 The Information System Architecture Evolution Management Problem 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146				· ·	140	
Management Problem 140 3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146			2.4			
3 Mathematical Programming Based Approach 141 3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146				· ·	140	
3.1 Sets, Variables, Objective, Constraints 142 3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146		3	Math	S .	141	
3.2 Valid Cuts from Implied Properties 145 4 Computational Results 146		~				
4 Computational Results						
<u>.</u>		1	_			
			_		148	

Contents XV

11	Pra	actical Solution of Periodic Filtered Approximation	
	as a	a Convex Quadratic Integer Program	149
	Fed	erico Bizzarri, Christoph Buchheim, Sergio Callegari,	
		rto Caprara, Andrea Lodi, Riccardo Rovatti, Gianluca Setti	
	1	Introduction	149
	2	Background Concepts	151
		2.1 Problem Formalization	151
		2.2 Modulation Algorithms	152
	3	A $\Delta\Sigma$ Heuristic Algorithm	154
	4	An Exact Branch-and-Bound Algorithm	155
	5	Experimental Evaluation of the Two Approaches	157
	Ref	erences	159
12	Per	formance Analysis of the Matched-Pulse-Based	
		ılt Detection	161
		ane Abboud, Andrea Cozza, Lionel Pichon	
	1	Introduction	161
	2	The Wire Network	162
	3	The MP Approach	162
	4	Topological Study	163
		4.1 Equivalent Topological Representation	163
		4.2 Position of the Network Elements	165
	5	Detection Gain	167
	6	Simulation Results	169
		6.1 Analyzed Configurations	169
		6.2 Numerical Results	169
	7	Conclusion	171
	Refe	erences	172
13		Natural Measure for Denoting Software System	
		mplexity	173
	Jac	ques Printz	
	1	Introduction	173
	2	Cyclomatic Number Measurement Considered Harmful	176
	3	Program Text Length Measurement	178
	4	Programmers Activity Revisited	180
	5	Classification of Building Bloks	182
	6	Costs of Interfaces	184
	7	The Complexity of Integration	186
	8	Interoperability	191
	9	Temporary Conclusion	193
	Refe	erences	194
	App	pendix	195

XVI Contents

14	\mathbf{Fle}	exibilit	ty and Its Relation to Complexity and				
	Architecture 1						
	Joe	l Mose	28				
	1	Flexi	ibility	197			
	2		eric Architectures, Flexibility and Complexity	199			
	3		red Human Organizations and Industries -				
			th Care	203			
	4		er Education as a Layered System	204			
	5		rid Organizations - Lateral Alignment	205			
	6		mary	205			
	Ref		s	206			
15	For	rmaliz	ation of an Integrated System/Project Design				
	Fra	mewo	ork: First Models and Processes	207			
	J. J	Abeille,	T. Coudert, E. Vareilles, L. Geneste, M. Aldanondo,				
	T. I	Roux					
	1	Intro	duction	207			
	2	Back	ground	209			
		2.1	Definition of Design and Planning Processes	209			
		2.2	Interaction between Design and Planning				
			Processes	210			
	3	Prop	position of an Integrated Model	211			
		3.1	System Design Module	211			
		3.1	Project Planning Module	212			
		3.3	Coupling and Monitoring Module	213			
	4	Prop	osition of a Simple System Creation Process	215			
	5	Conc	clusion and Further Studies	216			
	Ref	erences	s	217			
16			Engineering Approach Applied to Galileo				
	-			219			
	Ste		ouchired, Stéphanie Lizy-Destrez				
	1		duction	219			
	2		ine	219			
	3	Galil	eo System Presentation	219			
		3.1	The Space Segment	220			
		3.2	The Launch Service Segment	220			
		3.3	The Ground Segment	220			
		3.4	The Ground Mission Segment	220			
		3.5	The User Segment	221			
	4	Requ	nirement Engineering	221			
		4.1	About Galileo Lifecycle and Stakeholders	222			
		4.2	System Prime Perimeter Evolution	222			
		4.3	Example of Boundary Evolution between System				
			and Segment	224			

XV	S	Contents
X	S	Contents

	5	0	225
			226
		,	22 9
		· · · · · · · · · · · · · · · · · · ·	22 9
			23 0
	6	Conclusion	231
۱7		Hierarchical Approach to Design a V2V Intersection	
		•	237
	-	ham Aboutaleb, Samuel Boutin, Bruno Monsuez	
	1		237
			237
		•	238
	2		238
			238
		3	239
	3		241
		1	241
		3.2 First Level: Selecting the Vehicles	241
		3.3 Second Level: Selecting the Pairs of Vehicles	24 3
		3.4 Third Level: Identifying All the Scenarii for Each	
		Pair of Vehicles	24 3
		3.5 Fourth Level: Managing Priorities for Each	
		Scenario	244
		3.6 Fifth Level: Acting and Deciding	244
	4	Advantages of Our Approach	24 6
	5	Conclusion and Future Works	246
	Refe	erences	247
8	Con	atribution to Rational Determination of Warranty	
	Par	ameters for a New Product	249
	Zder	nek Vintr, Michal Vintr	
	1	Introduction	249
	2	Two-Dimensional Warranty	250
	3	Statistical Evaluation of Customers' Behavior Research	251
	4	Determination of Parameters of Two-Dimensional	
		Warranty	253
	5		2 56
			256
		5.2 Determination of Warranty Parameters at Limited	
		· · · · · · · · · · · · · · · · · · ·	257
	6		258
	-		258
			_

XVIII Contents

19			teroperable Autonomous Computer-Based , Systems-of-Systems and Proof-Based System	
			ring	259
			e Lann, Paul Simon	
	1		OISAU Study in a Nutshell	260
	2	Wea	knesses in Current SE Practice	262
		2.1	Requirements Capture	262
		2.2	System Design and Validation	263
		2.3	Feasibility and Dimensioning	264
		2.4	Conclusions	265
	3	Less	ons Learned with OISAU	266
		3.1	Migration from SE to PBSE Is an Evolutionary	
			Process	266
		3.2	"Functional versus Non Functional" Is Too Crude	
			a Dichotomy	268
		3.3	Existing Solutions and Companion Proofs Can Be	
			Tapped	269
		3.4	Nothing Specific with COTS Products	269
		3.5	PBSE Practice Can Be Supported by Tools, in	
			Conformance with a Methodological Standard	270
	4	The	OISAU Methodological Standard	270
		4.1	Methodological Requirements	271
		4.2	Matrices	272
	5		European Dimension	273
	6	Tech	inical Issues and Standards	27 4
		6.1	Scenarios Worked Out	275
		6.2	Generic Problems and Solutions, Standards and	
			Interoperability	275
	5		clusions	277
	Ref	erence	S	278
20			ng the Complexity of Environmental	
			ents of Complex Industrial Systems with a	070
			Sigma Approach	279
			Cluzel, Bernard Yannou, Daniel Afonso, Yann Leroy,	
		-	e Millet, Dominique Pareau	000
	1		oduction	280
	2		to Eco-Design Complex Industrial Systems?	280
		2.1	Aluminium Electrolysis Substations	280
		2.2	The Aluminium Electrolysis Substation: A	000
		T ~ .	Complex Industrial System	282
	3		-Based Eco-design	282
		3.1	Eco-design Process	282
		3.2	Life Cycle Assessment	283
	4	Limi	ts of the Current Eco-design Approach	283

Contents XIX

		4.1	Technical LCA Limits	283
		4.2		284
		4.3		285
	5	About		285
		5.1		285
		5.2	DMAIC Approach	286
			5.2.1 Define	286
			5.2.2 Measure	287
			5.2.3 Analyze	287
			5.2.4 Improve	287
			5.2.5 Control	287
		5.3	Lean & Green	287
	6	Propos	sition of a Meta-methodology	288
		6.1	<u> -</u>	288
		6.2	A DMAIC Approach for Eco-design	289
			6.2.1 Define	289
				289
			6.2.3 Analyze	290
				291
			6.2.5 Control	291
		6.3	Meta-methodology Deployment on Aluminium	
			· · · · · · · · · · · · · · · · · · ·	291
	7	Conclu		292
	Refe	rences		293
0.1	3.6	14 • 3• •	· Process Characters of Markethania	
21			iplinary Simulation of Mechatronic	295
				290
			fèvre, Sébastien Charles, Magali Bosch, Benot Eynard,	
	<i>Man</i> :	uel Hen		295
	2			293 297
	Z	2.1		291 297
		2.1		297 297
		2.2		298
		2.4	-	298
	3			298
	J	3.1		299
		3.2	•	299
		3.3	- 1 ·	300
		3.4		301
	4			303
	-			303
	TUCK			

XX Contents

22	Inv	olving AUTOSAR Rules for Mechatronic System	
	De	sign	30
	Pa	cal Gouriet	
	1	Introduction	30
	2	Contexts	30
		2.1 About Concept and Components for ESC System	30
		2.2 About Simulation and Validation Tools	30'
	3	AUTOSAR Concepts	30
		3.1 Project Objectives	30
		3.2 Main Working Topics	308
		3.3 Technical Overview	309
		3.4 AUTOSAR Authoring Tool	30
		3.5 AUTOSAR Software Component	31
		3.6 Benefits for Model-Based Design	31:
	4	Model-Based Design with AUTOSAR	31:
		4.1 Atomic Software for ESC system	31:
		4.2 AUTOSAR Rules for Model-Based Design	31
		4.3 Chassis Domain Overview	31
	5	Conclusion	31
	Ref	erences	310
	Glo	ssary	31
23	En	erprise Methodology: An Approach to	
	Μι	ltisystems	31°
	Do	ninique Vauquier	
	1	The Enterprise System Topology	313
		1.1 Notion of Enterprise System	31
		1.2 Methodological Framework	31
		1.3 How to Describe the "Business" Reality	32
		1.4 How to Design the IT System	32
		1.5 Impact of This Approach on a Single System	32
	2	The Convergence Approach	32
	3	Conclusion	32
	Bib	iography	32'