

Liebe Leserin, lieber Leser,

Du hast dir was vorgenommen:

künstliche Intelligenz
programmieren!

Und dabei unterstützen wir (und natürlich
Schrödinger) dich tatkräftig. Lass dich von
zwei hervorragenden Autoren begleiten, die
sich ordentlich ins Zeug gelegt haben, um dir
Neuronale Netze, Entscheidungsbäume und
allerhand Algorithmen verständlich und
Schritt für Schritt näherzubringen.

Schrödinger nimmt dir dabei das Lernen
zwar nicht ab, stellt aber mit Sicherheit
die ein oder andere gute Frage und tüftelt
mit dir am Code, bis alles sitzt und du
alles verstanden hast. Dank eingefärbtem
Code, jeder Menge Übungen und Tipps und
Tricks werdet ihr das Kind schon schaukeln!

Na dann auf in die wilde Welt
der KI – wir wünschen viel Spaß!

Hast du Feedback oder Fragen? Dann melde dich
gerne über schroedinger@rheinwerk-verlag.de bei uns.

  Kann’s jetzt endlich losgeh
en?

 Mein Rechner ist schon lange

 hochgefahr
en!

mailto:schroedinger@rheinwerk-verlag.de

—ZWEI—

Auf gute
Nachbarschaft

Auch Datenpunkte haben Nachbarn. Sobald geklärt ist,
was »nah« genau heißen soll, geht es um drei

Algorithmen, die voll auf Nachbarschaft abfahren:
K-Means, den Influencer unter den Nachbarn, der immer

 im Mittelpunkt stehen muss, sowie den angepassten
K-Nearest-Neighbor, der keine eigene Meinung zu haben
scheint, und schließlich DBScan, der eine Party nur dann

schmeißt, wenn auch genug Besucher kommen.

Abstands­
metriken,
K-Means,
DBScan und
K-Nearest-
Neighbor

70 Kapitel ZWEI

Geh auf Distanz!
Nun, lieber Schrödinger, zeige ich dir ein paar Klassifizierungsverfahren.
Diese Verfahren kannst du dir alle räumlich vorstellen. Die Algorithmen
betrachten die Daten(punkte) im Raum und deren Abstände zueinander.

Die Merkmale – also die Features – spannen einen Raum auf. Einen Raum mit
vielen Dimensionen. Jedes Merkmal spannt dabei eine eigene Dimension auf.
Die Werte des Merkmals werden in dieser Achse eingereiht. So erhalten wir für
jeden Datensatz einen Vektor mit Werten. Jeder Wert entspricht einem Merkmal.

Das Schöne an Punkten in einer Ebene oder
auch im (n-dimensionalen) Raum ist, dass wir
Abstände messen können.
Wir haben bereits besprochen, dass es häufig
nur darum geht, Datensätze so in einem Raum anzuordnen,
dass diese einer bestimmten Semantik – also Bedeutung – folgen.
Beispielsweise gibt es für die Verarbeitung von Sprache ein Modell
mit dem Namen »Word2Vec«.
Dieses Modell erlaubt es, Wörter auf eine ganz bestimmte
Art und Weise in einen Vektor umzurechnen.

Die Vektoren sind so angeordnet, dass wir damit rechnen können und dass sie die
Bedeutung abbilden. Beispielsweise können wir die Wörter »König« und »Sohn« in
Vektoren umrechnen, sie addieren und wieder in ein Wort zurückwandeln. Dieser
Ziel-Vektor zeigt ziemlich genau dorthin, wo auch das Wort »Prinz« steht. Addieren
wir zum Wort »Prinz« das Wort »Mädchen«, sind wir in der Nähe der »Prinzessin«.

Und was bringt das?

[Ablage]
Die Vektoren sind die Positionen der Wörter
in einem hochdimensionalen Raum. Genial!

Welchen Raum meinst du?

[Zettel]
Zur Veranschaulichung werden wir uns immer mit einer, meis-tens zwei, manchmal auch drei Dimensionen begnügen. Aber es funktioniert immer auch mit vielen Hunderten Dimensionen!

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 71

Um Algorithmen auf die Daten anzuwenden, brauchen wir ein Maß für den Abstand, also die Distanz
zwischen Datenpunkten – eine Distanzmetrik. Es gibt verschiedene Distanzmetriken, wir schauen uns
ein paar einfache an.

Die Linie ist der intuitivste Abstand – die euklidische Distanz.
Ich zeige dir noch andere einfache Arten, die Distanz zu messen.

Wir beschränken uns zur Anschauung auf den zweidimensionalen
Raum, das ist nicht nur in einem Buch zum Lernen leichter. Schau dir
die beiden grünen Punkte im Bild an. Welchen Abstand haben die?

X

Y

Euklid

Manhattan

Cosinus

∆X

∆Y

Grafische Darstellung der Abstandsmetriken

Wie willst du den Abstand anders messen
als mit der Linie zwischen den Punkten?

[Zettel]

Auch die aktuell größten und

genialsten Systeme sind am Ende

Wahrscheinlichkeitsmaschinen

und basieren auf Abständen in

hochdimensionalen Räumen.

72 Kapitel ZWEI

Das ist die euklidische Distanz, das intuitivste Maß für den Abstand.

Genau, der Abstand ist die Hypotenuse, also das c in Pythagoras’.

Jetzt stell dir vor, du bist in einer Stadt mit Straßen wie ein Schachbrettmuster, zum Beispiel in Mann-
heim oder Manhattan. Und du bist kein Vogel und darfst nur die Straßen entlang gehen. Dann sind
im Bild die hellgrünen Linien der Weg zwischen den Punkten. Dann bekommst du die Manhattan-
Distanz. Die ist viel einfacher zu berechnen: für jede Dimension den Abstand. Du summierst also
lediglich die Einzelkomponenten auf.

Hin und wieder geht es nicht um den Abstand, sondern
die Richtung. Hierfür existiert die Cosinus-Ähnlichkeit
(Cosine-Similarity), die beschreibt, ob sich die beiden
Punkte in der gleichen Richtung befinden oder nicht.

Wenn ein Beobachter im Leuchtturm (am Ursprung)
zwei Schiffe erblickt, sagt uns die Cosinus-Ähnlichkeit,
wie »nah« die beiden Schiffe einander aus seiner Blick-
richtung sind. Ein hoher Wert bedeutet, dass er sein
Fernrohr nur wenig bewegen muss, um vom einen
zum anderen Schiff zu schwenken. Ein niedriger Wert
bedeutet, dass er es deutlich weiterbewegen muss.

Die Linie, wo „Euklid ” dransteht.
Das ist der Abstand zwischen den beiden Punkten.

[Begriffsdefinition]
Die euklidische Distanz
ist die Länge der direkten
Verbindung zwischen zwei Punkten und
kann mithilfe des pythagoreischen Lehr-
satzes ausgerechnet werden.

Ah ja,
 das rechtwinklige Dreieck.

[Zettel]

Die euklidische Distanz hat den Nachteil,

dass die Berechnung des Quadrats sowie

die Berechnung der Wurzel relativ auf-

wendige Operationen für den Computer

sind. Außerdem geht es sehr häufig nicht

darum, eine exakte Distanz zu ermitteln,

sondern nur darum, welche Elemente

näher beisammen sind. Daher wird gerne

die Manhattan-Distanz verwendet.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 73

Euklid

Manhattan

Co
sin

us

Distanzmetriken vom Leuchtturm aus betrachtet

A und B sind die beiden Punkte. Im Zähler werden die x-Werte und y-Werte
von den Punkten multipliziert, die Ergebnisse addiert. Im Nenner haben wir
den euklidischen Abstand vom Nullpunkt zum Punkt, den wir betrachten.
Ich schreibe dir nochmals mit den Details für die Punkte A und B hin:

Oben im Zähler werden die Komponenten der Vektoren multipliziert und die Ein-
zelwerte addiert und unten im Nenner werden die Abstände zum Nullpunkt (also
die Längen der Vektoren) miteinander multipliziert.

Was soll denn das bedeuten?

Ups, sorry. Also:

[Hintergrundinfo]
Die Cosinus-Ähnlichkeit wurde bereits in
den 1960er-Jahren für die Ermittlung von
Ähnlichkeiten zwischen Texten verwendet.
Sie wurde in Suchmaschinen (damals »Infor-
mation-Retrieval-Systeme«) eingesetzt.

Na ja,
okay.

74 Kapitel ZWEI

Und jetzt halt dich fest: Das geht auch mit sehr vielen Dimensionen.
Wie angekündigt funktionieren die Metriken in vielen Dimensionen.

Die könnten wir nicht mehr mit Buchstaben wie x, y und z erfassen.

Schrödinger, es sind viel mehr als 26!

Also nennen wir sie xⁱ. Jedes i steht für eine Dimension.
Dann können wir die entsprechenden Formeln verallgemeinern.

Die Manhattan-Distanz in N Dimensionen

Also statt nur zwei Werte zu addieren, zeigt die Summe an,
dass du die Werte für alle N Dimensionen aufaddierst.

Die euklidische Distanz in N Dimensionen

[Ablage]
Die Cosinus-Ähnlichkeit wird beispielsweise bei Bag-of-Words-Verfahren
(damit beschäftigen wir uns später) und anderen Verfahren eingesetzt, bei
denen es darum geht, ob zwei Vektoren unabhängig von ihrer Länge in die
gleiche Richtung zeigen und somit eine ähnliche Bedeutung haben.
Vereinfacht kannst du dir es so vorstellen: »Heute scheint die Sonne«
und »Heute scheint die Sonne besonders stark« sind zwei ähnliche Sätze.
Werden sie in Vektoren abgebildet, so zeigen diese in eine sehr ähnliche
Richtung – in der Zeitachse zeigen beide auf den heutigen Tag, in der Sub-
jekt-Achse beide in Richtung Sonne, in der Intensitätsachse zeigen beide in
eine positive Richtung, wenn auch der eine länger ist als der andere. Nach
der Cosinus-Ähnlichkeit sind sich diese beiden Vektoren sehr ähnlich.

Warum nicht?

Warte!
Das kann ich!

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 75

Wunderbar!
Du hast verstanden, wie du die Ähnlichkeitsformeln verallgemeinerst.
Und jetzt die Cosinus-Ähnlichkeit.

Schaut wieder schlimmer aus, als es ist. Unten stehen die Längen der beiden Vektoren, also der
Abstand vom Nullpunkt zum Punkt, auf den der jeweilige Vektor zeigt – genauer gesagt die
euklidische Distanz –, und die werden wieder multipliziert. Im Zähler stehen die aufaddierten
Produkte der Einzelkomponenten des Vektors, also die Werte der einzelnen Merkmale.

Und hier noch die
Cosinus-Distanz für N Dimensionen

Während bei unseren folgenden Algorithmen erst einmal Manhattan und Euklid zum Einsatz kommen,
ist die Cosinus-Distanz wichtig für NLP (Natural Language Processing) – wenn es also um Sprachen
und Suchmaschinen geht. Das Beispiel mit Word2Vec kennst du ja bereits.

Uff!

[Achtung]
Euklid und Manhattan sind Distanzen, die
Cosinus-Ähnlichkeit ist wirklich eine Ähnlichkeit.
Bei den Distanzen gilt: je größer, desto ungleicher.
Bei den Ähnlichkeiten verhält es sich umgekehrt.
Um die Cosinus-Distanz zu erhalten, rechnest du
einfach 1 – Ähnlichkeit.

76 Kapitel ZWEI

Tanz nicht aus der Reihe! – Normalisierung
Bei der Messung von Entfernungen müssen wir noch darauf achten,
dass die Werte normalisiert sind.

Stell dir zwei Merkmale vor, die Länge eines Flugzeuges und die Reichweite. Die Länge wird in einigen
Metern gemessen, während die Reichweite eines Flugzeuges Tausende Kilometer betragen kann. Wenn du dir
die Vektoren im Raum vorstellst, dann ist der Einfluss der Flugzeuglänge minimal.

Ich habe hier sechs Flugzeuge für dich dargestellt. Die Länge beträgt 37 m bis 73 m.
Die Reichweiten liegen jedoch zwischen 5 765 km und 15 200 km. Ändert sich die Länge um 10 %, dann
macht das kaum einen Unterschied in der Positionierung der Punkte. Ändert sich jedoch die Reichwei-
te um 10 %, dann sieht das Bild gleich ganz anders aus.

Viele Algorithmen reagieren auf derartige Unausgewogenheiten allergisch. Sie wollen Werte, die sich im
gleichen Wertebereich aufhalten und nicht aus der Reihe tanzen. Deshalb normalisiert man die Daten.

Zwei Fragen:
wieso und wie?

[Achtung]
Eine wesentliche Aufgabe bei der Datenvorbereitung ist die
Normalisierung der Daten. Die dient dazu, dass Algorithmen
gleiche bzw. ähnliche Bedingungen bei allen Merkmalen vorfin-
den und nicht durch ein Ungleichgewicht bestimmten Werten in
Merkmalsvektoren zu viel Bedeutung zukommen lassen, wäh-
rend sie andere Werte im Merkmalsvektor ignorieren.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 77

Wir benötigen also die Standardabweichung und den Durchschnitt der Werte des Merkmals.
Anschließend gehen wir jeden Wert durch, subtrahieren den Durchschnitt und dividieren das Ergebnis
durch die Standardabweichung des Merkmals.

Durch diesen Mechanismus hast du nun normalisierte Werte,
mit denen Algorithmen besser arbeiten können,
selbst wenn sie sich leicht ablenken lassen.

[Begriffsdefinition]
Der Z-Score bezeichnet den nor-
malisierten Wert eines Merkmals
innerhalb eines Datensatzes und
ist wie folgt definiert:

Ja, die Standardabweichung
 war nochmal genau …

[Begriffsdefinition]
Die Standardabweichung misst die Streuung und
beschreibt die durchschnittliche Abweichung zum
Mittelwert. Sie ist wie folgt definiert:

[Begriffsdefinition]
Der Z-Wert wird oftmals auch
als Standard-Scaler bezeichnet.

[Zettel]
Die Z-Werte sind Werte, deren

Durchschnitt 0 und eine Standard-

abweichung von 1 ergeben, und

zwar unabhängig von der Größe

und Einheit der Originalwerte.

78 Kapitel ZWEI

Wie ähnlich wir uns doch sind
Ganz kurz müssen wir uns noch mit den Abstandsmetriken beschäftigen, sei es rechne-
risch – nur um sicherzugehen, du kannst das bestimmt schon – oder eben im Code.
Denn wie gesagt: Nahezu alle KI-Systeme machen sich Vektoren und Abstände zunutze.
Implementieren wir also ein paar kleine Funktionen, die die Metriken ausgeben.

import math
def euclidean_distance(point1, point2):
 return math.sqrt(sum((x1 - x2)**2 for x1, x2 in zip*1(point1,
point2)))

list1 = [1, 2, 3]
list2 = ['a', 'b', 'c']
Verwende zip, um die beiden Listen zu kombinieren
zipped = zip(list1, list2)*1
print(list(zipped))

Distanzen mit
Pythagoras messen

Euklidische Distanz

*1 Ein Punkt hat mehrere Koordinaten und
ist so abgebildet: [x1, x2]. Die
Funktion zip kombiniert zwei Listen.

So funktioniert
die zip-Funktion

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 79

Abstände in New York

Bei der Manhattan-Distanz werden lediglich die positiven Differenzen
der Koordinaten gebildet und aufaddiert.

[Einfache Aufgabe]
Was ist der Abstand zwischen
den Punkten p1(3,5) und
p2(4,6)?

[Erledigt!]
p1 = (3,5)
p2 = (4,6)
print(euclidean_distance(p1, p2))

[(1, 'a'), (2, 'b'), (3, 'c')]

1.424

80 Kapitel ZWEI

Wenn wir die gleichen Punkte einsetzen, erhalten wir hier einen Abstand von 2.

Die Cosinus-Ähnlichkeit

Du erinnerst dich an die Cosinus-Ähnlichkeit, die lediglich prüft, ob die beiden Vektoren (der Pfeil
von (0,0) zum Punkt) in die gleiche oder in eine ähnliche Richtung zeigen. Diese Ähnlichkeit ist kein
Abstand, sondern umgekehrt kleiner, wenn die Richtung weiter auseinanderliegt. Man kann daraus
aber den Richtungsabstand ermitteln. Der Abstand ist dann eins minus der Cosinus-Ähnlichkeit.

Übersetzen wir also die mathematische Formel in

Code für den Richtungsabstand

def cosine_similarity(vector1, vector2):
 dot_product = sum(x * y for x, y in zip(vector1, vector2))*1
 magnitude1 = math.sqrt(sum(x ** 2 for x in vector1))*2
 magnitude2 = math.sqrt(sum(y ** 2 for y in vector2))

 if magnitude1 == 0 or magnitude2 == 0:
 return 0.0*3

 return dot_product / (magnitude1 * magnitude2)
def cosine_distance(vector1, vector2):
 similarity = cosine_similarity(vector1, vector2)
 return 1 - similarity

[Einfache Aufgabe]
Schreibe nun die entsprechende Funktion
manhattan_distance.

[Erledigt!]
def manhattan_distance(point1, point2):
 return sum(abs(x1 – x2) for x1, x2 in zip(point1, point2))

*3 Die Ähnlichkeit ist 0,
wenn einer der Vektoren

ein Nullvektor ist.

*1 Das ist der Zähler in der Formel.

*2 Die beiden magnitude-
Werte kommen dann in den

Nenner.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 81

Hier ergibt sich eine Distanz zwischen unseren beiden Punkten von 0,001.
Also zeigen diese Vektoren in die gleiche Richtung!

Bist du dir sicher? Probiere es aus:

p1 = (3, 5, 1)
p2 = (4, 6, 2)

Unsere Funktionen funktionieren
 jetzt aber nur im 2D-Raum?

Nice!Euklid: 1.732
Manhattan: 3
Cosinus: 0.006

82 Kapitel ZWEI

Abstände in der Nussschale
Raucht dir schon der Kopf?

Kleine Zusammenfassung gefällig?

KI-Systeme, egal ob Algorithmen oder Modelle, basieren auf Abständen und der
Anordnung von Daten in einem mehrdimensionalen Raum. Was wir daher benö-
tigen, ist die Möglichkeit, Abstände zu messen. Und da der Computer gut mit Zahlen
kann, wird alles in Zahlen umgewandelt. Mit Zahlen können wir gut Abstände messen.

Wir verwenden nun Abstände um Daten, die nahe beisammen sind, zu Gruppen
zusammenzuführen. Das ist Clustering. Wir verwenden also Abstände, um neue
Datensätze im Raum einzuordnen und auf Basis von bekannten Daten in diesem
Raum, die nah an unserem Datenpunkt sind, Durchschnittswerte zu generieren
und somit Vorhersagen zu machen. Das ist beispielsweise Regression mit
K-Nearest-Neighbor.

Die Gesichtserkennung auf einem Smartphone macht nichts anderes als die Bilder, die der Rechner von dir
bereits gesehen hat, so in einem Raum anzuordnen, dass alle Bilder von dir in einem engen Bereich sind, wäh-
rend Bilder von anderen Personen einen größeren Abstand haben. Ist der Abstand gering genug, so wird der
Rechner entsperrt.

Nein, der Computer errechnet aus deinem Bild Merkmale,
also wieder Vektoren, die entsprechend eingeordnet werden.

Und erklärt gleich
nochmal,

wozu man die ganzen
Abstände braucht.

Der Computer ordnet ein Bild ein?

[Zettel]
Selbst Wörter werden in Vektoren
umgerechnet, um anschließend
Ähnlichkeiten zwischen Wörtern
zu ermitteln.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 83

Der Durchschnitts-Nachbar
Sehen wir uns den ersten konkreten Algorithmus zur Bildung von Clustern an:
K-Means. Wenn du Daten – scheinbar ohne Bedeutung – hast, und diese in Bereiche
zusammenfassen möchtest, dann bist du oftmals mit K-Means gut bedient.

Du hast Farbbilder (mit bis zu 16,7 Mio. unterschiedlichen Farben) und du möchtest diese
Farben auf zum Beispiel 256 Farben reduzieren, um die Bilder stärker zu komprimieren.
Dann stellt sich die Frage: Welche der 256 Farben willst du verwenden?

Du könntest den ganzen Farbraum in möglichst gleiche Teile aufteilen und dann entspre-
chend repräsentative Farben verwenden. Wahrscheinlich hast du aber einzelne Bereiche,
die gar nicht vorkommen, und andere Farbbereiche ließen sich feiner aufteilen.

K-Means kann dir die Antwort liefern, welche Farben du verwenden sollst.

Egal, was du gruppieren möchtest, ob Dokumente, Farben, Kundensegmentierung oder
Gene (Genexpressionsanalyse) – K-Means macht genau das: Daten gruppieren. Das nennt
man auch »klassifizieren«.

Erst einmal gar nicht. Das ist das K im K-Means, und das musst du festlegen.
Bei der Farbreduktion der Bilder wäre K beispielsweise 256. Er würde dir
damit 256 Cluster erstellen. Wenn du Kunden in 3 Segmente einteilen möch-
test, dann verwendest du als K den Wert 3.

Ich bitte um ein Beispiel.

Und woher weiß der Algorithmus,
 wie viele Gruppen erstellt werden sollen?

84 Kapitel ZWEI

Der Ablauf des Algorithmus ist recht einfach.

1.  Lege fest, wie viele Cluster du erstellen möchtest. Lege also das K fest.

2.  Erzeuge K Zentroide (Stellvertreter), die du an zufällige Positionen setzt.

3. � Weise jeden Datenpunkt dem Zentroiden zu, der den geringsten Abstand
zum Datenpunkt aufweist.

4.  Setze nun die Zentroide in das Zentrum der zugewiesenen Daten.

5. � Wiederhole den Vorgang so oft du willst und brich ab,
wenn sich nichts mehr ändert.

Du fragst dich, wie da etwas Sinnvolles herauskommen kann?
Das passiert, indem du diese Zuordnung und Positionierung mehrfach durchführst: 10 bis 100 Mal.

Großartig,
ich kann Gruppen
generieren und
neue Punkte Gruppen
zuordnen.

[Zettel]
Das Ergebnis des K-Means-Algorithmus sind die

K Stellvertreter (Zentroide), die die K Cluster

repräsentieren. Außerdem kannst du mithilfe

dieser Zentroide auch neue Datensätze den

Clustern zuordnen. Du musst lediglich die

Abstände zu den Zentroiden berechnen. Der

neue Datenpunkt gehört dann zum Cluster mit

dem geringsten Abstand zum Zentroiden.

[Zettel]
Am einfachsten positionierst
du die Zentroide, indem du
für jede Dimension eine
Zufallszahl zwischen dem
Minimal- und Maximalwert
dieser Dimension erzeugst.

[Begriffsdefinition]
Die Zentroide sitzen im Schwerpunkt des ent-
sprechenden Clusters. Der Schwerpunkt ist
nichts anderes als das Zentrum eines Clusters.
Das Zentrum kannst du ermitteln, indem du ein-
fach die Durchschnittswerte (Mittelwerte) für
jede Dimension ermittelst.

Aber warte.
 Wir starten mit irgendwelchen Zufallswerten.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 85

Ist das garantiert das beste Ergebnis? Nein!

Ja, wir müssen das Ergebnis noch qualitativ überprüfen und unter Umständen
den Algorithmus erneut durchlaufen lassen.

Wie wir diese Überprüfung durchführen können, zeige ich dir im nächsten Kapitel. Vorab möchte
ich das Thema praktisch mit Code durchgehen und dir anschließend zeigen, was du tun kannst, wenn
du dir nicht sicher bist, welches K du wählen sollst.

[Achtung]
Da K-Means mit zufälligen Positionen
startet, kann der Algorithmus bei den
gleichen Daten und bei mehrfacher
Durchführung auch zu unterschiedlichen
Cluster-Ergebnissen führen.

Dann weiß ich wieder nicht, ob das Ergebnis passt!

aber was ist eigentlich genau
das Ergebnis des Algorithmus?

Das ist ja nett,

[Achtung]
K-Means ist empfindlich gegenüber Skalierungsthemen.
Deshalb solltest du die Werte vor der Anwendung des
Algorithmus mit dem Z-Score standardisieren. Damit du
später neue Datenpunkte korrekt zuordnen kannst, musst
du zusätzlich zu den Clusterzentren auch den Mittelwert
und die Standardabweichung der ursprünglichen Daten
speichern. Diese beiden Parameter haben wir für die Stan-
dardisierung benötigt und du brauchst sie, um neue Werte
auf die gleiche Weise zu standardisieren wie die ursprüng-
lichen. Nur so ist eine konsistente Zuordnung möglich.

[Zettel]

Das Ergebnis des K-Means-Algo-

rithmus sind die Positionen der

Zentroide. Mithilfe dieser Positio-

nen können alle Datenpunkte und

neue Datenpunkte den Gruppen

zugeordnet werden. Somit sind

mit den Positionen der Zentroide

und mit der Abstandsmetrik die

Cluster definiert.

86 Kapitel ZWEI

Dramaqueens und Sportskanonen

Ich möchte das Thema nochmal anhand eines Datensatzes mit dir durchgehen.
Ich zeige dir auch sofort das grafische Ergebnis und dann geht es ran an den Code.

Wir nehmen also unterschiedliche Tiere mit den Merkmalen Bewegungsdrang und dem Drama-Potenzial.

Tier
Drama-

Potenzial

Bewegungs-

drang
Begründung

Pfau 10 2 Präsentiert stolz sein Rad, steht aber meist nur rum.

Faultier 1 1 Null Stress, null Show – lächelt in Zeitlupe.

Zwergkaninchen 6 9
Springt bei jedem Rascheln in die Luft – Zoomies um 3 Uhr

nachts!

Koala 3 2 Schläft einfach weiter – eukalyptushungriges Stativ.

Krake 8 7 Spritzt Tinte und entkommt aus Aquarien. 8 Arme = 8 × Action!

Igel 5 4
Rollt sich bei Gefahr zur stacheligen Murmel – nächtlicher

Snack-Läufer.

Ente 7 6
Quakt lautstark um Brotkrumen – watschelt, schwimmt, fliegt

kurz.

Panda 4 3 Fällt gelegentlich vom Baum – Bambus kauen ist Sport.

Hyäne 9 8 Lacht hysterisch im Mondlicht – rennt Rudeln hinterher.

Erdmännchen 8 9
Steht auf zwei Beinen und schreit »GEFAHR!« – Buddel-

Marathons.

Känguru 7 8 Boxt und hüpft durch die Gegend – immer in Bewegung.

Schildkröte 2 1 Langsam und gemütlich – null Drama, null Hektik.

Papagei 9 6 Plappert den ganzen Tag – fliegt und klettert viel.

Eichhörnchen 5 7 Sammelt Nüsse wie verrückt – flitzt durch die Bäume.

Flamingo 8 5
Steht elegant auf einem Bein – balanciert und watet ge

mächlich.

Wir wollen diese Tiere nun in 4 Cluster einteilen.

K ist 4. Ist notiert.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 87

Wenn nun der Algorithmus durchläuft, dann werden 4 zufällige Werte für das Drama-Potenzial
und den Bewegungsdrang erstellt. Das sind die Werte unserer initialen Zentroide.

Anschließend weisen wir die Tiere dem räumlich nächsten Cluster zu und verschieben den Zentroiden
des Clusters in den neuen Schwerpunkt. Der Cluster hat einen Zentroiden mit dem durchschnittlichen
Bewegungsdrang und dem durchschnittlichen Drama-Potenzial der ihm zugewiesenen Tiere.

Anschließend weisen wir die Tiere wieder dem räumlich nächsten Zentroiden zu und berechnen
erneut die Position der Zentroide mit den durchschnittlichen Bewegungsdrang- und Drama-Werten.

Am Ende haben wir die Tiere in 4 Cluster eingeteilt.

Zuordnung der Tiere in Cluster mit den entsprechenden Zentroiden

Es können sogar Werte abgesondert werden, wie in unserem Fall der Pfau,
der einen eigenen Cluster bildet.

Ah!

Der Pfau ist eben eine Klasse für sich.

88 Kapitel ZWEI

Schwere Stellvertreter
Ich möchte mit dir kurz einen Teil eines berühmten Machine-Learning-Datensatzes
verwenden, und zwar des Iris-Flower-Datensatzes. In diesem Datensatz befinden sich
Messdaten verschiedener Orchideenblüten. Es wurden die Kelchblätter (Sepal) und die
Blütenblätter (Petal) unterschiedlicher Spezies vermessen und aufgelistet. Es ist ein
Datensatz mit wenigen Merkmalen und daher für unsere Visualisierungszwecke hier
gut geeignet.

Wir werden den Datensatz in unterschiedlichen Schritten visualisieren, damit du
genau siehst, was hier passiert. Damit es einfach bleibt in der Visualisierung, ver-
wenden wir nur zwei Attribute.

Genau! Dieser Datensatz hier besitzt allerdings
erst einmal nur 4 Attribute insgesamt.

Wir verwenden nun K-Means mit zwei Clustern und den Attributen
sepal_length und sepal_width.

from matplotlib import pyplot as plt
df.plot(kind='scatter', x='sepal_length', y='sepal_width', s=32, alpha=.8)

Wenn ich ihn mit zwei Attributen verstehe,
 funktioniert der bestimmt auch
 mit 100 Attributen.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 89

Darstellung der beiden Attribute »sepal_width« und »sepal_length« als Scatter-Plot

Die Visualisierung zeigt, wie die Messergebnisse verteilt sind. Nun kannst du dir überlegen, wie
du selbst die Daten in zwei Gruppen einteilen würdest. Laut Algorithmus verwenden wir zufällige
Positionen für die Zentroiden.

[Notiz]
Die Position der Zentroide soll
irgendwo innerhalb der Daten
sein, daher verwenden wir einen
Zufallswert zwischen den Mini-
mal- und Maximalwerten.

Fehlt uns hier nicht
 die Standardisierung der Werte?

[Achtung]
Du hast vollkommen Recht!
Ich möchte dir jetzt erst einmal den
Algorithmus und den Ablauf zeigen.
Die Werte sind bei diesem Beispiel
nicht so weit auseinander und es
ergibt sich ein schöneres Bild, daher
verzichten wir hier vorerst auf die
Standardisierung.

90 Kapitel ZWEI

import random
sl_min = df['sepal_length'].min()
sl_max = df['sepal_length'].max()
sw_min = df['sepal_width'].min()
sw_max = df['sepal_width'].max()
centroid1_x = random.uniform(sl_min, sl_max)
centroid1_y = random.uniform(sw_min, sw_max)

centroid2_x = random.uniform(sl_min, sl_max)
centroid2_y = random.uniform(sw_min, sw_max)

Jetzt zeichnen wir uns das Diagramm neu –
 inklusive der Zentroide.

df.plot(kind='scatter', x='sepal_length', y='sepal_width', s=32, alpha=.8)

plt.scatter(centroid1_x, centroid1_y, color='red', marker='x',
s=100, label='Zentroid 1')
plt.scatter(centroid2_x, centroid2_x, color='blue', marker='x',
s=100, label='Zentroid 2')
plt.legend()
plt.show()

Die Zentroide zum Plot
hinzufügen

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 91

Der Datensatz mit den Zentroiden

Der nächste Schritt im Algorithmus ist die Zuordnung jedes Datensatzes zum entsprechen-
den Zentroiden. Hierfür verwenden wir numpy. Das ist eine beliebte Python-Library mit
unzähligen nützlichen Datenstrukturen und Funktionen für Berechnungen.

import numpy as np
df['distance_to_centroid1'] = np.sqrt((df['sepal_length'] -
centroid1_x)**2 + (df['sepal_width'] - centroid1_y)**2)*2
df['distance_to_centroid2'] = np.sqrt((df['sepal_length'] -
centroid2_x)**2 + (df['sepal_width'] - centroid2_y)**2)

Es werden zwei Spalten zum Pandas-
DataFrame hinzugefügt: die Distanz zum
ersten Zentroiden und die Distanz vom
Datenpunkt zum zweiten Zentroiden.

[Einfache Aufgabe]
Sieh dir den Code genau an. Wel-
che Distanzmetrik wird verwendet? Wurzel … X-Quadrat …

das ist der Euklid!

92 Kapitel ZWEI

Wunderbar, du hast das vollkommen richtig erkannt.
Wir erstellen eine neue Pseudospalte, in der der Zentroid steht.

df['closest_centroid'] = np.where(df['distance_to_centroid1']
< df['distance_to_centroid2'], 1, 2)

plt.figure(figsize=(8, 6))
for centroid in [1, 2]:
 subset = df[df['closest_centroid'] == centroid]
 plt.scatter(subset['sepal_length'],
subset['sepal_width'], label=f'Zuordnung zu {centroid}', alpha=0.7)

plt.scatter(centroid1_x, centroid1_y, color='red', marker='x', s=100,
label='Zentroid 1')
plt.scatter(centroid2_x, centroid2_y, color='blue', marker='x', s=100,
label='Zentroid 2')

plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Data Points Colored by Closest Centroid')
plt.legend()
plt.show()

In der Spalte closest_centroid
steht nun entweder 1 oder 2, je nachdem,
welcher Zentroid dem Datensatz näher ist.

Dann färben wir mal ein.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 93

Initialzuordnung der Datenpunkte zu den Zentroiden

Durch die zufällig gewählten Startpositionen ergeben sich nun die Zuordnungen in der Abbildung. Offensicht-
lich sind die Zentroide aber nicht im Schwerpunkt der Punkte.

Wir berechnen uns also den Durchschnittswert der X-Werte (sepal_length) von den Daten, die dem
ersten Zentroiden zugeordnet sind, und setzen den entsprechenden X-Wert. Gleiches wird mit den Y-Werten
(sepal_width) gemacht und anschließend wiederholen wir das Szenario für den zweiten Zentroiden.

new_centroid1_x = df[df['closest_centroid'] == 1]['sepal_length'].mean()
new_centroid1_y = df[df['closest_centroid'] == 1]['sepal_width'].mean()

new_centroid2_x = df[df['closest_centroid'] == 2]['sepal_length'].mean()
new_centroid2_y = df[df['closest_centroid'] == 2]['sepal_width'].mean()

Also auf zum nächsten Schritt:
 die Zentroide in die Schwerpunkte verschieben.

Wir selektieren nur die Daten des ersten
Zentroiden und verwenden die Werte der
sepal_length. Davon wird der

Mittelwert berechnet.

94 Kapitel ZWEI

[Erledigt!]
plt.figure(figsize=(8, 6))
for centroid in [1, 2]:
 subset = df[df['closest_centroid'] == centroid]
 plt.scatter(subset['sepal_length'], subset['sepal_width'],
label=f'Zuordnung zu {centroid}', alpha=0.7)
plt.scatter(new_centroid1_x, new_centroid1_y, color='red',
 marker='x', s=100, label='Neuer Zentroid 1')
plt.scatter(new_centroid2_x, new_centroid2_y, color='blue',
 marker='x', s=100, label='Neuer Zentroid 2')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Data Points with Updated Centroids')
plt.legend()
plt.show()

Neupositionierung der Zentroide

[Code bearbeiten]
Zeichne doch nun selbst
die Grafik mit den neuen
Zentroid-Werten.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 95

Nun stimmen die Zuordnungen allerdings nicht mehr, da wir die Zentroide verschoben haben.
Wir ordnen die Datenpunkte daher den neuen Zentroiden zu.
Sobald sich etwas ändert, sitzen die Zentroide wieder nicht im Schwerpunkt und dieser Schritt
wird wiederholt – und so geht es weiter …

Nach 10 Durchläufen ergeben sich folgende
Zentroide und Zuordnungen:

K-Means-Clustering nach 10 Durchläufen

Hättest du auch diese Cluster gebildet?

[Achtung]
Aufgrund der zufälligen Startpunkte der Zentroide
können sich bei dir andere Cluster ergeben, wenn
du den Code ausführst. Das ist nicht falsch, sondern
liegt einfach an der Art und Weise, wie dieser
Algorithmus funktioniert.

Ehm, nein,
 ich hätte wohl eher die Punkte links oben

 und den Rest zusammenfasst.

96 Kapitel ZWEI

[Schwierige Aufgabe]
Implementiere den Prozess nun so, dass er automatisch
10 oder 100 Mal in einer Schleife die Zentroide anpasst.
Am Ende soll die angepasste Plot-Ausgabe erscheinen.

Okay!
*1

 E
in

e
kl

ei
ne

 H
ilf

sf
un

kt
io

n
fü

r
di

e
D

is
ta

nz
be

re
ch

nu
ng

 m
it

 d
em

 E
uk

lid

Sc
hr

it
t

1:
 In

it
ia

lis
ie

ru
ng

 d
er

 z
uf

äl
lig

en
 Z

en
tr

oi
de

ze
nt

ro
id

1_
x
=
ra
nd
om
.u

ni
fo
rm
(d
f[
's
ep
al
_l
en
gt
h'

].
mi
n(
),
 d
f[
's
ep
al
_l
en
gt
h'

].
ma
x(
))

ze
nt

ro
id

1_
y
=
ra
nd
om
.u

ni
fo
rm
(d
f[
's
ep
al
_w
id
th
']

.m
in
()
,
df
['
se
pa
l_
wi
dt
h'

].
ma
x(
))

ze
nt

ro
id

2_
x
=
ra
nd
om
.u

ni
fo
rm
(d
f[
's
ep
al
_l
en
gt
h'

].
mi
n(
),
 d
f[
's
ep
al
_l
en
gt
h'

].
ma
x(
))

ze
nt

ro
id

2_
y
=
ra
nd
om
.u

ni
fo
rm
(d
f[
's
ep
al
_w
id
th
']

.m
in
()
,
df
['
se
pa
l_
wi
dt
h'

].
ma
x(
))

 de
f

eu
cl

id
(x
1,
 y
1,
 x
2,
 y
2)
:*

1

re

tu
rn
 n
p.
sq
rt
((
x1
 -
 x
2)
**

2
+
(y
1
-
y2
)*
*2

)

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 97

Sc
hr

it
t

2
un

d
3:

 Z
uo

rd
nu

ng
 N

eu
-P

os
it

io
ni

er
un

g

fo
r

_
in

 r
an
ge
(1
0)
:*

1

di
st

_f
un
c_
1
=

la
mb
da
 r
ow

*2
:
eu

cl
id
(r
ow
['
se
pa
l_
le
ng
th
']

,
ro
w[
's
ep
al
_w
id
th
']

,

ze
nt

ro
id

1_
x,
 z
en
tr
oi
d1
_y
)

di

st
_f

un
c_
2
=

la
mb
da
 r
ow
:
eu

cl
id
(r
ow
['
se
pa
l_
le
ng
th
']

,
ro
w[
's
ep
al
_w
id
th
']

,

ze
nt

ro
id

2_
x,
 z
en
tr
oi
d2
_y
)

df

['
di

st
_t
o_
1'
]
=
df
.a
pp
ly
(d
is
t_
fu
nc
_1
,
ax
is
=1

)*
3

df

['
di

st
_t
o_
2'
]
=
df
.a
pp
ly
(d
is
t_
fu
nc
_2
,
ax
is
=1

)

df
['

cl
os
es
t_
ce
nt
ro
id
']

 =
 n
p.
wh
er
e(
df
['
di
st
_t
o_
1'

]
<
df
['
di
st
_t
o_
2'
],
 1
,
2)

*4

ne

w_
ce

nt
ro
id
1_
x
=
df
[d
f[

'c
lo
se
st
_c
en
tr
oi
d'

]
==
 1
][
's
ep
al
_l
en
gt
h'

].
me
an
()

*5

ne

w_
ce

nt
ro
id
1_
y
=
df
[d
f[

'c
lo
se
st
_c
en
tr
oi
d'

]
==
 1
][
's
ep
al
_w
id
th
']

.m
ea
n(
)

ne

w_
ce

nt
ro
id
2_
x
=
df
[d
f[

'c
lo
se
st
_c
en
tr
oi
d'

]
==
 2
][
's
ep
al
_l
en
gt
h'

].
me
an
()

ne

w_
ce

nt
ro
id
2_
y
=
df
[d
f[

'c
lo
se
st
_c
en
tr
oi
d'

]
==
 2
][
's
ep
al
_w
id
th
']

.m
ea
n(
)

if

 a
bs

(n
ew
_c
en
tr
oi
d1
_x
-
ze
nt
ro
id
1_
x)
 <
 0

.0
1
an
d

ab
s(

ne
w_
ce
nt
ro
id
1_
y
-
ze
nt

ro
id
1_
y)
 <
 0

.0
1
an
d

ab
s(

ne
w_
ce
nt
ro
id
2_
x
-
ze
nt

ro
id
2_
x)
 <
 0

.0
1
an
d

ab
s(

ne
w_
ce
nt
ro
id
2_
y
-
ze
nt

ro
id
2_
y)
 <
 0

.0
1
:*

6

br
ea
k

ze

nt
ro

id
1_
x
=
ne
w_
ce
nt
ro
id
1_
x*

7

ze
nt

ro
id
1_
y
=
ne
w_
ce
nt
ro
id
1_
y

ze

nt
ro

id
2_
x
=
ne
w_
ce
nt
ro
id
2_

x

ze
nt

ro
id
2_
y
=
ne
w_
ce
nt
ro
id
2_

y

*1
 E

in
e

Sc
hl

ei
fe

 fü
r

di
e

A
nz

ah
l d

er
 D

ur
ch

lä
uf

e

*2
 E

in
e

La
m

bd
a-

Fu
nk

ti
on

, d
ie

 fü
r

je
de

Ze

ile
 a

uf
ge

ru
fe

n
w

ird
, u

m
 d

ie
 D

is
ta

nz

zw
is

ch
en

 d
em

 D
at

en
sa

tz
 u

nd
 d

em

Ze
nt

ro
id

 z
u

er
m

it
te

ln

*3
 A

nw
en

de
n

de
r

D
is

ta
nz

be
re

ch
nu

ng

un
d

Sp
ei

ch
er

n
de

r
Er

ge
bn

is
se

 in
 e

in
er

ne

ue
n

Sp
al

te

*4
 D

ie
 E

rm
it

tl
un

g
de

s
nä

ch
st

en
 Z

en
tr

oi
de

n
–

un
d

de
n

W
er

t
1

od
er

 e
be

n
2

in
 d

er
 S

pa
lt

e
cl
os
es
t_
ce
nt
ro
id

 m
er

ke
n

*5
 D

ie
 n

eu
en

 S
ch

w
er

pu
nk

te
 fü

r
di

e
Po

si
ti

on
ie

ru
ng

 b
er

ec
hn

en

*6
 E

in
e

op
ti

on
al

e
Zu

sa
tz

pr
üf

un
g:

 Is
t

de
r

A
lg

or
it

hm
us

 g
en

ug
 z

u
ei

ne
m

 b
es

ti
m

m
-

te
n

W
er

t
ko

nv
er

gi
er

t?
 W

en
n

si
ch

 d
ie

Ze

nt
ro

id
e

ka
um

 n
oc

h
be

w
eg

en
, k

an
n

ab
ge

br
oc

he
n

w
er

de
n.

*7
 R

ep
os

it
io

ni
er

un
g

de
r

Ze
nt

ro
id

e

98 Kapitel ZWEI

N
ac

h
de

r
Sc

hl
ei

fe
 k

an
ns

t
du

 d
as

 D
ia

gr
am

m
 n

oc
h

au
sg

eb
en

.

pl
t.
fi
gu
re
(f
ig
si
ze
=(
8,
 6
))

fo
r
ce
nt
ro
id
 i

n
[1
,
2]
:

su
bs
et
 =
 d
f[
df
['

cl
os
es
t_
ce
nt
ro
id
']

 =
=
ce
nt
ro
id
]

pl
t.
sc
at
te
r(
su
bs
et
['
se
pa
l_
le
ng
th
']

,

su
bs
et
['
se
pa
l_
wi
dt
h'

],
 l
ab
el
=f
'Z
uo

rd
nu
ng
 z
u

{c
en
tr
oi
d}
',
 a
lp
ha
=0
.7
)

 pl
t.
sc
at
te
r(
ze
nt
ro
id
1_
x,
 z
en
tr
oi
d1

_y
,
co
lo
r=

'r
ed
',

ma
rk
er
='

x'
,
s=
10
0,

la
be
l=
'Z
en
tr
oi
d
1'

)
pl
t.
sc
at
te
r(
ze
nt
ro
id
2_
x,
 z
en
tr
oi
d2

_y
,
co
lo
r=

'b
lu
e'
,

ma
rk
er
='

x'
,
s=
10
0,

la
be
l=
'Z
en
tr
oi
d
2'

)
 pl
t.
xl
ab
el
('
Se
pa
l
Le
ng
th
')

pl
t.
yl
ab
el
('
Se
pa
l
Wi
dt
h'

)
pl
t.
ti
tl
e(
'D
at
a
Po
in
ts
 w
it
h
Fi
na
l

Ce
nt
ro
id
s'

)
pl
t.
le
ge
nd
()

pl
t.
sh
ow
()

Vergiss nicht, dass der Algorithmus unterschiedliche Clusterergebnisse liefern kann. Ich habe hier
zwei Abbildungen mit 100 Durchläufen und den standardisierten Werten, dennoch kommen zwei
ganz unterschiedliche Cluster heraus. Welches der beiden Ergebnisse besser ist, sehen wir uns im
nächsten Kapitel über die Clusteranalyse an.

[Code bearbeiten]
Und nun, lieber Schrödinger, soll-
ten wir vielleicht doch noch die
Standardisierung mit dem Z-Score
einbauen, dann haben wir es rich-
tig gemacht.

[Erledigt!]
for column in ['sepal_length', 'sepal_width']:
 �df[column] = (df[column] - df[column].mean()) /

df[column].std()

[Achtung]
Die Standardisierung ist normaler-
weise der allererste Schritt, noch
bevor du die Zentroide erstellst.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 99

100 Durchläufe und entsprechendes Clustering

Wiederum 100 Durchläufe, allerdings eine komplett andere Clusterbildung

Nun kannst du diesen Algorithmus noch erweitern, sodass er nicht nur mit zwei,
sondern mit beliebig vielen Dimensionen arbeitet.

Natürlich. Da du nun weißt, wie dieser Algorithmus funktioniert, kannst du dir, wenn du
willst, die Arbeit sparen und eine fertige Library verwenden. Dann lass uns das Gelernte lieber
noch etwas festigen mit der SKLearn-Library.

Okay, verstanden.

Das gibt es doch bestimmt schon fertig.

100 Kapitel ZWEI

Orchideentypen

Nachdem du nun den K-Means-Algorithmus mit allen Facetten selbst implementieren
kannst, zeige ich dir jetzt, wie du das mit einer Library umsetzen kannst. Und wie so
oft beim maschinellen Lernen ist die Datenvorbereitung für die Library der Vorgang,
der den meisten Aufwand erzeugt.

Verwenden wir doch den gleichen Datensatz wie bisher – nur, dass wir nicht zwei,
sondern drei Cluster erzeugen und alle vier Merkmale verwenden, die unser Daten-
satz hergibt.

from sklearn.cluster import KMeans*1
from sklearn.preprocessing import StandardScaler*2
path = kagglehub.dataset_download("smritisingh1997/species-segmentation-using-iris-
dataset")
filename = path + '/iris-dataset.csv'
df = pd.read_csv(filename)

features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']*3
X*4 = df[features]

[Notebook]
Den Code für den folgenden
Abschnitt findest du unter
Kapitel 2/02-kmeans-iris-
sklearn.ipynb.

[Zettel]
Der Originaldatensatz beinhaltet auch die
entsprechenden Label für die Blütenklassifi-
zierung. Daher wissen wir bereits, dass es
drei unterscheidbare Iris-Arten sein sollten.

*1 Schön, die Implementierung
heißt wie der Algorithmus.

*2 Dieser Scaler ist der Vorberei-
tungsschritt für die Standardisierung

mit dem Z-Score.

*3 Das hier sind die Merkmale/Spalten,
die wir betrachten wollen. In unserem

Fall sind es alle vier.

*4 In Machine-Learning-Algorithmen
werden die Merkmale immer mit X

benannt, die Labels mit Y. Das kommt
wohl aus der Statistik.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 101

Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)*5

kmeans = KMeans(n_clusters=3*6, random_state=0*7)
df['cluster'] = kmeans.fit_predict(X_scaled)*8

print(df.head())

Das hast du jetzt gesagt. Aber es stimmt schon, dass hier sehr viel weniger Know-how
zum Thema Softwareentwicklung benötigt wird als bei der klassischen Softwareentwicklung, da
nahezu jeder Algorithmus als Library verfügbar ist. Dafür ist im Bereich des maschinellen Lernens
viel mehr Statistik und Mathematik erforderlich.

Bestimmt fragst du dich, wie du nun die Ergebnisse – also die Skalierungs-Parameter und
die Positionen der Zentroide erhältst.

*5 Skalierung durchführen.

*6 Durchführen des K-Means-
Algorithmus mit 3 Clustern.

*7 Der Wert 0 bedeutet, dass an zufälligen
Positionen gestartet wird. Wenn du hier
einen beliebigen anderen Wert einsetzt,

wird das als Seed für den Zufallsgenerator
verwendet.

*8 Die bestehenden Daten werden
nun den Clustern zugeordnet.

[Zettel]

Zufallszahlengeneratoren in der Informatik liefern

keine echten Zufallswerte, sondern eine möglichst

lange Sequenz, die sich zwar irgendwann wieder-

holt, aber sehr zufällig wirkt. Der Seed ist eine Art

Startpunkt dieser Sequenz. Durch die Festlegung

des Startpunktes wird der Zufall reproduzierbar,

denn er legt die Reihenfolge fest. Das klingt para-

dox, wird aber immer wieder benötigt, um repro-

duzierbare Ergebnisse zu erhalten. Wird der Seed

dem Zufall überlassen, so wird ein Wert von der

aktuellen Uhrzeit, Hardware etc. abgeleitet – also

von Faktoren, die sich immer wieder ändern.

Langsam glaube ich,
 die KI-Typen können gar nicht programmieren.

Jetzt, wo du es sagst …

102 Kapitel ZWEI

scaler_params = {
 'mean': scaler.mean_,
 'scale': scaler.scale_
}
print('Das K-Means-Modell')
print('Scaler-Parameter:', scaler_params)
print('Zentroide:', kmeans.cluster_centers_)

Das K-Means-Modell
Scaler-Parameter: {'mean': array([5.84333333, 3.054, 3.75866667,
1.19866667]), 'scale': array([0.82530129, 0.43214658, 1.75852918,
0.76061262])}
Zentroide: [[-0.07723421 -0.92778421 0.32291983 0.23786769]
 [-1.01457897 0.84230679 -1.30487835 -1.25512862]
 [1.06889068 0.06560955 0.9690362 1.00197871]]

Mit der Library pickle kannst du beispielsweise
Werte laden und speichern.

import pickle
scaler_params = {
 'mean': scaler.mean_,
 'scale': scaler.scale_
}
with open('scaler_params.pkl', 'wb'*1) as f:
 pickle.dump(scaler_params, f)

*1 Die Datei schreibend öffnen

[Zettel]
Die Mittelwerte und Standardab-
weichungen, die für die Standar-
disierung verwendet wurden,
existieren für jede Dimension.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 103

Laden der Werte aus der Datei
with open('scaler_params.pkl', 'rb'*2) as f:
 scaler_params = pickle.load(f)
Neuen Scaler erstellen und Parameter setzen
new_scaler = StandardScaler()
new_scaler.mean_ = scaler_params['mean']
new_scaler.scale_ = scaler_params['scale']

3D-Visualisierung ist wunderbar, aber sei dir bewusst,
dass eine (möglicherweise wesentliche) Dimension fehlt.

[Schwierige Aufgabe]
Visualisiere mithilfe eines 3D-Scatter-Plots die Merkmale
sepal_length, sepal_width und petal_length.
Die Farbe c soll je nach Cluster unterschiedlich sein. Blättere
zurück zur Seite 51, auf der wir gemeinsam ein 3D-Diagramm
erstellt haben, und passe den Code entsprechend an.

*2 Die Datei lesend öffnen

[Einfache Aufgabe]
Implementiere das Speichern und
Laden für die Cluster-Zentroide.

[Lösung]
Cluster-Zentren schreiben
with open('cluster_centers.pkl', 'wb') as f:
 pickle.dump(kmeans.cluster_centers_, f)

Cluster-Zentren laden
with open('cluster_centers.pkl', 'rb') as f:
 cluster_centers = pickle.load(f)

Neues K-Means-Modell erstellen und Cluster-Zentren setzen
new_kmeans = KMeans(n_clusters=3, random_state=0)
new_kmeans.cluster_centers_ = cluster_centers

104 Kapitel ZWEI

Darstellung der Features in einem 3D-Scatter-Diagramm

Im Diagramm siehst du, dass die Elemente im gelben Cluster besser abgetrennt sind als die anderen beiden
Cluster. Nun jedoch alle Elemente und Kombinationen durchzugehen, das wäre schon etwas aufwendig.

Jetzt zeige ich dir einen Mega-Geheimtrick
zur Visualisierung.

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(df['sepal_length'], df['sepal_width'], df['petal_length'],
c=df['cluster'], cmap='viridis')
ax.set_xlabel('Sepal Length')
ax.set_ylabel('Sepal Width')
ax.set_zlabel('Petal Length')
plt.show()

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 105

import matplotlib.pyplot as plt
import seaborn as sns

sns.pairplot(df, hue='cluster', vars=features)
plt.show()

Darstellung der Zusammenhänge der unterschiedlichen Dimensionen

[Notiz]
Die Library seaborn zeigt dir
gleich alle möglichen Zusammen-
hänge und Diagramme der Merk-
malsaufteilungen.

Wie cool ist das denn?!

106 Kapitel ZWEI

Egal, welche Merkmale du dir in den Diagrammen ansiehst –
der eine Cluster ist in jeder Dimension sehr gut differenzierbar.
Die anderen beiden sind schwer eindeutig zu trennen.

Bei diesen Diagrammen kannst du noch am ehesten eine Trennlinie ziehen.
Auch sepal_width und petal_length geht noch ziemlich gut.
Aber fehlerlos kannst du kaum eine gerade Linie ziehen.

Du willst offenbar dringend weiter zur Clusteranalyse kommen, aber erst zeige ich dir noch zwei weitere Algo-
rithmen, einerseits zum Clustern und andererseits zur Klassifizierung. Ein Nachteil von K-Means ist nämlich
die Sensitivität gegenüber Ausreißern – also Datenpunkten, die weit abgeschlagen sind. Der folgende Algorith-
mus DBScan hat diesen Nachteil nicht, er stellt diese Ausreißer sogar explizit heraus.

[Einfache Aufgabe]
Welche beiden Diagramme zeigen dir
noch die beste Trennung zwischen
den beiden hellen Clustern und dem
dunklen?

[Lösung]
petal_length und sepal_width sowie
sepal_width und petal_width

 Ich mach einfach ein paar Kurven rein.

Vielleicht sind es ja doch nur zwei Spezies –
� also zwei Cluster.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 107

Dicke Freunde
Zum Clustern und zum Erkennen von Ausreißern ist der DBScan-Algorithmus
eine gute Wahl.

Nein, DB steht nicht für Datenbank, sondern für Density Based – also dichtebasiert.
Dieser Algorithmus bildet Cluster von Datenpunkten, die eine bestimmte Dichte aufweisen,
und wurde 1996 veröffentlicht.

Es ist hier auch nicht erforderlich, dass du die Anzahl der Cluster vorab festlegst.
Die Anzahl ergibt sich automatisch durch den Algorithmus. Ganz ohne Parameter
geht es jedoch auch nicht. Wir benötigen hier zwei Werte: eine Mindestanzahl von
Datenpunkten (MinPts) und einen Radius ε (sprich: Epsilon), der den Bereich
definiert, der analysiert wird.

Der Algorithmus ordnet die Punkte
in drei Kategorien ein:

1. � Kernpunkte: Punkte, die mindestens MinPts Nachbarn innerhalb eines Radius
von ε haben.

2. � Randpunkte: Punkte, die innerhalb des ε-Radius eines Kernpunkts liegen, aber
selbst nicht genügend Nachbarn haben, um Kernpunkte zu sein.

3. � Rauschpunkte: Punkte, die weder Kernpunkte noch Randpunkte sind und somit
als Ausreißer betrachtet werden.

1.  Wähle einen unbesuchten Punkt aus deinem Datensatz aus.
2. � Bestimmte die ε-Nachbarschaft des Punktes – welche Punkte sind innerhalb

des Radius ε vorhanden?
3. � Wenn die Anzahl der gefundenen Nachbarn größer oder gleich den MinPts ist,

markiere den Punkt als Kernpunkt und erstelle einen neuen Cluster.
4.  Füge alle Punkte in der ε-Nachbarschaft zum Cluster hinzu.
5.  � Wiederhole den Prozess für jeden Punkt im Cluster, bis keine neuen Punkte

mehr hinzugefügt werden können.
6.  Wiederhole die Schritte 1–5, bis kein Punkt mehr unbesucht ist.
7. � Alle Punkte, die zu wenige Nachbarn haben, um einen Cluster zu bilden,

sind Rauschpunkte – also Ausreißer.

Der Algorithmus hat
folgende Schritte:

Ein DDatenbbank-Algorithmus?

Kernpunkte,
Erklär mir erst mal, wie der Algorithmus funktioniert,
 dann komm ich bestimmt noch drauf.

Randpunkte?

108 Kapitel ZWEI

In der Abbildung siehst du, wie ein Punkt ausge-
wählt und die Anzahl der Nachbarn ermittelt wur-
de, die nicht weiter als ε davon entfernt sind. All
diese Nachbarn werden dem Cluster (dem blauen
Kreis) zugeordnet, sofern mindestens MinPts
Nachbarn vorhanden sind.

Anschließend wird jeder dieser Punkte als neues
Zentrum mit dem gleichen ε-Wert analysiert und
so der Cluster schrittweise erweitert. Wenn nicht
genügend Nachbarn vorhanden sind, wird der
Punkt nicht dem Cluster zugeordnet.

Wenn der Algorithmus durchgelaufen ist, ergeben sich beispielsweise folgende Cluster:

Clusterergebnis des DBScan-Algorithmus.
Es wurden zwei Cluster und drei Ausreißer gefunden.

Dieser Algorithmus hat wieder wenige einfache Schritte und erkennt selbst die Anzahl
der vorhandenen Cluster sowie die Ausreißer. Zusätzlich ergibt sich der Vorteil, dass der
Algorithmus im Gegensatz zu K-Means Cluster mit beliebigen Formen und Größen
erkennt. Und er ist eben robust gegenüber Ausreißern.

Wenn du beispielsweise einen Cluster hast, der einen anderen ganz oder teilweise umschließt, dann könnte
der K-Means-Algorithmus diesen nicht erkennen. Der DBScan folgt aber der Dichte der Punkte und kann eine
solche Form erkennen. Ich zeige dir ein Vergleichsbild:

Epsilon

Konzept des DBScan-Algorithmus

Wie meinst du das mit den Formen?

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 109

Der K-Means-Algorithmus schneidet den Datensatz, während der DBScan der Dichte folgt.

Nicht so schnell!
Wie du weißt, gibt es keinen Vorteil ohne Nachteil.

Die Nachteile des Algorithmus

 i �Wenn die Punktedichte stark variiert, hat der Algorithmus Probleme. Die Scatter-Diagramme
helfen dir bei der Darstellung und Einschätzung.

 i �Der Rechenaufwand des Algorithmus ist relativ hoch. Die Ermittlung der ε-Nachbarschaften ist
rechenintensiv. Bei großen Datenmengen empfehle ich dir, zu überlegen, wie du einen Index
aufbauen kannst, um möglichst effizient die Nachbarschaften zu ermitteln – zum Beispiel
durch einen R*-Baum oder einen KD-Baum. Dadurch kannst du diesen Nachteil ausräumen.

 i �Leider ist der Algorithmus empfindlich gegenüber den Parametern. Die Wahl der sogenannten
Hyperparameter ε und MinPts kann das Ergebnis stark beeinflussen.

Nichtsdestotrotz sind die Einsatzgebiete des DBScan-Algorithmus vielfältig.
Du kannst Bilder auf Basis ihrer Farbintensitäten bzw. ihrer Farbwerte segmentieren (also entspre-
chende Bereiche in Bildern feststellen), oder du nutzt den Algorithmus zur Anomalieerkennung (Aus-
reißererkennung) bei Finanzdaten, im Netzwerkverkehr oder in Produktionsprozessen. Auch bei
der Analyse von Geodaten, Erdbebendaten oder der Verbreitung von Pflanzenarten findet dieser Algo
rithmus seine Anwendung, zum Beispiel durch die Bildung geografischer Cluster.

Wow, der hat ja wirklich überall seine Finger im Spiel!

 Das sind drei schöne Vorteile,da lege ich
den anderen Algorithmus gleich zur Seite.

110 Kapitel ZWEI

Stressige Tage

Ich habe einen Kaggle-Datensatz für dich ausgewählt,
bei dem es um Sportübungen, Schlafzeiten und das Stresslevel geht.
Auf diesen Datensatz wollen wir nun einen selbst implementierten
DBScan-Algorithmus anwenden.

path = kagglehub.dataset_download("forrestcarlton1/stress-levels-dataset")
filename = path + "/Stress_levels_dataset.csv"
df = pd.read_csv(filename)
print(df.info())

[Notebook]
Wenn du chillen willst, statt stressig Code zu
tippen, findest du den Code hier: Kapitel 2/
DB Scan 1 – Selbst implementiert.ipynb.

Den kagglehub und pandas habe ich
schon importiert. Los geht’s!

[Einfache Aufgabe]
Wie viele Datensätze
hat der Datensatz? Das ist einfach!

 Einhundert Stück.
 Und drei Spalten.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 111

Die Spalten in unserem Datensatz heißen Hours_of_Exercise_per_Week,
Hours_of_Sleep_per_Night und Stress_Level.

[Erledigt!]
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 6))
df['Stress_Level'].hist(bins=8, grid=False)

plt.xlabel('Stresslevel')
plt.ylabel('Häufigkeit')
plt.show()

Verteilung der Stresslevel

[Schwierige Aufgabe]
Sieh dir das Histogramm des Stresslevels an –
damit stellst du die Verteilung der einzelnen
Stresslevel dar. Erstelle das Histogramm mit
8 Balken.

112 Kapitel ZWEI

Die Werte reichen von tiefenentspannt bis komplett unter Druck.
 Ganz schön viel Stress!
 Am häufigsten kommt ein Stresswert von 60 in den Daten vor.

Nun wissen wir, wie die Daten aussehen, und können uns an den Algorithmus machen. Wir benötigen eine
Distanzfunktion, da wir die Abstände zwischen zwei beliebigen Datenpunkten messen müssen.

Da haben wir ja schon unsere euclidean_distance-Funktion.

import math
def euclidean_distance(point1, point2):
 return math.sqrt(sum((x - y)**2 for x, y in zip(point1, point2)))

Einen kleinen Teil haben wir schon. Jetzt müssen wir es nur noch schaffen, die Nachbarn
von einem Datenpunkt zu finden, deren Abstand zum Punkt nicht größer ist als ε.

def region_query(data, point, eps): neighbors = []
 for i, other_point in enumerate(data)*1:
 if point != other_point and euclidean_distance(point, other_point) <= eps*2:
 neighbors.append(i)*3
 return neighbors

*1 Es werden alle Datenpunkte
durchgegangen und sowohl der Index i
als auch der Punkt an sich betrachtet.

*2 Wenn es sich nicht um den gleichen
Punkt handelt, wird die Distanz zum Punkt

berechnet. Ist diese kleiner als das
gewählte ε, dann ist es ein relevanter

Nachbar.
*3 Wir merken uns lediglich
die Indizes der Nachbarn.

Die Hilfsfunktionen sind also erledigt.
 Jetzt ran an den DBScan!

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 113

def dbscan(data, eps, min_pts):
 labels = [-1] * len(data)*1
 cluster_id = 0
 for i, point in enumerate(data):
 if labels[i] != -1:*2
 continue

 neighbors = region_query(data, point, eps)*3
 if len(neighbors) < min_pts:
 continue*4

 cluster_id += 1*5
 labels[i] = cluster_id
 seed_set = neighbors.copy()*6

 while seed_set:
 current_point_index = seed_set.pop(0)*7
 if labels[current_point_index] == -1:
 labels[current_point_index] = cluster_id
 elif labels[current_point_index] == 0:*8
 labels[current_point_index] = cluster_id
 else
 continue # Bereits Teil von einem Cluster

 current_point_neighbors = region_query(data, data[current_point_index], eps)*9

 if len(current_point_neighbors) >= min_pts:
 seed_set.extend([n for n in current_point_neighbors if n not in seed_
set])*10
 return labels

Du bist bestimmt schon gespannt auf das Ergebnis.
Wir haben es fast geschafft!
Nur noch die Funktion aufrufen und die Ergebnisse zeichnen.

*1 Alle Daten vorab als Ausreißer
markieren. Wir beweisen dann im Laufe

des Algorithmus das Gegenteil.

*2 Wenn der Datensatz
bereits zugeordnet ist,
ignorieren wir diesen.

*3 Die Nachbarn im
Umkreis ermitteln. *4 Wenn nicht genügend Nachbarn

vorhanden sind, bleibt der Daten-
punkt ein Ausreißer. Wir sehen uns

gleich den nächsten an.

*5 Yippie, wir haben einen
neuen Cluster gefunden!

*6 Wir kopieren die Nachbarn, denn diese
wollen wir im nächsten Schritt weiter

analysieren, und sehen, ob sich der Cluster
hier erweitert. Alle Punkte, die den Cluster

potenziell erweitern können, werden in
diese Liste aufgenommen.

*7 Solang noch ein Punkt in der Liste übrig
ist, wird alles wiederholt. Der erste Punkt

wird rausgenommen. Falls dieser noch
keinem Cluster zugewiesen ist, weisen wir

diesen dem Cluster zu.

*8 Randbereichprüfung. Der Punkt ist zwar
nahe genug, hat aber selbst zu wenige

Nachbarn, um als Zentrum zu fungieren.
Das wird ein Randpunkt.

*9 Von diesem Punkt aus
werden erneut die Nachbarn

gesucht.*10 Nachdem geprüft wurde, ob genügend
Nachbarn in der Nähe sind, werden all

diese erneut in die Liste der potenziellen
neuen Clustermitglieder hinzugefügt,

damit der Cluster wachsen kann.

114 Kapitel ZWEI

Nimm erst einmal 6.5 für ε
und 4 für die Mindestpunkte.

[Erledigt!]
selected_columns =
['Hours_of_Exercise_per_Week', 'Stress_Level']
data = df[selected_columns].values.tolist()
eps = 6.5
min_pts = 4
labels = dbscan(data, eps, min_pts)

Wunderbar, wir haben die Labels – also die Cluster.
Lass uns die Cluster aufzeichnen und sehen, wie die Stresslevels mit der körperlichen Ertüchtigung
zusammenhängen und wie diese durch den DBScan-Algorithmus in Cluster zusammengefasst werden.

import matplotlib.pyplot as plt
x_coords = [point[0] for point in data]
y_coords = [point[1] for point in data]
plt.figure(figsize=(8, 6))
plt.scatter(x_coords, y_coords, c=labels, cmap='viridis')
plt.title('Clustering Ergebnis')
plt.xlabel('Sport')
plt.ylabel('Stress Level')
plt.colorbar(label='Cluster')
plt.show()

[Code bearbeiten]
Rufe die Funktion mit den zwei Spalten
Hours_of_Exercise_per_Week
und Stress_Level auf.

Aber was soll ich bei den Mindestpunkten und ε einsetzen?

[Notiz]
Das Finden der Parameterwerte ist
oftmals ein Herantasten. Ich zeige
dir im Laufe der Zeit noch, wie du
diese sogenannten Hyperparameter
ermitteln kannst.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 115

Clustering der Datenpunkte durch DBScan

Es sind drei. Das Gelb und die zwei Grüntöne. Die lila Punkte sind diejenigen mit dem Wert −1,
die keinem Cluster zugeordnet worden sind. Das sind unsere Anomalien.

Aber wie du weißt, funktionieren diese Algorithmen ja in mehreren Dimensionen. Und eine
unausrottbare Eigenschaft von KI-Datensätzen ist, dass die Datensätze immer viele Dimensionen
haben. Gut, hier haben wir jetzt nur drei, aber meist sind es noch mehr.

[Einfache Aufgabe]
Wie viele Cluster kannst
du aus der Grafik ablesen? Drei, vier,

… sieben?

[Schwierige Aufgabe]
Aktualisiere den Code mit der dritten
Dimension und gib ein 3D-Diagramm
aus. Verwende nun 8 als ε und 3 als
Mindestpunkteanzahl.

116 Kapitel ZWEI

selected_columns = ['Hours_of_Exercise_per_Week', 'Stress_Level',
'Hours_of_Sleep_per_Night']
data = df[selected_columns].values.tolist()

eps = 8
min_pts = 3
labels = dbscan(data, eps, min_pts)

Prepare data for plotting
x_coords = [point[0] for point in data]
y_coords = [point[1] for point in data]
z_coords = [point[2] for point in data]

Plotting
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
scatter = ax.scatter(x_coords, y_coords, z_coords, c=labels, cmap='viridis')

ax.set_xlabel(selected_columns[0])
ax.set_ylabel(selected_columns[1])
ax.set_zlabel(selected_columns[2])
ax.set_title('DBSCAN Clustering Results (3D)')
plt.colorbar(scatter, label='Cluster ID')

Clustering-Darstellung im 3D-Raum

Ja, da sind wieder ein paar
Ausreißer zu sehen.
 �Und ich habe dieses Mal

mehr Cluster erhalten.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 117

Drama-Nachbarn, die nicht ins Bild passen
Du erinnerst dich bestimmt an unsere Drama-Tiere.

Wir haben Cluster für die Tiere mithilfe von K-Means erstellt. Und nun verwenden wir wie-
der SKLearn, um diese Cluster mithilfe von DBScan zu unterteilen. Wir wollen uns ansehen,
ob es Punkte gibt, die nicht ins Bild passen.

Standardisieren wir die Werte als Erstes mit dem
bekannten StandardScaler.

from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
Merkmale auswählen
X = df[["Drama", "Bewegung"]].values
Skalieren
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Nun führen wir den DBScan aus und schreiben die ermittelten Cluster zurück in den DataFrame –
in eine eigene Spalte mit dem Namen Cluster.

Besonders mit dem Faultier
konnte ich mich hervorragend
identifizieren.

Natürlich!

[Einfache Aufgabe]
Kopiere dir die Daten in ein neues
Notebook und lade sie wie gewohnt
in einen Pandas-Dataframe.

[Notebook]
Den gesamten Code findest du hier:
Kapitel 2/DBScan2 – Tiere.ipynb.

118 Kapitel ZWEI

dbscan = DBSCAN(eps=0.9, min_samples=3)
clusters = dbscan.fit_predict(X_scaled)
df['Cluster'] = clusters

Fertig.

colors = {}
labels = {}
for k in unique_labels:
 if k == -1:*1
 colors[k] = [0, 0, 0, 1]
 labels[k] = 'Wir passen nicht ins Bild - Ausreißer'
 elif k == 0:
 colors[k] = 'purple'
 labels[k] = 'Chillige Zeitgenossen'
 elif k == 1:
 colors[k] = 'blue'
 labels[k] = 'Drama-Queens im Chillmode'
 else
 colors[k] = plt.cm.Spectral(k/len(unique_labels))*2
 labels[k] = f'Cluster {k}'

for k in unique_labels:
 class_member_mask = (clusters == k)
 xy = X[class_member_mask]
 names = df['Tier'][class_member_mask].values

 plt.plot(xy[:, 0], xy[:, 1], 'o', color=colors[k],
 markersize=10, label=labels.get(k,f'Cluster {k}'))*3
 for i, txt in enumerate(names):*4
 plt.annotate(txt, (xy[i, 0], xy[i, 1]),
 textcoords="offset points", xytext=(5,5), ha='left')

plt.title('Tier-Clustering')
plt.xlabel('Drama')
plt.ylabel('Bewegung')
plt.legend()
plt.grid(True)
plt.show()

Nein, nein,
 ich will das jetzt
schon grafisch sehen. [Zettel]

Ausreißer werden dem
Cluster −1 zugeordnet.

*1 Ausreißer haben
den Wert −1.

*2 Sollten sich weitere Cluster
ergeben, wird eine Farbe und die

Clusterbezeichnung gewählt.

*3 Zeichnen der
Clusterpunkte.

*4 Die Tierbezeichnung
wollen wir auch sehen.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 119

Clustering der Tiere mit DBScan

Wie wir mehrfach gesehen haben, ist der Algorithmus in der Lage, Ausreißer
zu erkennen. Diese werden entweder im Detail analysiert, wenn es beispielsweise
um ungewöhnliche Kreditkartenabrechnungen geht, oder eben entfernt, weil
Ausreißer im Datensatz möglicherweise störend sind.

Wie vermutet:
 Der Pfau ist ein Ausreißer!

[Einfache Aufgabe]
Passe den ε-Wert an. Wähle zum
Ausprobieren 0.8. Was kannst
du beobachten?

[Lösung]
Jetzt ist auch das Eichhörnchen
ein Ausreißer geworden.

[Schwierige Aufgabe]
Entferne die Ausreißer und
zeichne die Grafik erneut.

120 Kapitel ZWEI

Nachdem der DBScan ausgeführt wurde, ändert sich der Code:
df['Cluster'] = clusters
df_no_outliers = df[df['Cluster'] != -1]*1

Merkmale zum Plotten ohne Ausreißer auswählen
X_no_outliers = df_no_outliers[["Drama", "Bewegung"]].values*2
clusters_no_outliers = df_no_outliers['Cluster'].values*3

plt.figure(figsize=(12, 8))
unique_labels = set(clusters_no_outliers)*4

colors = {}
labels = {}
for k in unique_labels:
 if k == 0:
 colors[k] = 'purple'
 labels[k] = 'Chillige Zeitgenossen'
 elif k == 1:
 colors[k] = 'blue'
 labels[k] = 'Drama-Queens im Chillmode'
 else
 colors[k] = plt.cm.Spectral(k/len(unique_labels))
 labels[k] = f'Cluster {k}'

for k in unique_labels:
 class_member_mask = (clusters_no_outliers == k)*5
 xy = X_no_outliers[class_member_mask]
 names = df_no_outliers['Tier'][class_member_mask].values

 plt.plot(xy[:, 0], xy[:, 1], 'o', color=colors[k],
 markersize=10, label=labels.get(k,f'Cluster {k}'))
 for i, txt in enumerate(names):
 plt.annotate(txt, (xy[i, 0], xy[i, 1]), textcoords="offset points",
xytext=(5,5), ha='left')

plt.title('Tier-Clustering (ohne Ausreißer)')
plt.xlabel('Drama')
plt.ylabel('Bewegung')
plt.legend()
plt.grid(True)
plt.show()

*1 Wir filtern und entfernen alles,
was den Cluster −1 besitzt.

*3 Auch die Cluster laden wir uns erneut.

*4 Die Labels nicht vergessen.

*2 Wir laden uns die Daten neu, da
diese nun gefiltert sind.

*5 Und nun werden zum Zeichnen
die gefilterten Werte verwendet.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 121

Tier-Clustering ohne Ausreißer mit einem ε-Wert von 0,8 und einer Mindestpunkteanzahl von 3

Wunderbar, du bist bereit für den nächsten Algorithmus. Bisher
haben wir immer Datenpunkte gruppiert. Nun wird es Zeit, sich darum
zu kümmern, neue Datenpunkte bestehenden Clustern zuzuordnen.

Ausreißer:
- Pfau
- Eichhörnchen

[Einfache Aufgabe]
Lass dir zur Kontrolle noch
die Ausreißer ausgeben.

[Lösung]
outliers = df[df['Cluster'] == -1]['Tier'].values
print("Ausreißer:")
for outlier in outliers:
 print(f"- {outlier}")

122 Kapitel ZWEI

Neue Nachbarn
In vielen Recommendation-Engines wird der Algorithmus K-Nearest-Neighbors, kurz
KNN, eingesetzt. Wenn dir der nächste Film, der dir wahrscheinlich gefällt, der nächste
Song oder ein Produkt in einem Onlineshop vorgeschlagen werden soll, steckt oftmals
der KNN-Algorithmus dahinter. Auch in der medizinischen Diagnostik, bei der Bildana-
lyse oder im Finanzbereich findet der Algorithmus Anwendung.

Wir haben mit KNN nun einen Algorithmus, der in die Kategorie Supervised
Learning fällt – also überwachtes Lernen. Du benötigst bereits fertige Cluster
und weist neue Datenpunkte diesen Clustern zu.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

A

B

A oder B?

Zu welchem Cluster gehört der neue Datenpunkt?

[Achtung]
Die Bezeichnung KNN wird auch gerne
als Abkürzung für »künstliche neuronale
Netze« verwendet. Nicht verwechseln!

[Ablage]
KNN beantwortet die Frage, zu
welchem bestehenden Cluster ein
neuer Datenpunkt hinzugefügt
werden soll.

Clustern kann ich ja jetzt.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 123

KNN ist ein demokratischer Algorithmus. Es wird ein Mehrheitsentscheid verwendet,
um die Clusterzugehörigkeit zu entscheiden. Du musst für diesen Algorithmus nur einen
Parameter festlegen: das K.

Du benötigst also die aktuelle Clusterzuordnung der Datenpunkte, die Anzahl der nächsten Nachbarn,
die du verwenden willst, und – wie so oft – eine Distanzmetrik: Euklid oder Manhattan etc.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

A

B

A oder B?

Analyse der drei nächsten Nachbarn

Der Algorithmus sucht sich also die K Nachbarn mit der minimalen Distanz. Er analysiert,
welche der Nachbarn zu welchem Cluster gehören und schließt sich der Mehrheit an. In
der Abbildung ist zu sehen, dass für unseren Punkt zwei Nachbarn aus dem Cluster B und
ein Nachbar aus dem Cluster A in Frage kommen. Diese werden untersucht. Demnach
entscheidet der Algorithmus, dass der neue Datenpunkt dem Cluster B zugewiesen wird.

Ja, so einfach ist es.
Das wars schon?

Und wofür steht das K?

[Ablage]
K ist die Anzahl der nächsten
Nachbarn, die betrachtet werden
sollen.

124 Kapitel ZWEI

Wertvorhersage mit KNN
KNN kann nicht nur neue Datensätze zu Clustern zuordnen. Du kannst den Algorithmus auch
benutzen, um Werte vorherzusagen. Stell dir beispielsweise einen Datensatz für Fahrräder und
Fahrradpreise vor, in dem Merkmale wie Preis, Gewicht, Anzahl der Gänge etc. aufgelistet sind.
Wenn du jetzt bei einem neuen Fahrrad den Preis einordnen möchtest, dann verwendest du alle
Informationen aus dem Datensatz (mit Ausnahme des Preises) und sortierst den Datenpunkt
ein, vergleichst also Gewicht, Anzahl der Gänge und so weiter. Anschließend nimmst du die
entsprechenden Nachbarn, also Räder mit ähnlichen Merkmalen, und verwendest den Durch-
schnittspreis (oder den mit den Abständen gewichteten Durchschnittspreis) der Nachbarn.

Du kannst sogar die Linien oder Flächen berechnen, an denen sich die Zuordnungen zum
einen oder anderen Wert ändern – je nachdem, wie viele Nachbarn rundherum sind und
wann sich die Nähe zum nächsten Nachbarn ergibt.

[Ablage]
Der wesentliche Nachteil dieses Algorithmus
ist, dass er empfindlich gegenüber irrelevanten
Merkmalen ist. Also erweitere deinen Daten-
satz nicht um nutzlose Merkmale wie zum Bei-
spiel IDs und verwende die Merkmalskorrela
tion, um unnötige Features zu entfernen.

[Achtung]
Was KNN definitiv nicht kann,
ist die Generierung neuer Cluster.
Er ermöglicht nur eine Zuordnung
zu den bestehenden Clustern.

 Und nebenbei schaue ich mir meinen Datensatz
 auch noch mal ganz genau an.

Clever!

Moment, das habe ich jetzt nicht ganz verstanden.
Wie meinst du das?

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 125

Angenommen, wir haben lediglich eine Quadratmeteranzahl und den Preis
eines Hauses. Normalerweise ist der Preis natürlich noch von vielen weite-
ren Parametern abhängig, aber zur einfachen Visualisierung setzen wir mal
diese vereinfachte Zuordnung voraus. Nun hast du ein neues Haus mit einer
bestimmten Quadratmeteranzahl und möchtest den Hauspreis mithilfe von
KNN ermitteln. Also suchst du dir drei Häuser aus deinem Datensatz, die
eine ähnliche Quadratmeterzahl haben, und nimmst den Durchschnittspreis
von den drei Häusern – das ist der Preis, den du für das Haus erwarten
kannst. Wenn sich jedoch die Quadratmeter leicht erhöhen oder reduzie-
ren, kann es sein, dass andere Häuser aus dem Datensatz nun deinem am
ähnlichsten sind und sich ein ganz anderer Durchschnittspreis ergibt.

Und wenn du alle Werte durchgehst und jeweils die Berechnung betrachtest,
siehst du, wo die Preissprünge sind. Das siehst auf der Abbildung noch mal genauer.

Preissprünge je nach Quadratmetern und Wertvorhersagen für den Durchschnittspreis in dieser Größe

Okay, verstanden.

126 Kapitel ZWEI

Gesellschaftsspiele in der Nachbarschaft

Du hast jetzt verstanden, wie der Algorithmus
funktioniert, und dass er flexibel einsetzbar ist – sowohl zur Klassifizierung
als auch zur Vorhersage konkreter Zahlenwerte, also für Regressionsaufgaben.
Lass ihn uns implementieren. Bestimmt juckt es dich schon in den Fingern.
Das ist unser Datensatz:

Spiel Komplexität Action-Level Kategorie

Schach 9 2 Strategie

Civilization VI 8 3 Strategie

Age of Empires 7 4 Strategie

Command & Conquer 7 6 Strategie

Tetris 5 8 Puzzle

Candy Crush 4 7 Puzzle

Portal 5.8 7.2 Puzzle

Dark Souls 9 9 Action

Call of Duty 8 10 Action

DOOM 7 9 Action

Super Mario 6 6 Action

Animal Crossing 2 2 Simulation

The Sims 3 3 Simulation

Stardew Valley 4 3 Simulation

[Notebook]
Der Code zu diesem Beispiel
ist in Kapitel 2/03-knn-
games-classification.ipynb
zu finden.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 127

Wir wollen wissen, wie Starcraft 2 mit einem Komplexitätslevel von 6.5
und einem Action-Level von 7 klassifiziert wird. Im Diagramm sieht das wie folgt aus:

Spieleklassifizierung mit K-Nearest-Neighbors

Wunderbar, unser Datensatz soll wie folgt aussehen: erst die Bezeichnung des Spiels,
dann die Komplexität in Form eines Punktes und dann das Action-Level.

game_data = {
 "Schach": (9, 2), "Civilization VI": (8, 3),… }

Zusätzlich benötigen wir das Label für alle Spiele, da diese bereits klassifiziert sind.

labels = {
 "Schach": "Strategie", "Civilization VI": "Strategie",
"Age of Empires": "Strategie", … }

128 Kapitel ZWEI

Jetzt kommt unser neuer Datenpunkt, den wir einordnen wollen, und die Hilfsfunktion für den
euklidischen Abstand zwischen zwei Punkten:

new_game = (6.5, 7) # Starcraft 2

[Erledigt!]
import math
def euclidean_distance(p1, p2):
 return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)

Super, Schrödinger! Die Implementierung von KNN ist nicht nur bei der Erklärung
einfach, sondern auch im Code. Wir berechnen die Distanz zwischen dem neuen
Punkt und jedem anderen Punkt im Datensatz und merken uns diese Informationen
in einer Liste. Anschließend sortieren wir den Datensatz nach der Distanz, verwenden
lediglich die K ersten Elemente und wählen von denen die häufigste Kategorie aus.

def knn_manual(train_data, train_labels, new_point, k=3):
 distances = []

 for game, coords in train_data.items():*1
 distance = euclidean_distance(coords, new_point)
 distances.append((distance, train_labels[game]))*2

 distances.sort()*3
 k_nearest = distances[:k]

 category_count = Counter(label for _, label in k_nearest)*4

 return category_count.most_common(1)[0][0]*5

[Einfache Aufgabe]
Erstelle die Hilfsfunktion
euclidean_distance.

Easy!

*1 Berechne die Distanz zu
jedem bekannten Spiel. *2 Distanz und Label werden als

Tupel in das Array hinzugefügt.

*3 Sortieren nach Distanz und
die k nächsten Nachbarn

auswählen.

*4 Abstimmen und Stimmen auszählen.

*5 Am häufigsten vertretene
Kategorie zurückgeben.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 129

Na, bist du schon gespannt, wie Starcraft 2 klassifiziert wird?

Dann fragen wir mal unseren Algorithmus:

predicted_category = knn_manual(game_data, labels, new_game, k=3)
print(f"Starcraft 2 wurde klassifiziert als: {predicted_category}")

Puzzle

Stimmt, das sind mindestens 8,
 wenn man sich die anderen Spiele in der Tabelle so anschaut.

[Code bearbeiten]
Vergiss nicht, das Counter-
Objekt von collections
zu importieren.

[Erledigt!]
from collections import Counter

Starcraft 2 ist ganz klar
 ein Echtzeit-Strategiespiel.

Was ist das denn für ein Voodoo?

[Code bearbeiten]
Sieh dir nochmal die Werte an,
vielleicht haben wir uns ganz am
Anfang mit einem Komplexitäts-
wert von 6,5 ja verschätzt.

Niemals!

130 Kapitel ZWEI

Eins, zwei, Zauberei!
 Schon haben wir die Strategie-Kategorie.

Übrigens sind das jetzt die Nachbarn, die wir betrachtet haben.
So eindeutig ist das gar nicht …

Die stimmberechtigten Nachbarn

[Achtung]
Ja, die Eingangsdaten müssen natürlich
korrekt sein, damit der Algorithmus ein
richtiges Ergebnis ausspuckt. Das soll aber
keine Einladung sein, dass du künftig immer
die Eingangswerte so anpasst, dass das
Ergebnis deinen Erwartungen entspricht.

Auf die Idee würde ich nie kommen!

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 131

Lärmbelästigung in der Nachbarschaft?

Jetzt schauen wir uns auch noch ein Regressionsbeispiel an, in dem wir einen konkreten Wert vorhersagen.
Und zwar wollen wir auf Basis von Größe und Flauschigkeit auf die Lautstärke von Tieren schließen.

Tier Größe (1–10) Flauschigkeit (10–10) Lautstärke (dB)

Löwe 9 3 114

Eule 3 7 45

Schlange 4 0 0

Fuchs 5 6 65

Elefant 10 5 120

Papagei 2 4 90

Hamster 1 9 20

Ente 3 2 70

Husky 6 10 95

Auf die Idee würde ich nie kommen!

[Notiz]
Bei nicht eindeutiger Abstimmung
erhält der Cluster mit dem Punkt mit
der kürzesten Distanz den Zuschlag.

[Notebook]
Den zugehörigen Code findest du unter
Kapitel 2/04-knn-loudness.ipynb.

Sagtest du nicht,
 das ist eine Mehrheitsentscheidung?

[Schwierige Aufgabe]
Versuchen wir doch mal, den Roten Panda
mit der Größe von 4 und der Flauschigkeit
von 9 einer Lautstärke zuzuordnen.

132 Kapitel ZWEI

Flauschigkeit und Größe der Tiere

def knn_regression(train_data, new_point, k=3):
 distances = []

 for animal, (size, fluff, loudness) in train_data.items():*1
 distance = euclidean_distance((size, fluff), new_point)
 distances.append((distance, loudness))

 distances.sort()*2
 k_nearest = distances[:k]

[Notiz]
Das Verfahren von KNN bei der Wertvorhersage ist das
gleiche Prozedere wie bei der Clusterzuordnung. Der
einzige Unterschied liegt darin, am Ende keinen Mehr-
heitsentscheid zu machen, sondern den (gewichteten)
Durchschnittswert zu berechnen.

*1 Für jedes Tier die Distanz
zum Roten Panda berechnen.

*2 Sortieren und die k
Nachbarn selektieren.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 133

 avg_loudness = np.mean([loudness for _, loudness in k_nearest])*3
 return avg_loudness

predicted_loudness = knn_regression(animal_data, new_animal, k=3)*4
print(f"Der geschätzte Lautstärkepegel des Roten Pandas beträgt: {predicted_
loudness:.2f} dB")

Der geschätzte Lautstärkepegel
des Roten Pandas beträgt:
53.33 dB

Dann wagen wir uns jetzt mal an einen richtigen Datensatz und die Verwendung einer Library.

*3 Hier ist der Unterschied zur
Clusterzuordnung: Es wird der

Durchschnittswert der Nachbarn
gebildet und keine Abstimmung

durchgeführt.

*4 Die Lautstärke des
Pandas vorhersagen.

[Fehler/Müll]
Unser KI-Modell zeigt die Funktionsweise des Algorithmus
auf hoffentlich einprägsame Art und Weise. Allerdings ist
dieses Modell nicht performant und selbstverständlich
Müll. Es kann keine zuverlässigen Vorhersagen machen!
Die Werte haben nichts miteinander zu tun und von der
Größe und der Flauschigkeit eines Tieres lässt sich keine
Lautstärke ableiten. KI-Modelle können nur Muster (statis-
tische Zusammenhänge) lernen – und hier gibt es kein
Muster, das erlernt werden könnte.

Ich habe ja geahnt, dass da was faul ist,

als du mich gebeten hast, die Flauschigkeit

von Schlangen einzuschätzen …

134 Kapitel ZWEI

An die Nachbarn angepasst
statt nur geschätzt

Der Iris-Datensatz enthält auch Labels für die Blumen und ist daher wunderbar für eine
kleine K-Nearest-Neighbors-Übung einsetzbar:

import numpy as np
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier

iris = datasets.load_iris()*1
X = iris.data*2
y = iris.target*3

[Notebook]
Den Code zu diesem Beispiel findest du hier:
Kapitel 2/​05-knn-sklearn.ipynb.

[Zettel]
SKLearn bietet für bestimmte Daten-
sätze eine einfache Art und Weise,
diese zu laden. Unter anderem ist
darin der Iris-Datensatz enthalten,
den wir bereits benutzt haben.

*1 Iris-Datensatz laden.

*2 Die Daten an sich sind
in der Eigenschaft data

enthalten.

*3 Die Labels auslesen.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 135

Richtig, jedes Array entspricht einer Blume. Und da es viele Blumen sind, ist es ein Array von Arrays.
Die Labels sind nur Werte von 0 – 2.

Wenn du iris.target_names verwendest, siehst du die Bezeichnungen der Blumen-
Klassen.

['setosa' 'versicolor' 'virginica']

Verwendest du iris.feature_names bekommst du die Spaltenbezeichnungen angezeigt.

['sepal length (cm)', 'sepal
width (cm)', 'petal length
(cm)', 'petal width (cm)']

[Notieren/Üben]
Sieh dir die Daten von
data und target an.

Das ist ein Array von Arrays mit vielen Werten.

[Lösung]
print(X)
print(y)

136 Kapitel ZWEI

Nachdem du jetzt die Daten verstanden hast, wollen wir doch mal sehen,
wie KNN die Klassifizierung durchführt.

knn = KNeighborsClassifier(n_neighbors=3)*1
knn.fit(X, y)*2

new_flower = np.array([[5.1, 3.5, 1.4, 0.2]])*3
prediction = knn.predict(new_flower)*4
print(f'Die Vorhersage für die neue Blume ist: {iris.target_names[prediction][0]}')

Oh, aber das sind doch einfach nur Einzeiler?

Die Vorhersage für die neue
Blume ist: setosa

Nur ein Einzeiler, und dennoch fehlt etwas Wesentliches –
die Normalisierung!

*1 KNN verwenden
mit 3 Nachbarn

*2 Trainieren

*3 Beispielblume
initialisieren*4 Vorhersage treffen

Oh ja, genau!

[Einfache Aufgabe]
Baue die Normalisierung ein.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 137

[Lösung]
from sklearn.preprocessing import StandardScaler

Vor dem Aufruf der fit-Funktion das Normalisieren der Werte
nicht vergessen!
scaler = StandardScaler()
X = scaler.fit_transform(X)

Lust auf eine Regressionsaufgabe?

Es gibt auch einen Datensatz mit dem Namen fetch_california_housing,
den du von sklearn.datasets importieren kannst.

Die Struktur ist wieder dieselbe und wir verwenden diesmal nicht den
KNeighborsClassifier, sondern KNeighborsRegressor
und fünf Nachbarn.

Selbstverständlich.
Legen wir los!

[Lösung]
Hier findest du die fertige Lösung:
Kapitel 2/06-knn-sklearn-regression.ipynb.

138 Kapitel ZWEI

Wie du siehst, sind die Merkmale im Datensatz wie folgt aufgebaut:

 i MedInc: Medianes Einkommen in der Blockgruppe

 i HouseAge: Durchschnittliches Alter der Häuser in der Blockgruppe

 i AveRooms: Durchschnittliche Anzahl der Zimmer pro Haushalt

 i AveBedrms: Durchschnittliche Anzahl der Schlafzimmer pro Haushalt

 i Population: Bevölkerung der Blockgruppe

 i AveOccup: Durchschnittliche Anzahl der Bewohner pro Haushalt

 i Latitude: Geografische Breite der Blockgruppe

 i Longitude: Geografische Länge der Blockgruppe

from sklearn.datasets import fetch_california_housing
from sklearn.neighbors import KNeighborsRegressor
from sklearn.preprocessing import StandardScaler

California-Housing-Datensatz laden
california = fetch_california_housing()
X = california.data
y = california.target
print(california.feature_names)
print(california.target_names)

['MedInc', 'HouseAge',
'AveRooms', 'AveBedrms',
'Population', 'AveOccup', 'Lati-
tude', 'Longitude']
['MedHouseVal']

[Einfache Aufgabe]
Erstelle den Regressor und
trainiere das Modell.

[Schwierige Aufgabe]
Importiere den Datensatz und lass
dir die Merkmale und das Label
ausgeben.

Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 139

[Lösung]
knn_regressor = KNeighborsRegressor(n_neighbors=5)
Normalisieren der Werte nicht vergessen!
scaler = StandardScaler()
X = scaler.fit_transform(X)
knn_regressor.fit(X, y)

Nun reicht es, ein Beispielhaus zu verwenden und wieder die predict-Methode aufzurufen.

new_house = np.array([[8.5, 41.0, 6.9, 1.1, 322.0, 2.5, 37.88, -122.23]])
predicted_price = knn_regressor.predict(new_house)
print(f'Der Preis für das neue Haus ist: ${predicted_price[0] * 100000:.2f}')

Der vorhergesagte Preis für
das neue Haus ist: $ 205420.00

Nun kannst du nicht nur Cluster erstellen, sondern diese auch für Klassifizierungen oder
für Wertvorhersagen benutzen. Deinem Empfehlungssystem steht nichts mehr im Wege.

Und was, wenn der Algorithmus sagt,
heute gibt es Dinkelpfannkuchen?

Sehen wir uns im nächsten Kapitel an, wie du prüfen kannst, wie gut die generierten
Cluster sind – und was du damit anfangen kannst.

Vielleicht kann ich hier etwas machen,
 das mir das nächste Mittagessen vorschlägt.

Dann stimmt was nicht.

140 Kapitel ZWEI

 i �Viele Algorithmen arbeiten mit Abstandsmetriken, die nicht nur in zwei- oder drei
dimensionalen Räumen funktionieren, sondern auch in hochdimensionalen Datenräu-
men zuverlässig eingesetzt werden können.

 i �Clustering-Algorithmen erstellen Cluster von Datenpunkten in diesem hochdimensio-
nalen Raum, die näher beisammen sind.

 i �K-Means-Daten sollten standardisiert oder normalisiert werden, da diese anfällig für
unterschiedliche Skalierungen sind.

 i Zur Standardisierung wird der Z-Score verwendet.

 i K-Means-Clustering startet mit zufälligen Positionen für die Zentroide.

 i �Bei K-Means werden die Datenpunkte dem nächsten Cluster zugeordnet – also dem
Cluster mit dem geringsten Abstand laut Abstandsmetrik.

 i �Nach der Zuordnung zu einem Cluster wird beim K-Means der Zentroid neu berechnet
und in den Schwerpunkt des Clusters gesetzt. Die Zuordnung beginnt erneut.

 i �Zur Ermittlung von K bei K-Means kannst du die Ellenbogenanalyse oder die Silhou-
etten-Analyse durchführen – dazu mehr im nächsten Kapitel. Der DBScan-Algorith-
mus kann Ausreißer/Anomalien erkennen.

 i �Der DBScan-Algorithmus ist ebenfalls auf Standardisierung oder Normalisierung
angewiesen.

 i �Im Gegensatz zu K-Means generiert der DBScan-Algorithmus beliebige – auch
gebogene – Cluster-Formen.

 i �Wir benötigen die Dichteangabe – die minimale Anzahl der Datenpunkte – sowie den
Radius, den wir betrachten, als Hyperparameter beim DBScan. Die Anzahl der Clus-
ter ergibt sich dann aus der Bildungsregel der Cluster.

 i �K-Means und DBScan sind zwei Algorithmen aus der Klasse des unüberwachten Ler-
nens.

 i �KNN steht für K-Nearest-Neighbors. Also die K nächsten Nachbarn, wobei du den
Wert für K wählst – also wie viele Nachbarn du betrachtest.

 i �KNN fällt unter überwachtes Lernen. Du benötigst also bereits fertige Cluster, um die-
sen anwenden zu können.

 i �Der KNN-Algorithmus kann sowohl zur Klassifikation als auch zur Regression einge-
setzt werden.

12 Inhalt

INHALTSVERZEICHNIS

Kapitel 1: Große Neue Welt
Features

Seite 19

Wieso neu?  .. 	 20

Die Dreifaltigkeit der KI-Welt  	 23

Unendliche Räume  .. 	 27

Raumreduktion  .. 	 32

Ran an den Code, raus in die Cloud!  	 35

Die große Welt in der kleinen Nussschale  	 38

Daten vorbereiten:
Alles da, alles normal, alles klar?  	 42

Einen schnellen Blick riskieren  	 44

Ein Bild sagt mehr als tausend Worte  	 50

Unterm Mikroskop  .. 	 56

Wurmlöcher – Schrödingers Katze
erkundet neue Dimensionen  	 61

Abnehmen ist angesagt!  .. 	 65

Kapitel 2: Auf gute Nachbarschaft
Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor

Seite 69

Geh auf Distanz!  .. 	 70

Tanz nicht aus der Reihe! – Normalisierung  	 76

Wie ähnlich wir uns doch sind  	 78

Abstände in der Nussschale  	 82

Der Durchschnitts-Nachbar  	 83

Schwere Stellvertreter  ... 	 88

Orchideentypen  .. 	100

Dicke Freunde  ... 	107

Stressige Tage  ... 	110

Drama-Nachbarn, die nicht ins Bild passen  	117

Neue Nachbarn   .. 	122

Wertvorhersage mit KNN  	124

Gesellschaftsspiele in der Nachbarschaft  	126

Lärmbelästigung in der Nachbarschaft?  	131

An die Nachbarn angepasst
statt nur geschätzt  ... 	134

13Inhalt﻿

Kapitel 3: Was uns trennt und verbindet
Clusteranalyse

Seite 141

Aufstieg mit der Ellenbogentechnik  	142

Den Ellenbogen kommen sehen  	146

Schattenspiele  .. 	149

Ich werfe Schatten  ... 	153

Fertige Schatten  ... 	159

Kapitel 4: Pflanzenkunde
Entscheidungsbäume

Seite 165

Einfache Pflanzen  .. 	166

Unordnung genau messen  	169

Von der Unordnung zur Information  	171

Schrödingers Tageszeitenbaum  	172

Der Kreislauf der Natur  ... 	177

Baumnattern  .. 	182

List Comprehension  .. 	184

Die Informationen in der DNA  	185

Lass den Baum wachsen  .. 	187

Pflanzenarten  ... 	190

Neue Art züchten  .. 	192

Die Gärtnerei  ... 	194

Kontinuierliches Wachstum  	197

Kontinuierliches Wachstum in der Praxis  	205

Kontinuierlicher Fortschritt  	209

Ein Blick in die Zukunft  .. 	213

Theoretische Vorhersagen  	215

Praktische Vorhersagen  ... 	218

Kapitel 5: Pflanzen im Fitnessstudio
Modellbeurteilungen

Seite 223

Fitnessvergleich  ... 	224

Die Wahl des Besten  ... 	231

Im Gleichgewicht der Widersprüche  	233

Fitness für die Formel 1  .. 	233

Fitnessübung: Wiederholung  	236

Viele, wenige oder doch wieder viele?  	238

Modelle am Leistungsprüfstand  	241

Fit im Code! Aber fit am (Taschen-)Rechner?  	245

14 Inhalt

Kapitel 6: Wenn du den Wald
vor lauter Bäumen nicht siehst
Von Random Forest bis BoostedDecision Trees

Seite 249

Klein, aber fein – Pflanzenpflege  	250

Wenn du den Wald vor lauter Bäumen
nicht mehr siehst  ... 	253

Monokultur  ... 	255

Ab in die Baumschule  ... 	256

Profi-Förster  ... 	259

Pflanzenähnlichkeiten und Verwechslungen
vermeiden  ... 	261

Bäume im Trainingslager  	267

Entscheidungen im Raketentempo  	274

Einen Gang höher  ... 	279

Kapitel 7: Schreib, was ich denke!
Levenshtein und N-Gramme

Seite 283

Ähnliche, aber nicht gleiche Wörter  	284

Fehler korrigieren  ... 	290

Ähnliche Produktnamen finden  	293

Das hört sich gleich an  .. 	295

Ein Wort ergibt das andere:
N-Gramme als digitale Wahrsager  	301

Noch mehr russische Mathematik:
die Markov-Annahme  ... 	303

Doppelter Wurstsalat  .. 	304

Von Null auf N-Gramm –
Code statt Zaubersprüche  	305

Schrödingers Autovervollständigung  	309

Zeichen für Zeichen oder doch ein halber Satz?� 312

Die unbekannte Vorhersage: Back-off-Modelle  	315

Ich mag es groß  ... 	318

Vorhersage auf Basis des zuletzt Gelesenen  	320

Textanalyse mit spaCy  ... 	325

Kapitel 8: Ich denke, also bin ich!
Neuronale Netze

Seite 329

Der kleinste Teil des Gehirns  	330

Denken wie ein Computer  	339

Erste Denkversuche  ... 	346

Die zweite Epoche: Wiederholen hilft!  	351

Einer für alle und alle für einen  	355

Probieren geht über Studieren  	367

Ein neues Zuhause  .. 	376

Schicht um Schicht wird dein Wissen dicht  	383

15Inhalt﻿

Kapitel 9: Schulbeginn
Wie neuronale Netze lernen

Seite 387

Vom Zufall zur Information  	388

Lernen durch Lehren  ... 	427

Handeln an der Wall Street  	431

Waldwanderung ins Tal  ... 	434

Unterrichtswiederholung  	440

Kapitel 10: Herr Ingenieur Breitfuss
Feature Engineering

Seite 445

Wenn Daten einen Blackout haben  	446

Daten-Patchwork: flicken, was fehlt  	451

Die Daten-Dolmetscher   .. 	457

Dolmetscher-Training  .. 	460

Du bist nicht normal!   ... 	463

Normal werden  ... 	468

Vom Laien zum Datendolmetsch-Profi  	470

Kapitel 11: Von der Schule an die Uni
Neuronale Netze anwenden

Seite 475

Modelle an der Universität  	476

Wie schnell lernst du?   .. 	477

Wachstum einmal anders   	480

Studentenleben   .. 	483

Der Optimizer  ... 	484

Wenn die Jeans nicht passt  	486

Aufhören, wenn es am schönsten ist  	488

Daten grafisch auswerten  	490

Dropout   .. 	491

Der Weg ist das Ziel   ... 	493

Auf eigene Kosten leben  	494

Die Spitze des Eisbergs  ... 	496

Tuning-Werkstatt  ... 	503

Die Spreu vom Weizen trennen   	508

Wettrennen  .. 	514

Klausur  .. 	519

16 Inhalt

Kapitel 12: Ein Bild sagt mehr als tausend Worte
Neuronale Netze und Bilder

Seite 523

Ich fühle mich beobachtet  	524

Ein Bild »tensorfizieren«  	528

Freibad  ... 	530

Kernel  .. 	533

Links, zwo, drei, vier, links …  	537

Bild-ung  ... 	540

CNN   .. 	543

Kunst am Bau  ... 	547

Klassenfoto der 10 C  ... 	548

Falten sind ein Zeichen von Weisheit  	551

Das Rudel bekommt Zuwachs  	554

Zu faul zum Lernen   .. 	557

Wenn Faulheit zur Gewohnheit wird  	562

Kapitel 13: Heute ist das Gestern von morgen
Zeitreihen

Seite 567

Den Fluss der Zeit verstehen  	568

Zeitreisen für Anfänger  ... 	570

Ein Gastronom beim Wahrsager  	578

Die Periode  .. 	586

Tod der Statistik  ... 	589

Zeitreisen für Fortgeschrittene  	592

Zu einfach für das RNN  ... 	597

Reisen in die Vergangenheit  	601

Kapitel 14: Abrakadabra, Text verwandle dich!
Tokenizing und Embedding

Seite 605

Das Wörterbuch der Zahlen   	606

Partner finden   .. 	609

Onlinedating  ... 	611

Mit Tokens in der Spielhalle  	613

Ein Raum sagt mehr als tausend Worte  	616

Ich packe meinen Koffer und nehme mit …  	616

Den Wörtern müssen Taten folgen  	620

Räume, die Sinn ergeben  	623

Zauberschule – der Vektorenzauber  	629

Und es geht doch!  ... 	634

Ein Wörterbuch schreiben  	637

Eine neue Epoche  .. 	641

17Inhalt﻿

Kapitel 15: Transformer
auf der Jagd nach Bedeutung
Transformer

Seite 645

Ich verstehe nur Bahnhof   	646

Geotracking für die Wächter  	654

Aufmerksamkeit ist der Schlüssel zum Erfolg  	656

Wächter beim Maskenball  	660

Schrödinger baut einen Wächter-Killer  	663

Gratulation!   .. 	691

Index  ... 	697

	1 Große neue Welt – Features
	Wieso neu?
	Die Dreifaltigkeit der KI-Welt
	Unendliche Räume
	Raumreduktion
	Ran an den Code, raus in die Cloud!
	Daten vorbereiten: Alles da, alles normal, alles klar?
	Einen schnellen Blick riskieren
	Ein Bild sagt mehr als tausend Worte
	Unterm Mikroskop
	Wurmlöcher – Schrödingers Katze erkundet neue Dimensionen

	2 Auf gute Nachbarschaft – Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor
	Geh auf Distanz!
	Tanz nicht aus der Reihe! – Normalisierung
	Wie ähnlich wir uns doch sind
	Abstände in der Nussschale
	Der Durchschnitts-Nachbar
	Schwere Stellvertreter
	Orchideentypen
	Dicke Freunde
	Stressige Tage
	Drama-Nachbarn, die nicht ins Bild passen
	Neue Nachbarn
	Wertvorhersage mit KNN
	Gesellschaftsspiele in der Nachbarschaft
	Lärmbelästigung in der Nachbarschaft?

	3 Was uns trennt und verbindet – Clusteranalyse
	Aufstieg mit der Ellenbogentechnik
	Den Ellenbogen kommen sehen
	Schattenspiele
	Ich werfe Schatten
	Fertige Schatten

	4 Pflanzenkunde – Entscheidungsbäume
	Einfache Pflanzen
	Unordnung genau messen
	Von der Unordnung zur Information
	Schrödingers Tageszeitenbaum
	Der Kreislauf der Natur
	Baumnattern
	List Comprehension
	Die Informationen in der DNA
	Lass den Baum wachsen
	Pflanzenarten
	Neue Art züchten
	Die Gärtnerei
	Kontinuierliches Wachstum
	Kontinuierliches Wachstum in der Praxis
	Kontinuierlicher Fortschritt
	Ein Blick in die Zukunft
	Theoretische Vorhersagen
	Praktische Vorhersagen

	5 Pflanzen im Fitnessstudio – Modellbeurteilungen
	Fitnessvergleich
	Die Wahl des Besten
	Im Gleichgewicht der Widersprüche
	Fitness für die Formel 1
	Fitnessübung: Wiederholung
	Viele, wenige oder doch wieder viele?
	Modelle am Leistungsprüfstand
	Fit im Code! Aber fit am (Taschen-)Rechner?

	6 Wenn du den Wald vor lauter Bäumen nicht siehst – Von Random Forest bis BoostedDecision Trees
	Klein, aber fein – Pflanzenpflege
	Wenn du den Wald vor lauter Bäumen nicht mehr siehst
	Monokultur
	Ab in die Baumschule
	Profi-Förster
	Pflanzenähnlichkeiten und Verwechslungen vermeiden
	Bäume im Trainingslager
	Entscheidungen im Raketentempo
	Einen Gang höher

	7 Schreib, was ich denke! – Levenshtein und N-Gramme
	Ähnliche, aber nicht gleiche Wörter
	Fehler korrigieren
	Ähnliche Produktnamen finden
	Das hört sich gleich an
	Ein Wort ergibt das andere: N-Gramme als digitale Wahrsager
	Noch mehr russische Mathematik: die Markov-Annahme
	Doppelter Wurstsalat
	Von Null auf N-Gramm – Code statt Zaubersprüche
	Schrödingers Autovervollständigung
	Zeichen für Zeichen oder doch ein halber Satz?
	Die unbekannte Vorhersage: Back-off-Modelle
	Ich mag es groß
	Vorhersage auf Basis des zuletzt Gelesenen
	Textanalyse mit spaCy

	8 Ich denke, also bin ich! – Neuronale Netze
	Der kleinste Teil des Gehirns
	Denken wie ein Computer
	Erste Denkversuche
	Die zweite Epoche: Wiederholen hilft!
	Einer für alle und alle für einen
	Probieren geht über Studieren
	Ein neues Zuhause
	Schicht um Schicht wird dein Wissen dicht

	9 Schulbeginn – Wie neuronale Netze lernen
	Vom Zufall zur Information
	Lernen durch Lehren
	Handeln an der Wall Street
	Waldwanderung ins Tal
	Unterrichtswiederholung

	10 Herr Ingenieur Breitfuss – Feature Engineering
	Wenn Daten einen Blackout haben
	Daten-Patchwork: flicken, was fehlt
	Die Daten-Dolmetscher
	Dolmetscher-Training
	Du bist nicht normal!
	Normal werden
	Vom Laien zum Datendolmetsch-Profi

	11 Von der Schule an die Uni – Neuronale Netze anwenden
	Modelle an der Universität
	Wie schnell lernst du?
	Wachstum einmal anders
	Studentenleben
	Der Optimizer
	Wenn die Jeans nicht passt
	Aufhören, wenn es am schönsten ist
	Daten grafisch auswerten
	Dropout
	Der Weg ist das Ziel
	Auf eigene Kosten leben
	Die Spitze des Eisbergs
	Tuning-Werkstatt
	Die Spreu vom Weizen trennen
	Wettrennen
	Klausur

	12 Ein Bild sagt mehr als tausend Worte – Neuronale Netze und Bilder
	Ich fühle mich beobachtet
	Ein Bild »tensorfizieren«
	Freibad
	Kernel
	Links, zwo, drei, vier, links …
	Bild-ung
	CNN
	Kunst am Bau
	Klassenfoto der 10 C
	Falten sind ein Zeichen von Weisheit
	Das Rudel bekommt Zuwachs
	Zu faul zum Lernen
	Wenn Faulheit zur Gewohnheit wird

	13 Heute ist das Gestern von morgen – Zeitreihen
	Den Fluss der Zeit verstehen
	Zeitreisen für Anfänger
	Ein Gastronom beim Wahrsager
	Die Periode
	Tod der Statistik
	Zeitreisen für Fortgeschrittene
	Zu einfach für das RNN
	Reisen in die Vergangenheit

	14 Abrakadabra, Text verwandle dich! – Tokenizing und Embedding
	Das Wörterbuch der Zahlen
	Partner finden
	Onlinedating
	Mit Tokens in die Spielhalle
	Ein Raum sagt mehr als tausend Worte
	Ich packe meinen Koffer und nehme mit …
	Den Wörtern müssen Taten folgen
	Räume, die Sinn ergeben
	Zauberschule – der Vektorenzauber
	Und es geht doch!
	Ein Wörterbuch schreiben
	Eine neue Epoche

	15 Transformer auf der Jagd nach Bedeutung – Transformer
	Ich verstehe nur Bahnhof
	Geotracking für die Wächter
	Aufmerksamkeit ist der Schlüssel zum Erfolg
	Wächter beim Maskenball
	Schrödinger baut einen Wächter-Killer
	Gratulation!

	Index

