Contents

1			on and Summary	. :	
2	Three Models and a Ground State				
	2.1	The L	aughlin State and Its Parent Hamiltonian	1	
		2.1.1	Landau Level Quantization in the Planar Geometry	1	
		2.1.2	The Laughlin State	16	
		2.1.3	Fractionally Charged Quasiparticle Excitations	18	
		2.1.4	Fractional Statistics	20	
		2.1.5	Landau Level Quantization in the Spherical Geometry	22	
		2.1.6	The Laughlin State and Its Parent Hamiltonian		
			on the Sphere	27	
	2.2	The H	Haldane-Shastry Model	29	
		2.2.1	The $1/r^2$ Model of Haldane and Shastry	29	
		2.2.2	Symmetries and Integrability	30	
		2.2.3	Ground State Properties	31	
		2.2.4	Explict Solution	34	
		2.2.5	Factorization of the Hamiltonian	38	
		2.2.6	Spinon Excitations and Fractional Statistics	41	
		2.2.7	Young Tableaux and Many Spinon States	45	
	2.3	The M	Moore-Read State and Its Parent Hamiltonian	47	
		2.3.1	The Pfaffian State and Its Parent Hamiltonian	47	
		2.3.2	Quasiparticle Excitations and the Internal		
			Hilbert Space	50	
		2.3.3	Majorana Fermions and Non-Abelian Statistics	51	
		2.3.4	The Pfaffian State and Its Parent Hamiltonian		
			on the Sphere	56	
	2.4	An S=	= 1 Spin Liquid State Described by a Pfaffian	57	
		2.4.1	The Ground State	57	
		2.4.2	Symmetries	58	

digitalisiert durch

xii Contents

		2.4.3	Schwinger Bosons	61
		2.4.4	Generation by Projection from Gutzwiller States	62
		2.4.5	Topological Degeneracies and Non-Abelian Statistics	64
		2.4.6	Generalization to Arbitrary Spin S	67
		2.4.7	Momentum Spacings and Topological Degeneracies	
			for Arbitrary Spin S	68
	Refe	rences .		72
3			nghlin State to the Haldane-Shastry Model	79
	3.1		al Considerations	79
		3.1.1	Comparison of the Models	79
		3.1.2	A Hole at a Pole	81
	3.2		t Space Renormalization	82
	3.3		r Transformation	86
		3.3.1	Particle Creation and Annihilation Operators	86
		3.3.2	Renormalized Matrix Elements	87
		3.3.3	An Alternative Derivation	90
	3.4	The D	efining Condition for the Gutzwiller State	91
		3.4.1	Annihilation Operators	91
		3.4.2	Direct Verification	92
		3.4.3	The Role of the Hole	93
	3.5	Rotatio	ons and Spherical Tensor Operators	94
		3.5.1	Representations of Rotations	94
		3.5.2	Tensor Operators	95
		3.5.3	Products of Tensor Operators	96
	3.6	Constr	ruction of a Parent Hamiltonian for the	
		Gutzw	riller State	98
		3.6.1	Translational, Time Reversal, and Parity Symmetry	98
		3.6.2	Spin Rotation Symmetry	100
		3.6.3	An Alternative Derivation	101
	3.7	The R	apidity Operator and More	102
		3.7.1	Annihilation Operators Which Transform	
			Even Under T	102
		3.7.2	Annihilation Operators Which Transform	
			Odd Under T	104
	3.8	Conclu	uding Remarks	106
	Refe			106
4	Fro	m a Bos	sonic Pfaffian State to an $S=1$ Spin Chain	109
	4.1	Genera	al Considerations	109
		4.1.1	A Model and a Ground State	109
		4.1.2	Creation of a Quasihole	111
	4.2	Hilber	t Space Renormalization	112

Contents

	4.3	Fourie	er Transformation	113
		4.3.1	Particle Creation and Annihilation Operators	113
		4.3.2	Substitution of Spin Flip Operators for	
			Boson Operators	114
		4.3.3	Many Body Annihilation Operators	115
		4.3.4	Evaluation of $B^{\neq}_{m;\alpha_1,\alpha_2,\alpha_3}$	116
		4.3.5	Evaluation of $B_{m;\alpha_1,\alpha_2}^{m,\alpha_1,\alpha_2,\alpha_3}$	119
	4.4	The D	Defining Condition for the $S=1$ Pfaffian Chain	122
		4.4.1	Derivation	122
		4.4.2	A Second Condition	124
		4.4.3	Direct Verification	125
	4.5	Const	ruction of a Parent Hamiltonian	127
	•	4.5.1	Translational, Time Reversal, and Parity Symmetry	127
		4.5.2	Spin Rotation Symmetry	128
		4.5.3	Evaluation of $\left\{T_{\alpha\alpha}^0 T_{\beta\gamma}^0\right\}_0$	129
		4.5.4	Writing Out the Hamiltonian	132
	4.6	Vector	r Annihilation Operators	133
		4.6.1	Annihilation Operators Which Transform	
			Even Under T	133
		4.6.2	Annihilation Operators Which Transform	
			Odd Under T	136
	4.7	Concl	uding Remarks	138
	Refe			139
5	Gen	eraliza	tion to Arbitrary Spin S	141
	5.1		tical Spin Liquid State With Spin S	141
		5.1.1	Generation Through Projection of Gutzwiller States	141
		5.1.2	Direct Verification of the Singlet Property	142
	5.2	The D	Defining Condition for the Spin S Chain	144
		5.2.1	Statement	144
		5.2.2	Direct Verification	144
	5.3	Consti	ruction of a Parent Hamiltonian	146
		5.3.1	Translational Symmetry	146
		5.3.2	Tensor Decomposition of $(S^+)^{2s}(S^-)^{2s}$	146
		5.3.3	Time Reversal and Parity Symmetry	151
		5.3.4	Spin Rotation Symmetry	152
	5.4	Vector	Annihilation Operators	155
		5.4.1	Annihilation Operators Which Transform	
			Even Under T	155
		5.4.2	Annihilation Operators Which Transform	
		J _	Odd Under T	157
		5.4.3	Evaluation of $\left\{W_{\alpha\alpha\alpha}^0 T_{\beta\gamma}^0\right\}_1$	159
		5.4.4	Annihilation Operators Which Transform	
		~		
		•	Odd Under T (Continued)	161

xiv	Contents

5.5	Scalar Operators Constructed from Vectors	164			
	5.5.1 Factorization of the Hamiltonian	165			
	5.5.2 A Variation of the Model	167			
	5.5.3 The Third Derivation	169			
5.6	The Case $S = \frac{1}{2}$ Once More	171			
Refe	erences	172			
Con	clusions and Unresolved Issues	173			
Refe	erences	177			
Appendix A: Spherical Coordinates					
Appendix B: Fourier Sums for One-Dimensional Lattices					
Appendix C: Angular Momentum Algebra					
Appendix D: Tensor Decompositions of Spin Operators					
eferen	ices	194			
	5.6 Refe Con Refe ppend ppend	5.5.1 Factorization of the Hamiltonian. 5.5.2 A Variation of the Model. 5.5.3 The Third Derivation. 5.6 The Case $S = \frac{1}{2}$ Once More References. Conclusions and Unresolved Issues. References. ppendix A: Spherical Coordinates. ppendix B: Fourier Sums for One-Dimensional Lattices. ppendix C: Angular Momentum Algebra.			