




Liebe Leserin, lieber Leser,

Du hast dir was vorgenommen: 

künstliche Intelligenz  
programmieren!

Und dabei unterstützen wir (und natürlich 
Schrödinger) dich tatkräftig. Lass dich von 
zwei hervorragenden Autoren begleiten, die 
sich ordentlich ins Zeug gelegt haben, um dir 
Neuronale Netze, Entscheidungsbäume und 
allerhand Algorithmen verständlich und 
Schritt für Schritt näherzubringen.

Schrödinger nimmt dir dabei das Lernen 
zwar nicht ab, stellt aber mit Sicherheit  
die ein oder andere gute Frage und tüftelt 
mit dir am Code, bis alles sitzt und du 
alles verstanden hast. Dank eingefärbtem 
Code, jeder Menge Übungen und Tipps und 
Tricks werdet ihr das Kind schon schaukeln!

 

Na dann auf in die wilde Welt  
der KI – wir wünschen viel Spaß!

Hast du Feedback oder Fragen? Dann melde dich  
gerne über schroedinger@rheinwerk-verlag.de bei uns.

    Kann’s jetzt endlich losgeh
en?  

       Mein Rechner ist schon lange    

             hochgefahr
en!

mailto:schroedinger@rheinwerk-verlag.de


—ZWEI—

Auf gute 
Nachbarschaft

Auch Datenpunkte haben Nachbarn. Sobald geklärt ist, 
was »nah« genau heißen soll, geht es um drei 

Algorithmen, die voll auf Nachbarschaft abfahren: 
K-Means, den Influencer unter den Nachbarn, der immer 

 im Mittelpunkt stehen muss, sowie den angepassten 
K-Nearest-Neighbor, der keine eigene Meinung zu haben 
scheint, und schließlich DBScan, der eine Party nur dann 

schmeißt, wenn auch genug Besucher kommen.

Abstands­
metriken, 
K-Means, 
DBScan und 
K-Nearest-
Neighbor
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Geh auf Distanz!
Nun, lieber Schrödinger, zeige ich dir ein paar Klassifizierungsverfahren.  
Diese Verfahren kannst du dir alle räumlich vorstellen. Die Algorithmen  
betrachten die Daten(punkte) im Raum und deren Abstände zueinander.

Die Merkmale – also die Features – spannen einen Raum auf. Einen Raum mit 
vielen Dimensionen. Jedes Merkmal spannt dabei eine eigene Dimension auf. 
Die Werte des Merkmals werden in dieser Achse eingereiht. So erhalten wir für 
jeden Datensatz einen Vektor mit Werten. Jeder Wert entspricht einem Merkmal.

Das Schöne an Punkten in einer Ebene oder  
auch im (n-dimensionalen) Raum ist, dass wir  
Abstände messen können.
Wir haben bereits besprochen, dass es häufig  
nur darum geht, Datensätze so in einem Raum anzuordnen,  
dass diese einer bestimmten Semantik – also Bedeutung – folgen.
Beispielsweise gibt es für die Verarbeitung von Sprache ein Modell 
mit dem Namen »Word2Vec«.  
Dieses Modell erlaubt es, Wörter auf eine ganz bestimmte  
Art und Weise in einen Vektor umzurechnen.

Die Vektoren sind so angeordnet, dass wir damit rechnen können und dass sie die 
Bedeutung abbilden. Beispielsweise können wir die Wörter »König« und »Sohn« in 
Vektoren umrechnen, sie addieren und wieder in ein Wort zurückwandeln. Dieser 
Ziel-Vektor zeigt ziemlich genau dorthin, wo auch das Wort »Prinz« steht. Addieren 
wir zum Wort »Prinz« das Wort »Mädchen«, sind wir in der Nähe der »Prinzessin«.

Und was bringt das?

[Ablage] 
Die Vektoren sind die Positionen der Wörter 
in einem hochdimensionalen Raum. Genial!

Welchen Raum meinst du?

[Zettel] 
Zur Veranschaulichung werden wir uns immer mit einer, meis-tens zwei, manchmal auch drei Dimensionen begnügen. Aber es funktioniert immer auch mit vielen Hunderten Dimensionen!



Abstandsmetriken, K-Means, DBScan und K-Nearest-Neighbor 71

Um Algorithmen auf die Daten anzuwenden, brauchen wir ein Maß für den Abstand, also die Distanz 
zwischen Datenpunkten – eine Distanzmetrik. Es gibt verschiedene Distanzmetriken, wir schauen uns 
ein paar einfache an.

Die Linie ist der intuitivste Abstand – die euklidische Distanz.  
Ich zeige dir noch andere einfache Arten, die Distanz zu messen.

Wir beschränken uns zur Anschauung auf den zweidimensionalen 
Raum, das ist nicht nur in einem Buch zum Lernen leichter. Schau dir 
die beiden grünen Punkte im Bild an. Welchen Abstand haben die?

X

Y

Euklid

Manhattan

Cosinus

∆X

∆Y

Grafische Darstellung der Abstandsmetriken

Wie willst du den Abstand anders messen 
als mit der Linie zwischen den Punkten?

[Zettel] 

Auch die aktuell größten und 

genialsten Systeme sind am Ende 

Wahrscheinlichkeitsmaschinen 

und basieren auf Abständen in 

hochdimensionalen Räumen.
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Das ist die euklidische Distanz, das intuitivste Maß für den Abstand.

Genau, der Abstand ist die Hypotenuse, also das c in Pythagoras’.

Jetzt stell dir vor, du bist in einer Stadt mit Straßen wie ein Schachbrettmuster, zum Beispiel in Mann-
heim oder Manhattan. Und du bist kein Vogel und darfst nur die Straßen entlang gehen. Dann sind 
im Bild die hellgrünen Linien der Weg zwischen den Punkten. Dann bekommst du die Manhattan-
Distanz. Die ist viel einfacher zu berechnen: für jede Dimension den Abstand. Du summierst also 
lediglich die Einzelkomponenten auf.

Hin und wieder geht es nicht um den Abstand, sondern  
die Richtung. Hierfür existiert die Cosinus-Ähnlichkeit 
(Cosine-Similarity), die beschreibt, ob sich die beiden  
Punkte in der gleichen Richtung befinden oder nicht.

Wenn ein Beobachter im Leuchtturm (am Ursprung) 
zwei Schiffe erblickt, sagt uns die Cosinus-Ähnlichkeit, 
wie »nah« die beiden Schiffe einander aus seiner Blick-
richtung sind. Ein hoher Wert bedeutet, dass er sein 
Fernrohr nur wenig bewegen muss, um vom einen 
zum anderen Schiff zu schwenken. Ein niedriger Wert 
bedeutet, dass er es deutlich weiterbewegen muss.

Die Linie, wo „Euklid ” dransteht.
Das ist der Abstand zwischen den beiden Punkten.

[Begriffsdefinition] 
Die euklidische Distanz  
ist die Länge der direkten  
Verbindung zwischen zwei Punkten und 
kann mithilfe des pythagoreischen Lehr-
satzes ausgerechnet werden.

Ah ja,  
      das rechtwinklige Dreieck.

[Zettel] 

Die euklidische Distanz hat den Nachteil, 

dass die Berechnung des Quadrats sowie 

die Berechnung der Wurzel relativ auf-

wendige Operationen für den Computer 

sind. Außerdem geht es sehr häufig nicht 

darum, eine exakte Distanz zu ermitteln, 

sondern nur darum, welche Elemente 

näher beisammen sind. Daher wird gerne 

die Manhattan-Distanz verwendet.
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Euklid

Manhattan

Co
sin

us

Distanzmetriken vom Leuchtturm aus betrachtet

A und B sind die beiden Punkte. Im Zähler werden die x-Werte und y-Werte 
von den Punkten multipliziert, die Ergebnisse addiert. Im Nenner haben wir 
den euklidischen Abstand vom Nullpunkt zum Punkt, den wir betrachten. 
Ich schreibe dir nochmals mit den Details für die Punkte A und B hin:

Oben im Zähler werden die Komponenten der Vektoren multipliziert und die Ein-
zelwerte addiert und unten im Nenner werden die Abstände zum Nullpunkt (also 
die Längen der Vektoren) miteinander multipliziert.

Was soll denn das bedeuten?

Ups, sorry. Also: 

[Hintergrundinfo] 
Die Cosinus-Ähnlichkeit wurde bereits in 
den 1960er-Jahren für die Ermittlung von 
Ähnlichkeiten zwischen Texten verwendet. 
Sie wurde in Suchmaschinen (damals »Infor-
mation-Retrieval-Systeme«) eingesetzt.

Na ja,
okay.
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Und jetzt halt dich fest: Das geht auch mit sehr vielen Dimensionen.  
Wie angekündigt funktionieren die Metriken in vielen Dimensionen.  

Die könnten wir nicht mehr mit Buchstaben wie x, y und z erfassen.

Schrödinger, es sind viel mehr als 26!

Also nennen wir sie xⁱ. Jedes i steht für eine Dimension.  
Dann können wir die entsprechenden Formeln verallgemeinern.

Die Manhattan-Distanz in N Dimensionen

Also statt nur zwei Werte zu addieren, zeigt die Summe an,  
dass du die Werte für alle N Dimensionen aufaddierst.

Die euklidische Distanz in N Dimensionen

[Ablage] 
Die Cosinus-Ähnlichkeit wird beispielsweise bei Bag-of-Words-Verfahren 
(damit beschäftigen wir uns später) und anderen Verfahren eingesetzt, bei 
denen es darum geht, ob zwei Vektoren unabhängig von ihrer Länge in die 
gleiche Richtung zeigen und somit eine ähnliche Bedeutung haben. 
Vereinfacht kannst du dir es so vorstellen: »Heute scheint die Sonne« 
und »Heute scheint die Sonne besonders stark« sind zwei ähnliche Sätze. 
Werden sie in Vektoren abgebildet, so zeigen diese in eine sehr ähnliche 
Richtung – in der Zeitachse zeigen beide auf den heutigen Tag, in der Sub-
jekt-Achse beide in Richtung Sonne, in der Intensitätsachse zeigen beide in 
eine positive Richtung, wenn auch der eine länger ist als der andere. Nach 
der Cosinus-Ähnlichkeit sind sich diese beiden Vektoren sehr ähnlich.

Warum nicht?

Warte!
Das kann ich!
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Wunderbar! 
Du hast verstanden, wie du die Ähnlichkeitsformeln verallgemeinerst.  
Und jetzt die Cosinus-Ähnlichkeit.

Schaut wieder schlimmer aus, als es ist. Unten stehen die Längen der beiden Vektoren, also der 
Abstand vom Nullpunkt zum Punkt, auf den der jeweilige Vektor zeigt – genauer gesagt die 
euklidische Distanz –, und die werden wieder multipliziert. Im Zähler stehen die aufaddierten 
Produkte der Einzelkomponenten des Vektors, also die Werte der einzelnen Merkmale.

Und hier noch die  
Cosinus-Distanz für N Dimensionen

Während bei unseren folgenden Algorithmen erst einmal Manhattan und Euklid zum Einsatz kommen, 
ist die Cosinus-Distanz wichtig für NLP (Natural Language Processing) – wenn es also um Sprachen 
und Suchmaschinen geht. Das Beispiel mit Word2Vec kennst du ja bereits.

Uff!

[Achtung]   
Euklid und Manhattan sind Distanzen, die 
Cosinus-Ähnlichkeit ist wirklich eine Ähnlichkeit. 
Bei den Distanzen gilt: je größer, desto ungleicher. 
Bei den Ähnlichkeiten verhält es sich umgekehrt. 
Um die Cosinus-Distanz zu erhalten, rechnest du 
einfach 1 – Ähnlichkeit.



76 Kapitel ZWEI

Tanz nicht aus der Reihe! – Normalisierung
Bei der Messung von Entfernungen müssen wir noch darauf achten,  
dass die Werte normalisiert sind.

Stell dir zwei Merkmale vor, die Länge eines Flugzeuges und die Reichweite. Die Länge wird in einigen 
Metern gemessen, während die Reichweite eines Flugzeuges Tausende Kilometer betragen kann. Wenn du dir 
die Vektoren im Raum vorstellst, dann ist der Einfluss der Flugzeuglänge minimal.

Ich habe hier sechs Flugzeuge für dich dargestellt. Die Länge beträgt 37 m bis 73 m.  
Die Reichweiten liegen jedoch zwischen 5 765 km und 15 200 km. Ändert sich die Länge um 10 %, dann 
macht das kaum einen Unterschied in der Positionierung der Punkte. Ändert sich jedoch die Reichwei-
te um 10 %, dann sieht das Bild gleich ganz anders aus.

Viele Algorithmen reagieren auf derartige Unausgewogenheiten allergisch. Sie wollen Werte, die sich im  
gleichen Wertebereich aufhalten und nicht aus der Reihe tanzen. Deshalb normalisiert man die Daten.

Zwei Fragen:
wieso und wie?

[Achtung]   
Eine wesentliche Aufgabe bei der Datenvorbereitung ist die 
Normalisierung der Daten. Die dient dazu, dass Algorithmen 
gleiche bzw. ähnliche Bedingungen bei allen Merkmalen vorfin-
den und nicht durch ein Ungleichgewicht bestimmten Werten in 
Merkmalsvektoren zu viel Bedeutung zukommen lassen, wäh-
rend sie andere Werte im Merkmalsvektor ignorieren.
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Wir benötigen also die Standardabweichung und den Durchschnitt der Werte des Merkmals.  
Anschließend gehen wir jeden Wert durch, subtrahieren den Durchschnitt und dividieren das Ergebnis 
durch die Standardabweichung des Merkmals.

Durch diesen Mechanismus hast du nun normalisierte Werte,  
mit denen Algorithmen besser arbeiten können,  
selbst wenn sie sich leicht ablenken lassen.

[Begriffsdefinition] 
Der Z-Score bezeichnet den nor-
malisierten Wert eines Merkmals 
innerhalb eines Datensatzes und 
ist wie folgt definiert:

Ja, die Standardabweichung  
      war nochmal genau …

[Begriffsdefinition] 
Die Standardabweichung misst die Streuung und 
beschreibt die durchschnittliche Abweichung zum 
Mittelwert. Sie ist wie folgt definiert:

[Begriffsdefinition] 
Der Z-Wert wird oftmals auch  
als Standard-Scaler bezeichnet.

[Zettel] 
Die Z-Werte sind Werte, deren 

Durchschnitt 0 und eine Standard-

abweichung von 1 ergeben, und 

zwar unabhängig von der Größe 

und Einheit der Originalwerte.
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Wie ähnlich wir uns doch sind
Ganz kurz müssen wir uns noch mit den Abstandsmetriken beschäftigen, sei es rechne-
risch – nur um sicherzugehen, du kannst das bestimmt schon – oder eben im Code. 
Denn wie gesagt: Nahezu alle KI-Systeme machen sich Vektoren und Abstände zunutze.
Implementieren wir also ein paar kleine Funktionen, die die Metriken ausgeben.

import math 
def euclidean_distance(point1, point2): 
  return math.sqrt(sum((x1 - x2)**2 for x1, x2 in zip*1(point1,  
point2)))

list1 = [1, 2, 3] 
list2 = ['a', 'b', 'c'] 
# Verwende zip, um die beiden Listen zu kombinieren 
zipped = zip(list1, list2)*1 
print(list(zipped))

Distanzen mit 
Pythagoras messen

Euklidische Distanz

*1 Ein Punkt hat mehrere Koordinaten und 
ist so abgebildet: [x1, x2]. Die 
Funktion zip kombiniert zwei Listen.

So funktioniert  
die zip-Funktion
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Abstände in New York

Bei der Manhattan-Distanz werden lediglich die positiven Differenzen  
der Koordinaten gebildet und aufaddiert.

[Einfache Aufgabe] 
Was ist der Abstand zwischen 
den Punkten p1(3,5) und 
p2(4,6)?

[Erledigt!]    
p1 = (3,5) 
p2 = (4,6) 
print(euclidean_distance(p1, p2))

[(1, 'a'), (2, 'b'), (3, 'c')]

1.424
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Wenn wir die gleichen Punkte einsetzen, erhalten wir hier einen Abstand von 2.

Die Cosinus-Ähnlichkeit

Du erinnerst dich an die Cosinus-Ähnlichkeit, die lediglich prüft, ob die beiden Vektoren (der Pfeil 
von (0,0) zum Punkt) in die gleiche oder in eine ähnliche Richtung zeigen. Diese Ähnlichkeit ist kein 
Abstand, sondern umgekehrt kleiner, wenn die Richtung weiter auseinanderliegt. Man kann daraus 
aber den Richtungsabstand ermitteln. Der Abstand ist dann eins minus der Cosinus-Ähnlichkeit.

Übersetzen wir also die mathematische Formel in

Code für den Richtungsabstand

def cosine_similarity(vector1, vector2):     
  dot_product = sum(x * y for x, y in zip(vector1, vector2))*1 
  magnitude1 = math.sqrt(sum(x ** 2 for x in vector1))*2 
  magnitude2 = math.sqrt(sum(y ** 2 for y in vector2)) 
   
  if magnitude1 == 0 or magnitude2 == 0: 
    return 0.0*3 
   
  return dot_product / (magnitude1 * magnitude2) 
def cosine_distance(vector1, vector2): 
  similarity = cosine_similarity(vector1, vector2) 
  return 1 - similarity

[Einfache Aufgabe] 
Schreibe nun die entsprechende Funktion 
manhattan_distance.

[Erledigt!]    
def manhattan_distance(point1, point2): 
  return sum(abs(x1 – x2) for x1, x2 in zip(point1, point2))

*3 Die Ähnlichkeit ist 0, 
wenn einer der Vektoren 

ein Nullvektor ist.

*1 Das ist der Zähler in der Formel.

*2 Die beiden magnitude-
Werte kommen dann in den 

Nenner.
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Hier ergibt sich eine Distanz zwischen unseren beiden Punkten von 0,001.  
Also zeigen diese Vektoren in die gleiche Richtung!

Bist du dir sicher? Probiere es aus:

p1 = (3, 5, 1) 
p2 = (4, 6, 2)

Unsere Funktionen funktionieren  
  jetzt aber nur im 2D-Raum?

Nice!Euklid: 1.732
Manhattan: 3
Cosinus: 0.006
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Abstände in der Nussschale
Raucht dir schon der Kopf? 

Kleine Zusammenfassung gefällig?

KI-Systeme, egal ob Algorithmen oder Modelle, basieren auf Abständen und der 
Anordnung von Daten in einem mehrdimensionalen Raum. Was wir daher benö-
tigen, ist die Möglichkeit, Abstände zu messen. Und da der Computer gut mit Zahlen 
kann, wird alles in Zahlen umgewandelt. Mit Zahlen können wir gut Abstände messen.

Wir verwenden nun Abstände um Daten, die nahe beisammen sind, zu Gruppen 
zusammenzuführen. Das ist Clustering. Wir verwenden also Abstände, um neue 
Datensätze im Raum einzuordnen und auf Basis von bekannten Daten in diesem 
Raum, die nah an unserem Datenpunkt sind, Durchschnittswerte zu generieren 
und somit Vorhersagen zu machen. Das ist beispielsweise Regression mit 
K-Nearest-Neighbor.

Die Gesichtserkennung auf einem Smartphone macht nichts anderes als die Bilder, die der Rechner von dir 
bereits gesehen hat, so in einem Raum anzuordnen, dass alle Bilder von dir in einem engen Bereich sind, wäh-
rend Bilder von anderen Personen einen größeren Abstand haben. Ist der Abstand gering genug, so wird der 
Rechner entsperrt.

Nein, der Computer errechnet aus deinem Bild Merkmale,  
also wieder Vektoren, die entsprechend eingeordnet werden.

Und erklärt gleich 
nochmal,

wozu man die ganzen 
Abstände braucht.

Der Computer ordnet ein Bild ein?

[Zettel] 
Selbst Wörter werden in Vektoren 
umgerechnet, um anschließend 
Ähnlichkeiten zwischen Wörtern 
zu ermitteln.
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Der Durchschnitts-Nachbar
Sehen wir uns den ersten konkreten Algorithmus zur Bildung von Clustern an:  
K-Means. Wenn du Daten – scheinbar ohne Bedeutung – hast, und diese in Bereiche  
zusammenfassen möchtest, dann bist du oftmals mit K-Means gut bedient.

Du hast Farbbilder (mit bis zu 16,7 Mio. unterschiedlichen Farben) und du möchtest diese 
Farben auf zum Beispiel 256 Farben reduzieren, um die Bilder stärker zu komprimieren. 
Dann stellt sich die Frage: Welche der 256 Farben willst du verwenden?

Du könntest den ganzen Farbraum in möglichst gleiche Teile aufteilen und dann entspre-
chend repräsentative Farben verwenden. Wahrscheinlich hast du aber einzelne Bereiche, 
die gar nicht vorkommen, und andere Farbbereiche ließen sich feiner aufteilen.

K-Means kann dir die Antwort liefern, welche Farben du verwenden sollst.

Egal, was du gruppieren möchtest, ob Dokumente, Farben, Kundensegmentierung oder 
Gene (Genexpressionsanalyse) – K-Means macht genau das: Daten gruppieren. Das nennt 
man auch »klassifizieren«.

Erst einmal gar nicht. Das ist das K im K-Means, und das musst du festlegen. 
Bei der Farbreduktion der Bilder wäre K beispielsweise 256. Er würde dir 
damit 256 Cluster erstellen. Wenn du Kunden in 3 Segmente einteilen möch-
test, dann verwendest du als K den Wert 3.

Ich bitte um ein Beispiel.

Und woher weiß der Algorithmus,  
     wie viele Gruppen erstellt werden sollen?
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Der Ablauf des Algorithmus ist recht einfach.

1.  Lege fest, wie viele Cluster du erstellen möchtest. Lege also das K fest.

2.  Erzeuge K Zentroide (Stellvertreter), die du an zufällige Positionen setzt.

3. � Weise jeden Datenpunkt dem Zentroiden zu, der den geringsten Abstand  
zum Datenpunkt aufweist.

4.  Setze nun die Zentroide in das Zentrum der zugewiesenen Daten.

5. � Wiederhole den Vorgang so oft du willst und brich ab,  
wenn sich nichts mehr ändert.

Du fragst dich, wie da etwas Sinnvolles herauskommen kann?  
Das passiert, indem du diese Zuordnung und Positionierung mehrfach durchführst: 10 bis 100 Mal.

Großartig,  
ich kann Gruppen  
generieren und  
neue Punkte Gruppen  
zuordnen.

[Zettel] 
Das Ergebnis des K-Means-Algorithmus sind die 

K Stellvertreter (Zentroide), die die K Cluster 

repräsentieren. Außerdem kannst du mithilfe 

dieser Zentroide auch neue Datensätze den 

Clustern zuordnen. Du musst lediglich die 

Abstände zu den Zentroiden berechnen. Der 

neue Datenpunkt gehört dann zum Cluster mit 

dem geringsten Abstand zum Zentroiden.

[Zettel] 
Am einfachsten positionierst 
du die Zentroide, indem du 
für jede Dimension eine 
Zufallszahl zwischen dem 
Minimal- und Maximalwert 
dieser Dimension erzeugst.

[Begriffsdefinition] 
Die Zentroide sitzen im Schwerpunkt des ent-
sprechenden Clusters. Der Schwerpunkt ist 
nichts anderes als das Zentrum eines Clusters. 
Das Zentrum kannst du ermitteln, indem du ein-
fach die Durchschnittswerte (Mittelwerte) für 
jede Dimension ermittelst.

Aber warte.  
   Wir starten mit irgendwelchen Zufallswerten.
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Ist das garantiert das beste Ergebnis? Nein!

Ja, wir müssen das Ergebnis noch qualitativ überprüfen und unter Umständen  
den Algorithmus erneut durchlaufen lassen.

Wie wir diese Überprüfung durchführen können, zeige ich dir im nächsten Kapitel. Vorab möchte  
ich das Thema praktisch mit Code durchgehen und dir anschließend zeigen, was du tun kannst, wenn  
du dir nicht sicher bist, welches K du wählen sollst.

[Achtung]   
Da K-Means mit zufälligen Positionen 
startet, kann der Algorithmus bei den 
gleichen Daten und bei mehrfacher 
Durchführung auch zu unterschiedlichen 
Cluster-Ergebnissen führen.

Dann weiß ich wieder nicht,     ob das Ergebnis passt!

aber was ist eigentlich genau  
das Ergebnis des Algorithmus?

Das ist ja nett,

[Achtung]   
K-Means ist empfindlich gegenüber Skalierungsthemen. 
Deshalb solltest du die Werte vor der Anwendung des 
Algorithmus mit dem Z-Score standardisieren. Damit du 
später neue Datenpunkte korrekt zuordnen kannst, musst 
du zusätzlich zu den Clusterzentren auch den Mittelwert 
und die Standardabweichung der ursprünglichen Daten 
speichern. Diese beiden Parameter haben wir für die Stan-
dardisierung benötigt und du brauchst sie, um neue Werte 
auf die gleiche Weise zu standardisieren wie die ursprüng-
lichen. Nur so ist eine konsistente Zuordnung möglich.

[Zettel] 

Das Ergebnis des K-Means-Algo-

rithmus sind die Positionen der 

Zentroide. Mithilfe dieser Positio-

nen können alle Datenpunkte und 

neue Datenpunkte den Gruppen 

zugeordnet werden. Somit sind 

mit den Positionen der Zentroide 

und mit der Abstandsmetrik die 

Cluster definiert.
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Dramaqueens und Sportskanonen

Ich möchte das Thema nochmal anhand eines Datensatzes mit dir durchgehen.  
Ich zeige dir auch sofort das grafische Ergebnis und dann geht es ran an den Code.

Wir nehmen also unterschiedliche Tiere mit den Merkmalen Bewegungsdrang und dem Drama-Potenzial.

Tier
Drama-

Potenzial

Bewegungs-

drang
Begründung

Pfau 10 2 Präsentiert stolz sein Rad, steht aber meist nur rum.

Faultier 1 1 Null Stress, null Show – lächelt in Zeitlupe.

Zwergkaninchen 6 9
Springt bei jedem Rascheln in die Luft – Zoomies um 3 Uhr 

nachts!

Koala 3 2 Schläft einfach weiter – eukalyptushungriges Stativ.

Krake 8 7 Spritzt Tinte und entkommt aus Aquarien. 8 Arme = 8 × Action!

Igel 5 4
Rollt sich bei Gefahr zur stacheligen Murmel – nächtlicher 

Snack-Läufer.

Ente 7 6
Quakt lautstark um Brotkrumen – watschelt, schwimmt, fliegt 

kurz.

Panda 4 3 Fällt gelegentlich vom Baum – Bambus kauen ist Sport.

Hyäne 9 8 Lacht hysterisch im Mondlicht – rennt Rudeln hinterher.

Erdmännchen 8 9
Steht auf zwei Beinen und schreit »GEFAHR!« – Buddel-

Marathons.

Känguru 7 8 Boxt und hüpft durch die Gegend – immer in Bewegung.

Schildkröte 2 1 Langsam und gemütlich – null Drama, null Hektik.

Papagei 9 6 Plappert den ganzen Tag – fliegt und klettert viel.

Eichhörnchen 5 7 Sammelt Nüsse wie verrückt – flitzt durch die Bäume.

Flamingo 8 5
Steht elegant auf einem Bein – balanciert und watet ge

mächlich.

Wir wollen diese Tiere nun in 4 Cluster einteilen.

K ist 4. Ist notiert.
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Wenn nun der Algorithmus durchläuft, dann werden 4 zufällige Werte für das Drama-Potenzial  
und den Bewegungsdrang erstellt. Das sind die Werte unserer initialen Zentroide.

Anschließend weisen wir die Tiere dem räumlich nächsten Cluster zu und verschieben den Zentroiden 
des Clusters in den neuen Schwerpunkt. Der Cluster hat einen Zentroiden mit dem durchschnittlichen 
Bewegungsdrang und dem durchschnittlichen Drama-Potenzial der ihm zugewiesenen Tiere. 

Anschließend weisen wir die Tiere wieder dem räumlich nächsten Zentroiden zu und berechnen  
erneut die Position der Zentroide mit den durchschnittlichen Bewegungsdrang- und Drama-Werten.

Am Ende haben wir die Tiere in 4 Cluster eingeteilt.

Zuordnung der Tiere in Cluster mit den entsprechenden Zentroiden

Es können sogar Werte abgesondert werden, wie in unserem Fall der Pfau,  
der einen eigenen Cluster bildet.

Ah!

Der Pfau ist eben eine Klasse für sich.
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Schwere Stellvertreter
Ich möchte mit dir kurz einen Teil eines berühmten Machine-Learning-Datensatzes 
verwenden, und zwar des Iris-Flower-Datensatzes. In diesem Datensatz befinden sich 
Messdaten verschiedener Orchideenblüten. Es wurden die Kelchblätter (Sepal) und die 
Blütenblätter (Petal) unterschiedlicher Spezies vermessen und aufgelistet. Es ist ein 
Datensatz mit wenigen Merkmalen und daher für unsere Visualisierungszwecke hier 
gut geeignet.

Wir werden den Datensatz in unterschiedlichen Schritten visualisieren, damit du 
genau siehst, was hier passiert. Damit es einfach bleibt in der Visualisierung, ver-
wenden wir nur zwei Attribute.

Genau! Dieser Datensatz hier besitzt allerdings  
erst einmal nur 4 Attribute insgesamt.

Wir verwenden nun K-Means mit zwei Clustern und den Attributen  
sepal_length und sepal_width.

from matplotlib import pyplot as plt 
df.plot(kind='scatter', x='sepal_length', y='sepal_width', s=32, alpha=.8)

Wenn ich ihn mit zwei Attributen verstehe,  
      funktioniert der bestimmt auch  
  mit 100 Attributen.
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Darstellung der beiden Attribute »sepal_width« und »sepal_length« als Scatter-Plot

Die Visualisierung zeigt, wie die Messergebnisse verteilt sind. Nun kannst du dir überlegen, wie 
du selbst die Daten in zwei Gruppen einteilen würdest. Laut Algorithmus verwenden wir zufällige 
Positionen für die Zentroiden.

[Notiz] 
Die Position der Zentroide soll 
irgendwo innerhalb der Daten 
sein, daher verwenden wir einen 
Zufallswert zwischen den Mini-
mal- und Maximalwerten.

Fehlt uns hier nicht  
  die Standardisierung der Werte?

[Achtung] 
Du hast vollkommen Recht!  
Ich möchte dir jetzt erst einmal den 
Algorithmus und den Ablauf zeigen. 
Die Werte sind bei diesem Beispiel 
nicht so weit auseinander und es 
ergibt sich ein schöneres Bild, daher 
verzichten wir hier vorerst auf die 
Standardisierung.



90 Kapitel ZWEI

import random 
sl_min = df['sepal_length'].min() 
sl_max = df['sepal_length'].max() 
sw_min = df['sepal_width'].min() 
sw_max = df['sepal_width'].max() 
centroid1_x = random.uniform(sl_min, sl_max) 
centroid1_y = random.uniform(sw_min, sw_max) 
 
centroid2_x = random.uniform(sl_min, sl_max) 
centroid2_y = random.uniform(sw_min, sw_max)

Jetzt zeichnen wir uns das Diagramm neu –  
                       inklusive der Zentroide.

df.plot(kind='scatter', x='sepal_length', y='sepal_width', s=32, alpha=.8)

plt.scatter( centroid1_x,  centroid1_y, color='red', marker='x',  
s=100, label='Zentroid 1') 
plt.scatter( centroid2_x,  centroid2_x, color='blue', marker='x',  
s=100, label='Zentroid 2') 
plt.legend() 
plt.show()

Die Zentroide zum Plot 
hinzufügen
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Der Datensatz mit den Zentroiden

Der nächste Schritt im Algorithmus ist die Zuordnung jedes Datensatzes zum entsprechen-
den Zentroiden. Hierfür verwenden wir numpy. Das ist eine beliebte Python-Library mit 
unzähligen nützlichen Datenstrukturen und Funktionen für Berechnungen.

import numpy as np 
df['distance_to_centroid1'] = np.sqrt((df['sepal_length'] -  
centroid1_x)**2 + (df['sepal_width'] - centroid1_y)**2)*2 
df['distance_to_centroid2'] = np.sqrt((df['sepal_length'] -  
centroid2_x)**2 + (df['sepal_width'] - centroid2_y)**2)

Es werden zwei Spalten zum Pandas-
DataFrame hinzugefügt: die Distanz zum 
ersten Zentroiden und die Distanz vom 
Datenpunkt zum zweiten Zentroiden.

[Einfache Aufgabe] 
Sieh dir den Code genau an. Wel-
che Distanzmetrik wird verwendet? Wurzel … X-Quadrat … 

das ist der Euklid!
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Wunderbar, du hast das vollkommen richtig erkannt.  
Wir erstellen eine neue Pseudospalte, in der der Zentroid steht.

df['closest_centroid'] = np.where(df['distance_to_centroid1']  
< df['distance_to_centroid2'], 1, 2)

plt.figure(figsize=(8, 6)) 
for centroid in [1, 2]: 
  subset = df[df['closest_centroid'] == centroid] 
  plt.scatter(subset['sepal_length'],  
subset['sepal_width'], label=f'Zuordnung zu {centroid}', alpha=0.7) 
 
plt.scatter(centroid1_x, centroid1_y, color='red', marker='x', s=100,  
label='Zentroid 1') 
plt.scatter(centroid2_x, centroid2_y, color='blue', marker='x', s=100,  
label='Zentroid 2') 
 
plt.xlabel('Sepal Length') 
plt.ylabel('Sepal Width') 
plt.title('Data Points Colored by Closest Centroid') 
plt.legend() 
plt.show()

In der Spalte closest_centroid 
steht nun entweder 1 oder 2, je nachdem, 
welcher Zentroid dem Datensatz näher ist.

Dann färben wir mal ein.
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Initialzuordnung der Datenpunkte zu den Zentroiden

Durch die zufällig gewählten Startpositionen ergeben sich nun die Zuordnungen in der Abbildung. Offensicht-
lich sind die Zentroide aber nicht im Schwerpunkt der Punkte.

Wir berechnen uns also den Durchschnittswert der X-Werte (sepal_length) von den Daten, die dem 
ersten Zentroiden zugeordnet sind, und setzen den entsprechenden X-Wert. Gleiches wird mit den Y-Werten 
(sepal_width) gemacht und anschließend wiederholen wir das Szenario für den zweiten Zentroiden.

new_centroid1_x = df[df['closest_centroid'] == 1]['sepal_length'].mean() 
new_centroid1_y = df[df['closest_centroid'] == 1]['sepal_width'].mean()

new_centroid2_x = df[df['closest_centroid'] == 2]['sepal_length'].mean() 
new_centroid2_y = df[df['closest_centroid'] == 2]['sepal_width'].mean()

Also auf zum nächsten Schritt:  
     die Zentroide in die Schwerpunkte verschieben.

Wir selektieren nur die Daten des ersten 
Zentroiden und verwenden die Werte der 
sepal_length. Davon wird der 

Mittelwert berechnet.
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[Erledigt!]    
plt.figure(figsize=(8, 6)) 
for centroid in [1, 2]: 
  subset = df[df['closest_centroid'] == centroid] 
  plt.scatter(subset['sepal_length'], subset['sepal_width'], 
label=f'Zuordnung zu {centroid}', alpha=0.7) 
plt.scatter(new_centroid1_x, new_centroid1_y, color='red',  
            marker='x', s=100, label='Neuer Zentroid 1') 
plt.scatter(new_centroid2_x, new_centroid2_y, color='blue',  
            marker='x', s=100, label='Neuer Zentroid 2') 
plt.xlabel('Sepal Length') 
plt.ylabel('Sepal Width') 
plt.title('Data Points with Updated Centroids') 
plt.legend() 
plt.show()

Neupositionierung der Zentroide

[Code bearbeiten] 
Zeichne doch nun selbst 
die Grafik mit den neuen 
Zentroid-Werten.
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Nun stimmen die Zuordnungen allerdings nicht mehr, da wir die Zentroide verschoben haben.  
Wir ordnen die Datenpunkte daher den neuen Zentroiden zu.
Sobald sich etwas ändert, sitzen die Zentroide wieder nicht im Schwerpunkt und dieser Schritt  
wird wiederholt – und so geht es weiter …

Nach 10 Durchläufen ergeben sich folgende  
Zentroide und Zuordnungen:

K-Means-Clustering nach 10 Durchläufen

Hättest du auch diese Cluster gebildet?

[Achtung] 
Aufgrund der zufälligen Startpunkte der Zentroide 
können sich bei dir andere Cluster ergeben, wenn 
du den Code ausführst. Das ist nicht falsch, sondern 
liegt einfach an der Art und Weise, wie dieser 
Algorithmus funktioniert.

Ehm, nein,  
   ich hätte wohl eher die Punkte links oben  

  und den Rest zusammenfasst.
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[Schwierige Aufgabe] 
Implementiere den Prozess nun so, dass er automatisch 
10 oder 100 Mal in einer Schleife die Zentroide anpasst. 
Am Ende soll die angepasste Plot-Ausgabe erscheinen.

Okay!
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Vergiss nicht, dass der Algorithmus unterschiedliche Clusterergebnisse liefern kann. Ich habe hier 
zwei Abbildungen mit 100 Durchläufen und den standardisierten Werten, dennoch kommen zwei 
ganz unterschiedliche Cluster heraus. Welches der beiden Ergebnisse besser ist, sehen wir uns im 
nächsten Kapitel über die Clusteranalyse an.

[Code bearbeiten] 
Und nun, lieber Schrödinger, soll-
ten wir vielleicht doch noch die 
Standardisierung mit dem Z-Score 
einbauen, dann haben wir es rich-
tig gemacht.

[Erledigt!]   
for column in ['sepal_length', 'sepal_width']: 
  �df[column] = (df[column] - df[column].mean()) /  

df[column].std()

[Achtung] 
Die Standardisierung ist normaler-
weise der allererste Schritt, noch 
bevor du die Zentroide erstellst.
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100 Durchläufe und entsprechendes Clustering

Wiederum 100 Durchläufe, allerdings eine komplett andere Clusterbildung

Nun kannst du diesen Algorithmus noch erweitern, sodass er nicht nur mit zwei,  
sondern mit beliebig vielen Dimensionen arbeitet.

Natürlich. Da du nun weißt, wie dieser Algorithmus funktioniert, kannst du dir, wenn du 
willst, die Arbeit sparen und eine fertige Library verwenden. Dann lass uns das Gelernte lieber 
noch etwas festigen mit der SKLearn-Library.

Okay, verstanden.

Das gibt es doch bestimmt schon fertig.
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Orchideentypen

Nachdem du nun den K-Means-Algorithmus mit allen Facetten selbst implementieren 
kannst, zeige ich dir jetzt, wie du das mit einer Library umsetzen kannst. Und wie so 
oft beim maschinellen Lernen ist die Datenvorbereitung für die Library der Vorgang, 
der den meisten Aufwand erzeugt.

Verwenden wir doch den gleichen Datensatz wie bisher – nur, dass wir nicht zwei, 
sondern drei Cluster erzeugen und alle vier Merkmale verwenden, die unser Daten-
satz hergibt.

from sklearn.cluster import KMeans*1 
from sklearn.preprocessing import StandardScaler*2 
path = kagglehub.dataset_download("smritisingh1997/species-segmentation-using-iris-
dataset") 
filename = path + '/iris-dataset.csv' 
df = pd.read_csv(filename) 
 
features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']*3 
X*4 = df[features] 
 

[Notebook] 
Den Code für den folgenden 
Abschnitt findest du unter 
Kapitel 2/02-kmeans-iris-
sklearn.ipynb.

[Zettel] 
Der Originaldatensatz beinhaltet auch die 
entsprechenden Label für die Blütenklassifi-
zierung. Daher wissen wir bereits, dass es 
drei unterscheidbare Iris-Arten sein sollten.

*1 Schön, die Implementierung 
heißt wie der Algorithmus.

*2 Dieser Scaler ist der Vorberei-
tungsschritt für die Standardisierung 

mit dem Z-Score.

*3 Das hier sind die Merkmale/Spalten, 
die wir betrachten wollen. In unserem 

Fall sind es alle vier.

*4 In Machine-Learning-Algorithmen 
werden die Merkmale immer mit X 

benannt, die Labels mit Y. Das kommt 
wohl aus der Statistik.
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# Standardize the features 
scaler = StandardScaler() 
X_scaled = scaler.fit_transform(X)*5 
 
kmeans = KMeans(n_clusters=3*6, random_state=0*7) 
df['cluster'] = kmeans.fit_predict(X_scaled)*8 
 
print(df.head())

Das hast du jetzt gesagt. Aber es stimmt schon, dass hier sehr viel weniger Know-how 
zum Thema Softwareentwicklung benötigt wird als bei der klassischen Softwareentwicklung, da 
nahezu jeder Algorithmus als Library verfügbar ist. Dafür ist im Bereich des maschinellen Lernens 
viel mehr Statistik und Mathematik erforderlich.

Bestimmt fragst du dich, wie du nun die Ergebnisse – also die Skalierungs-Parameter und  
die Positionen der Zentroide erhältst.

*5 Skalierung durchführen.

*6 Durchführen des K-Means-
Algorithmus mit 3 Clustern.

*7 Der Wert 0 bedeutet, dass an zufälligen 
Positionen gestartet wird. Wenn du hier 
einen beliebigen anderen Wert einsetzt, 

wird das als Seed für den Zufallsgenerator 
verwendet.

*8 Die bestehenden Daten werden 
nun den Clustern zugeordnet.

[Zettel] 

Zufallszahlengeneratoren in der Informatik liefern 

keine echten Zufallswerte, sondern eine möglichst 

lange Sequenz, die sich zwar irgendwann wieder-

holt, aber sehr zufällig wirkt. Der Seed ist eine Art 

Startpunkt dieser Sequenz. Durch die Festlegung 

des Startpunktes wird der Zufall reproduzierbar, 

denn er legt die Reihenfolge fest. Das klingt para-

dox, wird aber immer wieder benötigt, um repro-

duzierbare Ergebnisse zu erhalten. Wird der Seed 

dem Zufall überlassen, so wird ein Wert von der 

aktuellen Uhrzeit, Hardware etc. abgeleitet – also 

von Faktoren, die sich immer wieder ändern.

Langsam glaube ich,  
      die KI-Typen können gar nicht programmieren.

Jetzt, wo du es sagst …
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scaler_params = { 
  'mean': scaler.mean_, 
  'scale': scaler.scale_ 
} 
print('Das K-Means-Modell') 
print('Scaler-Parameter:', scaler_params) 
print('Zentroide:', kmeans.cluster_centers_)

Das K-Means-Modell
Scaler-Parameter: {'mean': array([5.84333333, 3.054, 3.75866667, 
1.19866667]), 'scale': array([0.82530129, 0.43214658, 1.75852918, 
0.76061262])}
Zentroide: [[-0.07723421 -0.92778421  0.32291983  0.23786769]
 [-1.01457897  0.84230679 -1.30487835 -1.25512862]
 [ 1.06889068  0.06560955  0.9690362   1.00197871]]

Mit der Library pickle kannst du beispielsweise  
Werte laden und speichern.

import pickle 
scaler_params = { 
  'mean': scaler.mean_, 
  'scale': scaler.scale_ 
} 
with open('scaler_params.pkl', 'wb'*1) as f: 
  pickle.dump(scaler_params, f)

*1 Die Datei schreibend öffnen

[Zettel] 
Die Mittelwerte und Standardab-
weichungen, die für die Standar-
disierung verwendet wurden, 
existieren für jede Dimension.
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# Laden der Werte aus der Datei 
with open('scaler_params.pkl', 'rb'*2) as f: 
  scaler_params = pickle.load(f) 
# Neuen Scaler erstellen und Parameter setzen 
new_scaler = StandardScaler() 
new_scaler.mean_ = scaler_params['mean'] 
new_scaler.scale_ = scaler_params['scale']

3D-Visualisierung ist wunderbar, aber sei dir bewusst,  
dass eine (möglicherweise wesentliche) Dimension fehlt.

[Schwierige Aufgabe] 
Visualisiere mithilfe eines 3D-Scatter-Plots die Merkmale  
sepal_length, sepal_width und petal_length. 
Die Farbe c soll je nach Cluster unterschiedlich sein. Blättere 
zurück zur Seite 51, auf der wir gemeinsam ein 3D-Diagramm 
erstellt haben, und passe den Code entsprechend an.

*2 Die Datei lesend öffnen

[Einfache Aufgabe] 
Implementiere das Speichern und 
Laden für die Cluster-Zentroide.

[Lösung]   
# Cluster-Zentren schreiben 
with open('cluster_centers.pkl', 'wb') as f: 
  pickle.dump(kmeans.cluster_centers_, f) 
 
# Cluster-Zentren laden 
with open('cluster_centers.pkl', 'rb') as f: 
  cluster_centers = pickle.load(f) 
 
# Neues K-Means-Modell erstellen und Cluster-Zentren setzen 
new_kmeans = KMeans(n_clusters=3, random_state=0) 
new_kmeans.cluster_centers_ = cluster_centers
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Darstellung der Features in einem 3D-Scatter-Diagramm

Im Diagramm siehst du, dass die Elemente im gelben Cluster besser abgetrennt sind als die anderen beiden 
Cluster. Nun jedoch alle Elemente und Kombinationen durchzugehen, das wäre schon etwas aufwendig.

Jetzt zeige ich dir einen Mega-Geheimtrick  
zur Visualisierung.

import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
 
fig = plt.figure(figsize=(10, 8)) 
ax = fig.add_subplot(111, projection='3d') 
 
ax.scatter(df['sepal_length'], df['sepal_width'], df['petal_length'], 
c=df['cluster'], cmap='viridis') 
ax.set_xlabel('Sepal Length') 
ax.set_ylabel('Sepal Width') 
ax.set_zlabel('Petal Length') 
plt.show()
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import matplotlib.pyplot as plt 
import seaborn as sns 
 
sns.pairplot(df, hue='cluster', vars=features) 
plt.show()

Darstellung der Zusammenhänge der unterschiedlichen Dimensionen

[Notiz] 
Die Library seaborn zeigt dir 
gleich alle möglichen Zusammen-
hänge und Diagramme der Merk-
malsaufteilungen.

Wie cool ist das denn?!
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Egal, welche Merkmale du dir in den Diagrammen ansiehst –  
der eine Cluster ist in jeder Dimension sehr gut differenzierbar.  
Die anderen beiden sind schwer eindeutig zu trennen.

Bei diesen Diagrammen kannst du noch am ehesten eine Trennlinie ziehen.  
Auch sepal_width und petal_length geht noch ziemlich gut.  
Aber fehlerlos kannst du kaum eine gerade Linie ziehen.

Du willst offenbar dringend weiter zur Clusteranalyse kommen, aber erst zeige ich dir noch zwei weitere Algo-
rithmen, einerseits zum Clustern und andererseits zur Klassifizierung. Ein Nachteil von K-Means ist nämlich 
die Sensitivität gegenüber Ausreißern – also Datenpunkten, die weit abgeschlagen sind. Der folgende Algorith-
mus DBScan hat diesen Nachteil nicht, er stellt diese Ausreißer sogar explizit heraus.

[Einfache Aufgabe] 
Welche beiden Diagramme zeigen dir 
noch die beste Trennung zwischen 
den beiden hellen Clustern und dem 
dunklen?

[Lösung] 
petal_length und sepal_width sowie 
sepal_width und petal_width

      Ich mach einfach ein paar  Kurven rein.

Vielleicht sind es ja doch nur zwei Spezies –  
� also zwei Cluster.
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Dicke Freunde
Zum Clustern und zum Erkennen von Ausreißern ist der DBScan-Algorithmus  
eine gute Wahl.

Nein, DB steht nicht für Datenbank, sondern für Density Based – also dichtebasiert.  
Dieser Algorithmus bildet Cluster von Datenpunkten, die eine bestimmte Dichte aufweisen, 
und wurde 1996 veröffentlicht.

Es ist hier auch nicht erforderlich, dass du die Anzahl der Cluster vorab festlegst. 
Die Anzahl ergibt sich automatisch durch den Algorithmus. Ganz ohne Parameter 
geht es jedoch auch nicht. Wir benötigen hier zwei Werte: eine Mindestanzahl von 
Datenpunkten (MinPts) und einen Radius ε (sprich: Epsilon), der den Bereich 
definiert, der analysiert wird.

Der Algorithmus ordnet die Punkte  
in drei Kategorien ein:

1. � Kernpunkte: Punkte, die mindestens MinPts Nachbarn innerhalb eines Radius  
von ε haben.

2. � Randpunkte: Punkte, die innerhalb des ε-Radius eines Kernpunkts liegen, aber  
selbst nicht genügend Nachbarn haben, um Kernpunkte zu sein.

3. � Rauschpunkte: Punkte, die weder Kernpunkte noch Randpunkte sind und somit  
als Ausreißer betrachtet werden.

1.  Wähle einen unbesuchten Punkt aus deinem Datensatz aus.
2. � Bestimmte die ε-Nachbarschaft des Punktes – welche Punkte sind innerhalb  

des Radius ε vorhanden?
3. � Wenn die Anzahl der gefundenen Nachbarn größer oder gleich den MinPts ist,  

markiere den Punkt als Kernpunkt und erstelle einen neuen Cluster.
4.  Füge alle Punkte in der ε-Nachbarschaft zum Cluster hinzu.
5.  � Wiederhole den Prozess für jeden Punkt im Cluster, bis keine neuen Punkte  

mehr hinzugefügt werden können.
6.  Wiederhole die Schritte 1–5, bis kein Punkt mehr unbesucht ist.
7. � Alle Punkte, die zu wenige Nachbarn haben, um einen Cluster zu bilden,  

sind Rauschpunkte – also Ausreißer.

Der Algorithmus hat  
folgende Schritte:

Ein DDatenbbank-Algorithmus?

Kernpunkte, 
Erklär mir erst mal, wie der Algorithmus funktioniert,  
  dann komm ich bestimmt noch drauf.

Randpunkte?
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In der Abbildung siehst du, wie ein Punkt ausge-
wählt und die Anzahl der Nachbarn ermittelt wur-
de, die nicht weiter als ε davon entfernt sind. All 
diese Nachbarn werden dem Cluster (dem blauen 
Kreis) zugeordnet, sofern mindestens MinPts 
Nachbarn vorhanden sind.

Anschließend wird jeder dieser Punkte als neues 
Zentrum mit dem gleichen ε-Wert analysiert und 
so der Cluster schrittweise erweitert. Wenn nicht 
genügend Nachbarn vorhanden sind, wird der 
Punkt nicht dem Cluster zugeordnet.

Wenn der Algorithmus durchgelaufen ist, ergeben sich beispielsweise folgende Cluster:

Clusterergebnis des DBScan-Algorithmus.  
Es wurden zwei Cluster und drei Ausreißer gefunden.

Dieser Algorithmus hat wieder wenige einfache Schritte und erkennt selbst die Anzahl 
der vorhandenen Cluster sowie die Ausreißer. Zusätzlich ergibt sich der Vorteil, dass der 
Algorithmus im Gegensatz zu K-Means Cluster mit beliebigen Formen und Größen 
erkennt. Und er ist eben robust gegenüber Ausreißern.

Wenn du beispielsweise einen Cluster hast, der einen anderen ganz oder teilweise umschließt, dann könnte 
der K-Means-Algorithmus diesen nicht erkennen. Der DBScan folgt aber der Dichte der Punkte und kann eine 
solche Form erkennen. Ich zeige dir ein Vergleichsbild:

Epsilon

Konzept des DBScan-Algorithmus

Wie meinst du das mit den Formen?
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Der K-Means-Algorithmus schneidet den Datensatz, während der DBScan der Dichte folgt.

Nicht so schnell!  
Wie du weißt, gibt es keinen Vorteil ohne Nachteil.

Die Nachteile des Algorithmus

 i �Wenn die Punktedichte stark variiert, hat der Algorithmus Probleme. Die Scatter-Diagramme 
helfen dir bei der Darstellung und Einschätzung.

 i �Der Rechenaufwand des Algorithmus ist relativ hoch. Die Ermittlung der ε-Nachbarschaften ist 
rechenintensiv. Bei großen Datenmengen empfehle ich dir, zu überlegen, wie du einen Index 
aufbauen kannst, um möglichst effizient die Nachbarschaften zu ermitteln – zum Beispiel 
durch einen R*-Baum oder einen KD-Baum. Dadurch kannst du diesen Nachteil ausräumen.

 i �Leider ist der Algorithmus empfindlich gegenüber den Parametern. Die Wahl der sogenannten 
Hyperparameter ε und MinPts kann das Ergebnis stark beeinflussen.

Nichtsdestotrotz sind die Einsatzgebiete des DBScan-Algorithmus vielfältig.
Du kannst Bilder auf Basis ihrer Farbintensitäten bzw. ihrer Farbwerte segmentieren (also entspre-
chende Bereiche in Bildern feststellen), oder du nutzt den Algorithmus zur Anomalieerkennung (Aus-
reißererkennung) bei Finanzdaten, im Netzwerkverkehr oder in Produktionsprozessen. Auch bei  
der Analyse von Geodaten, Erdbebendaten oder der Verbreitung von Pflanzenarten findet dieser Algo
rithmus seine Anwendung, zum Beispiel durch die Bildung geografischer Cluster.

Wow, der hat ja wirklich überall seine Finger im Spiel!

     Das sind drei schöne Vorteile,da lege ich 
den anderen Algorithmus gleich zur Seite.
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Stressige Tage

Ich habe einen Kaggle-Datensatz für dich ausgewählt,  
bei dem es um Sportübungen, Schlafzeiten und das Stresslevel geht.  
Auf diesen Datensatz wollen wir nun einen selbst implementierten  
DBScan-Algorithmus anwenden.

path = kagglehub.dataset_download("forrestcarlton1/stress-levels-dataset") 
filename = path + "/Stress_levels_dataset.csv" 
df = pd.read_csv(filename) 
print(df.info())

[Notebook] 
Wenn du chillen willst, statt stressig Code zu 
tippen, findest du den Code hier: Kapitel 2/
DB Scan 1 – Selbst implementiert.ipynb.

Den kagglehub und pandas habe ich 
schon importiert. Los geht’s!

[Einfache Aufgabe] 
Wie viele Datensätze 
hat der Datensatz? Das ist einfach!  

   Einhundert Stück.  
  Und drei Spalten.
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Die Spalten in unserem Datensatz heißen Hours_of_Exercise_per_Week,  
Hours_of_Sleep_per_Night und Stress_Level.

[Erledigt!]   
import matplotlib.pyplot as plt 
plt.figure(figsize=(8, 6)) 
df['Stress_Level'].hist(bins=8, grid=False)   
 
plt.xlabel('Stresslevel') 
plt.ylabel('Häufigkeit') 
plt.show()

Verteilung der Stresslevel

[Schwierige Aufgabe] 
Sieh dir das Histogramm des Stresslevels an – 
damit stellst du die Verteilung der einzelnen 
Stresslevel dar. Erstelle das Histogramm mit 
8 Balken.
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Die Werte reichen von tiefenentspannt bis komplett unter Druck.  
                   Ganz schön viel Stress!  
 Am häufigsten kommt ein Stresswert von 60 in den Daten vor.

Nun wissen wir, wie die Daten aussehen, und können uns an den Algorithmus machen. Wir benötigen eine 
Distanzfunktion, da wir die Abstände zwischen zwei beliebigen Datenpunkten messen müssen.

Da haben wir ja schon unsere euclidean_distance-Funktion.

import math 
def euclidean_distance(point1, point2): 
  return math.sqrt(sum((x - y)**2 for x, y in zip(point1, point2)))

Einen kleinen Teil haben wir schon. Jetzt müssen wir es nur noch schaffen, die Nachbarn  
von einem Datenpunkt zu finden, deren Abstand zum Punkt nicht größer ist als ε.

def region_query(data, point, eps):  neighbors = [] 
  for i, other_point in enumerate(data)*1: 
    if point != other_point and euclidean_distance(point, other_point) <= eps*2: 
      neighbors.append(i)*3 
  return neighbors

*1 Es werden alle Datenpunkte 
durchgegangen und sowohl der Index i 
als auch der Punkt an sich betrachtet.

*2 Wenn es sich nicht um den gleichen 
Punkt handelt, wird die Distanz zum Punkt 

berechnet. Ist diese kleiner als das 
gewählte ε, dann ist es ein relevanter 

Nachbar.
*3 Wir merken uns lediglich 
die Indizes der Nachbarn.

Die Hilfsfunktionen sind also erledigt.  
    Jetzt ran an den DBScan!
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def dbscan(data, eps, min_pts): 
  labels = [-1] * len(data)*1 
  cluster_id = 0 
  for i, point in enumerate(data): 
    if labels[i] != -1:*2 
      continue 
 
    neighbors = region_query(data, point, eps)*3 
    if len(neighbors) < min_pts: 
       continue*4 
 
    cluster_id += 1*5 
    labels[i] = cluster_id 
    seed_set = neighbors.copy()*6 
 
    while seed_set: 
      current_point_index = seed_set.pop(0)*7 
      if labels[current_point_index] == -1: 
        labels[current_point_index] = cluster_id 
      elif labels[current_point_index] == 0:*8 
        labels[current_point_index] = cluster_id 
      else 
        continue  # Bereits Teil von einem Cluster 
 
      current_point_neighbors = region_query(data, data[current_point_index], eps)*9 
 
      if len(current_point_neighbors) >= min_pts: 
        seed_set.extend([n for n in current_point_neighbors if n not in seed_
set])*10 
  return labels

Du bist bestimmt schon gespannt auf das Ergebnis.  
Wir haben es fast geschafft!  
Nur noch die Funktion aufrufen und die Ergebnisse zeichnen.

*1 Alle Daten vorab als Ausreißer 
markieren. Wir beweisen dann im Laufe 

des Algorithmus das Gegenteil.

*2 Wenn der Datensatz 
bereits zugeordnet ist, 
ignorieren wir diesen.

*3 Die Nachbarn im 
Umkreis ermitteln. *4 Wenn nicht genügend Nachbarn 

vorhanden sind, bleibt der Daten-
punkt ein Ausreißer. Wir sehen uns 

gleich den nächsten an.

*5 Yippie, wir haben einen 
neuen Cluster gefunden!

*6 Wir kopieren die Nachbarn, denn diese 
wollen wir im nächsten Schritt weiter 

analysieren, und sehen, ob sich der Cluster 
hier erweitert. Alle Punkte, die den Cluster 

potenziell erweitern können, werden in 
diese Liste aufgenommen.

*7 Solang noch ein Punkt in der Liste übrig 
ist, wird alles wiederholt. Der erste Punkt 

wird rausgenommen. Falls dieser noch 
keinem Cluster zugewiesen ist, weisen wir 

diesen dem Cluster zu.

*8 Randbereichprüfung. Der Punkt ist zwar 
nahe genug, hat aber selbst zu wenige 

Nachbarn, um als Zentrum zu fungieren. 
Das wird ein Randpunkt.

*9 Von diesem Punkt aus 
werden erneut die Nachbarn 

gesucht.*10 Nachdem geprüft wurde, ob genügend 
Nachbarn in der Nähe sind, werden all 

diese erneut in die Liste der potenziellen 
neuen Clustermitglieder hinzugefügt, 

damit der Cluster wachsen kann.
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Nimm erst einmal 6.5 für ε  
und 4 für die Mindestpunkte.

[Erledigt!]    
selected_columns =  
['Hours_of_Exercise_per_Week', 'Stress_Level'] 
data = df[selected_columns].values.tolist() 
eps = 6.5 
min_pts = 4 
labels = dbscan(data, eps, min_pts)

Wunderbar, wir haben die Labels – also die Cluster.
Lass uns die Cluster aufzeichnen und sehen, wie die Stresslevels mit der körperlichen Ertüchtigung 
zusammenhängen und wie diese durch den DBScan-Algorithmus in Cluster zusammengefasst werden.

import matplotlib.pyplot as plt 
x_coords = [point[0] for point in data] 
y_coords = [point[1] for point in data] 
plt.figure(figsize=(8, 6)) 
plt.scatter(x_coords, y_coords, c=labels, cmap='viridis') 
plt.title('Clustering Ergebnis') 
plt.xlabel('Sport') 
plt.ylabel('Stress Level') 
plt.colorbar(label='Cluster') 
plt.show()

[Code bearbeiten] 
Rufe die Funktion mit den zwei Spalten  
Hours_of_Exercise_per_Week  
und Stress_Level auf.

Aber was soll ich bei den Mindestpunkten und ε einsetzen?

[Notiz] 
Das Finden der Parameterwerte ist 
oftmals ein Herantasten. Ich zeige 
dir im Laufe der Zeit noch, wie du 
diese sogenannten Hyperparameter 
ermitteln kannst.
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Clustering der Datenpunkte durch DBScan

Es sind drei. Das Gelb und die zwei Grüntöne. Die lila Punkte sind diejenigen mit dem Wert −1,  
die keinem Cluster zugeordnet worden sind. Das sind unsere Anomalien.

Aber wie du weißt, funktionieren diese Algorithmen ja in mehreren Dimensionen. Und eine 
unausrottbare Eigenschaft von KI-Datensätzen ist, dass die Datensätze immer viele Dimensionen 
haben. Gut, hier haben wir jetzt nur drei, aber meist sind es noch mehr.

[Einfache Aufgabe] 
Wie viele Cluster kannst 
du aus der Grafik ablesen? Drei, vier,

… sieben?

[Schwierige Aufgabe] 
Aktualisiere den Code mit der dritten 
Dimension und gib ein 3D-Diagramm 
aus. Verwende nun 8 als ε und 3 als 
Mindestpunkteanzahl.
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selected_columns = ['Hours_of_Exercise_per_Week', 'Stress_Level',  
'Hours_of_Sleep_per_Night'] 
data = df[selected_columns].values.tolist() 
 
eps = 8 
min_pts = 3  
labels = dbscan(data, eps, min_pts) 
 
# Prepare data for plotting 
x_coords = [point[0] for point in data] 
y_coords = [point[1] for point in data] 
z_coords = [point[2] for point in data] 
 
# Plotting 
fig = plt.figure(figsize=(10, 8)) 
ax = fig.add_subplot(111, projection='3d') 
scatter = ax.scatter(x_coords, y_coords, z_coords, c=labels, cmap='viridis') 
 
ax.set_xlabel(selected_columns[0]) 
ax.set_ylabel(selected_columns[1]) 
ax.set_zlabel(selected_columns[2]) 
ax.set_title('DBSCAN Clustering Results (3D)') 
plt.colorbar(scatter, label='Cluster ID')

Clustering-Darstellung im 3D-Raum

Ja, da sind wieder ein paar 
Ausreißer zu sehen.  
    �Und ich habe dieses Mal 

mehr Cluster erhalten.
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Drama-Nachbarn, die nicht ins Bild passen
Du erinnerst dich bestimmt an unsere Drama-Tiere.

Wir haben Cluster für die Tiere mithilfe von K-Means erstellt. Und nun verwenden wir wie-
der SKLearn, um diese Cluster mithilfe von DBScan zu unterteilen. Wir wollen uns ansehen, 
ob es Punkte gibt, die nicht ins Bild passen.

Standardisieren wir die Werte als Erstes mit dem  
bekannten StandardScaler.

from sklearn.cluster import DBSCAN 
from sklearn.preprocessing import StandardScaler 
# Merkmale auswählen 
X = df[["Drama", "Bewegung"]].values 
# Skalieren 
scaler = StandardScaler() 
X_scaled = scaler.fit_transform(X)

Nun führen wir den DBScan aus und schreiben die ermittelten Cluster zurück in den DataFrame –  
in eine eigene Spalte mit dem Namen Cluster.

Besonders mit dem Faultier 
konnte ich mich hervorragend 
identifizieren.

Natürlich!

[Einfache Aufgabe] 
Kopiere dir die Daten in ein neues 
Notebook und lade sie wie gewohnt 
in einen Pandas-Dataframe.

[Notebook] 
Den gesamten Code findest du hier: 
Kapitel 2/DBScan2 – Tiere.ipynb.
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dbscan = DBSCAN(eps=0.9, min_samples=3) 
clusters = dbscan.fit_predict(X_scaled) 
df['Cluster'] = clusters

Fertig.

colors = {} 
labels = {} 
for k in unique_labels: 
  if k == -1:*1 
    colors[k] = [0, 0, 0, 1] 
    labels[k] = 'Wir passen nicht ins Bild - Ausreißer' 
  elif k == 0: 
    colors[k] = 'purple' 
    labels[k] = 'Chillige Zeitgenossen' 
  elif k == 1: 
    colors[k] = 'blue'  
    labels[k] = 'Drama-Queens im Chillmode' 
  else 
      colors[k] = plt.cm.Spectral(k/len(unique_labels))*2 
      labels[k] = f'Cluster {k}' 
 
for k in unique_labels: 
  class_member_mask = (clusters == k) 
  xy = X[class_member_mask] 
  names = df['Tier'][class_member_mask].values 
 
  plt.plot(xy[:, 0], xy[:, 1], 'o', color=colors[k], 
             markersize=10, label=labels.get(k,f'Cluster {k}'))*3 
  for i, txt in enumerate(names):*4 
    plt.annotate(txt, (xy[i, 0], xy[i, 1]), 
           textcoords="offset points", xytext=(5,5), ha='left') 
 
plt.title('Tier-Clustering') 
plt.xlabel('Drama') 
plt.ylabel('Bewegung') 
plt.legend() 
plt.grid(True) 
plt.show()

Nein, nein,  
  ich will das jetzt 
schon grafisch sehen. [Zettel] 

Ausreißer werden dem 
Cluster −1 zugeordnet.

*1 Ausreißer haben 
den Wert −1.

*2 Sollten sich weitere Cluster 
ergeben, wird eine Farbe und die 

Clusterbezeichnung gewählt.

*3 Zeichnen der 
Clusterpunkte.

*4 Die Tierbezeichnung 
wollen wir auch sehen.
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Clustering der Tiere mit DBScan

Wie wir mehrfach gesehen haben, ist der Algorithmus in der Lage, Ausreißer  
zu erkennen. Diese werden entweder im Detail analysiert, wenn es beispielsweise 
um ungewöhnliche Kreditkartenabrechnungen geht, oder eben entfernt, weil  
Ausreißer im Datensatz möglicherweise störend sind.

Wie vermutet:  
     Der Pfau ist ein Ausreißer!

[Einfache Aufgabe] 
Passe den ε-Wert an. Wähle zum 
Ausprobieren 0.8. Was kannst 
du beobachten?

[Lösung] 
Jetzt ist auch das Eichhörnchen 
ein Ausreißer geworden.

[Schwierige Aufgabe] 
Entferne die Ausreißer und 
zeichne die Grafik erneut.
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# Nachdem der DBScan ausgeführt wurde, ändert sich der Code: 
df['Cluster'] = clusters 
df_no_outliers = df[df['Cluster'] != -1]*1 
 
# Merkmale zum Plotten ohne Ausreißer auswählen 
X_no_outliers = df_no_outliers[["Drama", "Bewegung"]].values*2 
clusters_no_outliers = df_no_outliers['Cluster'].values*3 
 
plt.figure(figsize=(12, 8)) 
unique_labels = set(clusters_no_outliers)*4 
 
colors = {} 
labels = {} 
for k in unique_labels: 
  if k == 0: 
    colors[k] = 'purple' 
    labels[k] = 'Chillige Zeitgenossen' 
  elif k == 1: 
    colors[k] = 'blue' 
    labels[k] = 'Drama-Queens im Chillmode' 
  else 
    colors[k] = plt.cm.Spectral(k/len(unique_labels)) 
    labels[k] = f'Cluster {k}' 
 
for k in unique_labels: 
  class_member_mask = (clusters_no_outliers == k)*5 
  xy = X_no_outliers[class_member_mask] 
  names = df_no_outliers['Tier'][class_member_mask].values 
 
  plt.plot(xy[:, 0], xy[:, 1], 'o', color=colors[k], 
            markersize=10, label=labels.get(k,f'Cluster {k}')) 
  for i, txt in enumerate(names): 
    plt.annotate(txt, (xy[i, 0], xy[i, 1]), textcoords="offset points",  
xytext=(5,5), ha='left') 
 
plt.title('Tier-Clustering (ohne Ausreißer)') 
plt.xlabel('Drama') 
plt.ylabel('Bewegung') 
plt.legend() 
plt.grid(True) 
plt.show()

*1 Wir filtern und entfernen alles, 
was den Cluster −1 besitzt.

*3 Auch die Cluster laden wir uns erneut.

*4 Die Labels nicht vergessen.

*2 Wir laden uns die Daten neu, da 
diese nun gefiltert sind.

*5 Und nun werden zum Zeichnen 
die gefilterten Werte verwendet.
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Tier-Clustering ohne Ausreißer mit einem ε-Wert von 0,8 und einer Mindestpunkteanzahl von 3

Wunderbar, du bist bereit für den nächsten Algorithmus. Bisher 
haben wir immer Datenpunkte gruppiert. Nun wird es Zeit, sich darum 
zu kümmern, neue Datenpunkte bestehenden Clustern zuzuordnen.

Ausreißer:
- Pfau
- Eichhörnchen

[Einfache Aufgabe] 
Lass dir zur Kontrolle noch 
die Ausreißer ausgeben.

[Lösung] 
outliers = df[df['Cluster'] == -1]['Tier'].values 
print("Ausreißer:") 
for outlier in outliers: 
  print(f"- {outlier}")
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Neue Nachbarn 
In vielen Recommendation-Engines wird der Algorithmus K-Nearest-Neighbors, kurz 
KNN, eingesetzt. Wenn dir der nächste Film, der dir wahrscheinlich gefällt, der nächste 
Song oder ein Produkt in einem Onlineshop vorgeschlagen werden soll, steckt oftmals 
der KNN-Algorithmus dahinter. Auch in der medizinischen Diagnostik, bei der Bildana-
lyse oder im Finanzbereich findet der Algorithmus Anwendung.

Wir haben mit KNN nun einen Algorithmus, der in die Kategorie Supervised 
Learning fällt – also überwachtes Lernen. Du benötigst bereits fertige Cluster 
und weist neue Datenpunkte diesen Clustern zu.
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A oder B?

Zu welchem Cluster gehört der neue Datenpunkt?

[Achtung]   
Die Bezeichnung KNN wird auch gerne 
als Abkürzung für »künstliche neuronale 
Netze« verwendet. Nicht verwechseln!

[Ablage] 
KNN beantwortet die Frage, zu 
welchem bestehenden Cluster ein 
neuer Datenpunkt hinzugefügt 
werden soll.

Clustern kann ich ja jetzt.
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KNN ist ein demokratischer Algorithmus. Es wird ein Mehrheitsentscheid verwendet,  
um die Clusterzugehörigkeit zu entscheiden. Du musst für diesen Algorithmus nur einen  
Parameter festlegen: das K.

Du benötigst also die aktuelle Clusterzuordnung der Datenpunkte, die Anzahl der nächsten Nachbarn,  
die du verwenden willst, und – wie so oft – eine Distanzmetrik: Euklid oder Manhattan etc.
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Analyse der drei nächsten Nachbarn

Der Algorithmus sucht sich also die K Nachbarn mit der minimalen Distanz. Er analysiert, 
welche der Nachbarn zu welchem Cluster gehören und schließt sich der Mehrheit an. In 
der Abbildung ist zu sehen, dass für unseren Punkt zwei Nachbarn aus dem Cluster B und 
ein Nachbar aus dem Cluster A in Frage kommen. Diese werden untersucht. Demnach 
entscheidet der Algorithmus, dass der neue Datenpunkt dem Cluster B zugewiesen wird.

Ja, so einfach ist es.
Das wars schon?

Und wofür steht das K?

[Ablage] 
K ist die Anzahl der nächsten 
Nachbarn, die betrachtet werden 
sollen.
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Wertvorhersage mit KNN
KNN kann nicht nur neue Datensätze zu Clustern zuordnen. Du kannst den Algorithmus auch 
benutzen, um Werte vorherzusagen. Stell dir beispielsweise einen Datensatz für Fahrräder und 
Fahrradpreise vor, in dem Merkmale wie Preis, Gewicht, Anzahl der Gänge etc. aufgelistet sind. 
Wenn du jetzt bei einem neuen Fahrrad den Preis einordnen möchtest, dann verwendest du alle 
Informationen aus dem Datensatz (mit Ausnahme des Preises) und sortierst den Datenpunkt 
ein, vergleichst also Gewicht, Anzahl der Gänge und so weiter. Anschließend nimmst du die 
entsprechenden Nachbarn, also Räder mit ähnlichen Merkmalen, und verwendest den Durch-
schnittspreis (oder den mit den Abständen gewichteten Durchschnittspreis) der Nachbarn.

Du kannst sogar die Linien oder Flächen berechnen, an denen sich die Zuordnungen zum 
einen oder anderen Wert ändern – je nachdem, wie viele Nachbarn rundherum sind und 
wann sich die Nähe zum nächsten Nachbarn ergibt.

[Ablage] 
Der wesentliche Nachteil dieses Algorithmus 
ist, dass er empfindlich gegenüber irrelevanten 
Merkmalen ist. Also erweitere deinen Daten-
satz nicht um nutzlose Merkmale wie zum Bei-
spiel IDs und verwende die Merkmalskorrela
tion, um unnötige Features zu entfernen.

[Achtung]   
Was KNN definitiv nicht kann,  
ist die Generierung neuer Cluster. 
Er ermöglicht nur eine Zuordnung 
zu den bestehenden Clustern.

    Und nebenbei schaue ich mir meinen Datensatz  
 auch noch mal ganz genau an.

Clever!

Moment, das habe ich jetzt nicht ganz verstanden.
Wie meinst du das?
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Angenommen, wir haben lediglich eine Quadratmeteranzahl und den Preis 
eines Hauses. Normalerweise ist der Preis natürlich noch von vielen weite-
ren Parametern abhängig, aber zur einfachen Visualisierung setzen wir mal 
diese vereinfachte Zuordnung voraus. Nun hast du ein neues Haus mit einer 
bestimmten Quadratmeteranzahl und möchtest den Hauspreis mithilfe von 
KNN ermitteln. Also suchst du dir drei Häuser aus deinem Datensatz, die 
eine ähnliche Quadratmeterzahl haben, und nimmst den Durchschnittspreis 
von den drei Häusern – das ist der Preis, den du für das Haus erwarten 
kannst. Wenn sich jedoch die Quadratmeter leicht erhöhen oder reduzie-
ren, kann es sein, dass andere Häuser aus dem Datensatz nun deinem am 
ähnlichsten sind und sich ein ganz anderer Durchschnittspreis ergibt.

Und wenn du alle Werte durchgehst und jeweils die Berechnung betrachtest,  
siehst du, wo die Preissprünge sind. Das siehst auf der Abbildung noch mal genauer.

Preissprünge je nach Quadratmetern und Wertvorhersagen für den Durchschnittspreis in dieser Größe

Okay, verstanden.



126 Kapitel ZWEI

Gesellschaftsspiele in der Nachbarschaft

Du hast jetzt verstanden, wie der Algorithmus  
funktioniert, und dass er flexibel einsetzbar ist – sowohl zur Klassifizierung  
als auch zur Vorhersage konkreter Zahlenwerte, also für Regressionsaufgaben.  
Lass ihn uns implementieren. Bestimmt juckt es dich schon in den Fingern. 
Das ist unser Datensatz:

Spiel Komplexität Action-Level Kategorie

Schach 9 2 Strategie

Civilization VI 8 3 Strategie

Age of Empires 7 4 Strategie

Command & Conquer 7 6 Strategie

Tetris 5 8 Puzzle

Candy Crush 4 7 Puzzle

Portal 5.8 7.2 Puzzle

Dark Souls 9 9 Action

Call of Duty 8 10 Action

DOOM 7 9 Action

Super Mario 6 6 Action

Animal Crossing 2 2 Simulation

The Sims 3 3 Simulation

Stardew Valley 4 3 Simulation

[Notebook] 
Der Code zu diesem Beispiel 
ist in Kapitel 2/03-knn-
games-classification.ipynb 
zu finden.
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Wir wollen wissen, wie Starcraft 2 mit einem Komplexitätslevel von 6.5  
und einem Action-Level von 7 klassifiziert wird. Im Diagramm sieht das wie folgt aus:

Spieleklassifizierung mit K-Nearest-Neighbors

Wunderbar, unser Datensatz soll wie folgt aussehen: erst die Bezeichnung des Spiels,  
dann die Komplexität in Form eines Punktes und dann das Action-Level.

game_data = { 
  "Schach": (9, 2), "Civilization VI": (8, 3),… }

Zusätzlich benötigen wir das Label für alle Spiele, da diese bereits klassifiziert sind.

labels = { 
  "Schach": "Strategie", "Civilization VI": "Strategie",  
"Age of Empires": "Strategie", … }
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Jetzt kommt unser neuer Datenpunkt, den wir einordnen wollen, und die Hilfsfunktion für den 
euklidischen Abstand zwischen zwei Punkten:

new_game = (6.5, 7)  # Starcraft 2

[Erledigt!]    
import math 
def euclidean_distance(p1, p2): 
  return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)

Super, Schrödinger! Die Implementierung von KNN ist nicht nur bei der Erklärung 
einfach, sondern auch im Code. Wir berechnen die Distanz zwischen dem neuen 
Punkt und jedem anderen Punkt im Datensatz und merken uns diese Informationen 
in einer Liste. Anschließend sortieren wir den Datensatz nach der Distanz, verwenden 
lediglich die K ersten Elemente und wählen von denen die häufigste Kategorie aus.

def knn_manual(train_data, train_labels, new_point, k=3): 
  distances = [] 
   
  for game, coords in train_data.items():*1 
    distance = euclidean_distance(coords, new_point) 
    distances.append((distance, train_labels[game]))*2 
 
  distances.sort()*3 
  k_nearest = distances[:k] 
 
  category_count = Counter(label for _, label in k_nearest)*4 
   
  return category_count.most_common(1)[0][0]*5

[Einfache Aufgabe] 
Erstelle die Hilfsfunktion 
euclidean_distance.

Easy!

*1 Berechne die Distanz zu 
jedem bekannten Spiel. *2 Distanz und Label werden als 

Tupel in das Array hinzugefügt.

*3 Sortieren nach Distanz und 
die k nächsten Nachbarn 

auswählen.

*4 Abstimmen und Stimmen auszählen.

*5 Am häufigsten vertretene 
Kategorie zurückgeben.
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Na, bist du schon gespannt, wie Starcraft 2 klassifiziert wird?

Dann fragen wir mal unseren Algorithmus:

predicted_category = knn_manual(game_data, labels, new_game, k=3) 
print(f"Starcraft 2 wurde klassifiziert als: {predicted_category}")

Puzzle

Stimmt, das sind mindestens 8,  
  wenn man sich die anderen Spiele in der Tabelle so anschaut.

[Code bearbeiten] 
Vergiss nicht, das Counter-
Objekt von collections 
zu importieren.

[Erledigt!]    
from collections import Counter

Starcraft 2 ist ganz klar  
     ein Echtzeit-Strategiespiel.

Was ist das denn für ein Voodoo?

[Code bearbeiten] 
Sieh dir nochmal die Werte an, 
vielleicht haben wir uns ganz am 
Anfang mit einem Komplexitäts-
wert von 6,5 ja verschätzt.

Niemals!
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Eins, zwei, Zauberei!  
   Schon haben wir die Strategie-Kategorie.

Übrigens sind das jetzt die Nachbarn, die wir betrachtet haben.  
So eindeutig ist das gar nicht …

Die stimmberechtigten Nachbarn

[Achtung] 
Ja, die Eingangsdaten müssen natürlich 
korrekt sein, damit der Algorithmus ein 
richtiges Ergebnis ausspuckt. Das soll aber 
keine Einladung sein, dass du künftig immer 
die Eingangswerte so anpasst, dass das 
Ergebnis deinen Erwartungen entspricht.

Auf die Idee würde ich nie kommen!
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Lärmbelästigung in der Nachbarschaft?

Jetzt schauen wir uns auch noch ein Regressionsbeispiel an, in dem wir einen konkreten Wert vorhersagen. 
Und zwar wollen wir auf Basis von Größe und Flauschigkeit auf die Lautstärke von Tieren schließen.

Tier Größe (1–10) Flauschigkeit (10–10) Lautstärke (dB)

Löwe 9 3 114

Eule 3 7 45

Schlange 4 0 0

Fuchs 5 6 65

Elefant 10 5 120

Papagei 2 4 90

Hamster 1 9 20

Ente 3 2 70

Husky 6 10 95

Auf die Idee würde ich nie kommen!

[Notiz] 
Bei nicht eindeutiger Abstimmung 
erhält der Cluster mit dem Punkt mit 
der kürzesten Distanz den Zuschlag.

[Notebook] 
Den zugehörigen Code findest du unter 
Kapitel 2/04-knn-loudness.ipynb.

Sagtest du nicht,  
  das ist eine Mehrheitsentscheidung?

[Schwierige Aufgabe] 
Versuchen wir doch mal, den Roten Panda 
mit der Größe von 4 und der Flauschigkeit 
von 9 einer Lautstärke zuzuordnen.
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Flauschigkeit und Größe der Tiere

def knn_regression(train_data, new_point, k=3): 
  distances = [] 
   
  for animal, (size, fluff, loudness) in train_data.items():*1 
    distance = euclidean_distance((size, fluff), new_point) 
    distances.append((distance, loudness)) 
 
  distances.sort()*2 
  k_nearest = distances[:k] 
 

[Notiz] 
Das Verfahren von KNN bei der Wertvorhersage ist das 
gleiche Prozedere wie bei der Clusterzuordnung. Der 
einzige Unterschied liegt darin, am Ende keinen Mehr-
heitsentscheid zu machen, sondern den (gewichteten) 
Durchschnittswert zu berechnen.

*1 Für jedes Tier die Distanz 
zum Roten Panda berechnen.

*2 Sortieren und die k 
Nachbarn selektieren.
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  avg_loudness = np.mean([loudness for _, loudness in k_nearest])*3 
  return avg_loudness 
 
predicted_loudness = knn_regression(animal_data, new_animal, k=3)*4 
print(f"Der geschätzte Lautstärkepegel des Roten Pandas beträgt: {predicted_
loudness:.2f} dB")

Der geschätzte Lautstärkepegel 
des Roten Pandas beträgt: 
53.33 dB

Dann wagen wir uns jetzt mal an einen richtigen Datensatz und die Verwendung einer Library.

*3 Hier ist der Unterschied zur 
Clusterzuordnung: Es wird der 

Durchschnittswert der Nachbarn 
gebildet und keine Abstimmung 

durchgeführt.

*4 Die Lautstärke des 
Pandas vorhersagen.

[Fehler/Müll] 
Unser KI-Modell zeigt die Funktionsweise des Algorithmus 
auf hoffentlich einprägsame Art und Weise. Allerdings ist 
dieses Modell nicht performant und selbstverständlich 
Müll. Es kann keine zuverlässigen Vorhersagen machen! 
Die Werte haben nichts miteinander zu tun und von der 
Größe und der Flauschigkeit eines Tieres lässt sich keine 
Lautstärke ableiten. KI-Modelle können nur Muster (statis-
tische Zusammenhänge) lernen – und hier gibt es kein 
Muster, das erlernt werden könnte.

Ich habe ja geahnt, dass da was faul ist,

als du mich gebeten hast, die Flauschigkeit

von Schlangen einzuschätzen …
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An die Nachbarn angepasst  
statt nur geschätzt

Der Iris-Datensatz enthält auch Labels für die Blumen und ist daher wunderbar für eine 
kleine K-Nearest-Neighbors-Übung einsetzbar:

import numpy as np 
from sklearn import datasets 
from sklearn.neighbors import KNeighborsClassifier 
 
iris = datasets.load_iris()*1 
X = iris.data*2 
y = iris.target*3

[Notebook] 
Den Code zu diesem Beispiel findest du hier: 
Kapitel 2/​05-knn-sklearn.ipynb.

[Zettel] 
SKLearn bietet für bestimmte Daten-
sätze eine einfache Art und Weise, 
diese zu laden. Unter anderem ist 
darin der Iris-Datensatz enthalten, 
den wir bereits benutzt haben.

*1 Iris-Datensatz laden.

*2 Die Daten an sich sind 
in der Eigenschaft data 

enthalten.

*3 Die Labels auslesen.
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Richtig, jedes Array entspricht einer Blume. Und da es viele Blumen sind, ist es ein Array von Arrays. 
Die Labels sind nur Werte von 0 – 2.

Wenn du iris.target_names verwendest, siehst du die Bezeichnungen der Blumen-
Klassen. 

['setosa' 'versicolor' 'virginica']

Verwendest du iris.feature_names bekommst du die Spaltenbezeichnungen angezeigt.

['sepal length (cm)', 'sepal 
width (cm)', 'petal length 
(cm)', 'petal width (cm)']

[Notieren/Üben] 
Sieh dir die Daten von  
data und target an.

Das ist ein Array von Arrays mit vielen Werten.

[Lösung]    
print(X) 
print(y)
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Nachdem du jetzt die Daten verstanden hast, wollen wir doch mal sehen,  
wie KNN die Klassifizierung durchführt.

knn = KNeighborsClassifier(n_neighbors=3)*1 
knn.fit(X, y)*2 
 
new_flower = np.array([[5.1, 3.5, 1.4, 0.2]])*3 
prediction = knn.predict(new_flower)*4 
print(f'Die Vorhersage für die neue Blume ist: {iris.target_names[prediction][0]}')

Oh, aber das sind doch einfach nur Einzeiler? 

Die Vorhersage für die neue 
Blume ist: setosa

Nur ein Einzeiler, und dennoch fehlt etwas Wesentliches –  
die Normalisierung!

*1 KNN verwenden 
mit 3 Nachbarn

*2 Trainieren

*3 Beispielblume 
initialisieren*4 Vorhersage treffen

Oh ja, genau!

[Einfache Aufgabe] 
Baue die Normalisierung ein.
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[Lösung] 
from sklearn.preprocessing import StandardScaler 
 
# Vor dem Aufruf der fit-Funktion das Normalisieren der Werte 
nicht vergessen! 
scaler = StandardScaler() 
X = scaler.fit_transform(X) 

Lust auf eine Regressionsaufgabe?

Es gibt auch einen Datensatz mit dem Namen fetch_california_housing,  
den du von sklearn.datasets importieren kannst.

Die Struktur ist wieder dieselbe und wir verwenden diesmal nicht den  
KNeighborsClassifier, sondern KNeighborsRegressor  
und fünf Nachbarn.

Selbstverständlich.
Legen wir los!

[Lösung] 
Hier findest du die fertige Lösung:  
Kapitel 2/06-knn-sklearn-regression.ipynb.
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Wie du siehst, sind die Merkmale im Datensatz wie folgt aufgebaut:

 i MedInc: Medianes Einkommen in der Blockgruppe

 i HouseAge: Durchschnittliches Alter der Häuser in der Blockgruppe

 i AveRooms: Durchschnittliche Anzahl der Zimmer pro Haushalt

 i AveBedrms: Durchschnittliche Anzahl der Schlafzimmer pro Haushalt

 i Population: Bevölkerung der Blockgruppe

 i AveOccup: Durchschnittliche Anzahl der Bewohner pro Haushalt

 i Latitude: Geografische Breite der Blockgruppe

 i Longitude: Geografische Länge der Blockgruppe

from sklearn.datasets import fetch_california_housing 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.preprocessing import StandardScaler 
 
# California-Housing-Datensatz laden 
california = fetch_california_housing() 
X = california.data 
y = california.target 
print(california.feature_names) 
print(california.target_names)

['MedInc', 'HouseAge', 
'AveRooms', 'AveBedrms', 
'Population', 'AveOccup', 'Lati-
tude', 'Longitude']
['MedHouseVal']

[Einfache Aufgabe] 
Erstelle den Regressor und 
trainiere das Modell.

[Schwierige Aufgabe] 
Importiere den Datensatz und lass 
dir die Merkmale und das Label 
ausgeben.
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[Lösung] 
knn_regressor = KNeighborsRegressor(n_neighbors=5) 
# Normalisieren der Werte nicht vergessen! 
scaler = StandardScaler() 
X = scaler.fit_transform(X) 
knn_regressor.fit(X, y)

Nun reicht es, ein Beispielhaus zu verwenden und wieder die predict-Methode aufzurufen.

new_house = np.array([[8.5, 41.0, 6.9, 1.1, 322.0, 2.5, 37.88, -122.23]]) 
predicted_price = knn_regressor.predict(new_house) 
print(f'Der Preis für das neue Haus ist: ${predicted_price[0] * 100000:.2f}')

Der vorhergesagte Preis für 
das neue Haus ist: $ 205420.00

Nun kannst du nicht nur Cluster erstellen, sondern diese auch für Klassifizierungen oder  
für Wertvorhersagen benutzen. Deinem Empfehlungssystem steht nichts mehr im Wege.

Und was, wenn der Algorithmus sagt,  
heute gibt es Dinkelpfannkuchen?

Sehen wir uns im nächsten Kapitel an, wie du prüfen kannst, wie gut die generierten  
Cluster sind – und was du damit anfangen kannst.

Vielleicht kann ich hier etwas machen,  
   das mir das nächste Mittagessen vorschlägt.

Dann stimmt was nicht.



140 Kapitel ZWEI

 i �Viele Algorithmen arbeiten mit Abstandsmetriken, die nicht nur in zwei- oder drei
dimensionalen Räumen funktionieren, sondern auch in hochdimensionalen Datenräu-
men zuverlässig eingesetzt werden können.

 i �Clustering-Algorithmen erstellen Cluster von Datenpunkten in diesem hochdimensio-
nalen Raum, die näher beisammen sind.

 i �K-Means-Daten sollten standardisiert oder normalisiert werden, da diese anfällig für 
unterschiedliche Skalierungen sind.

 i Zur Standardisierung wird der Z-Score verwendet.

 i K-Means-Clustering startet mit zufälligen Positionen für die Zentroide.

 i �Bei K-Means werden die Datenpunkte dem nächsten Cluster zugeordnet – also dem 
Cluster mit dem geringsten Abstand laut Abstandsmetrik.

 i �Nach der Zuordnung zu einem Cluster wird beim K-Means der Zentroid neu berechnet 
und in den Schwerpunkt des Clusters gesetzt. Die Zuordnung beginnt erneut.

 i �Zur Ermittlung von K bei K-Means kannst du die Ellenbogenanalyse oder die Silhou-
etten-Analyse durchführen – dazu mehr im nächsten Kapitel. Der DBScan-Algorith-
mus kann Ausreißer/Anomalien erkennen. 

 i �Der DBScan-Algorithmus ist ebenfalls auf Standardisierung oder Normalisierung 
angewiesen.

 i �Im Gegensatz zu K-Means generiert der DBScan-Algorithmus beliebige – auch 
gebogene – Cluster-Formen.

 i �Wir benötigen die Dichteangabe – die minimale Anzahl der Datenpunkte – sowie den 
Radius, den wir betrachten, als Hyperparameter beim DBScan. Die Anzahl der Clus-
ter ergibt sich dann aus der Bildungsregel der Cluster.

 i �K-Means und DBScan sind zwei Algorithmen aus der Klasse des unüberwachten Ler-
nens.

 i �KNN steht für K-Nearest-Neighbors. Also die K nächsten Nachbarn, wobei du den 
Wert für K wählst – also wie viele Nachbarn du betrachtest.

 i �KNN fällt unter überwachtes Lernen. Du benötigst also bereits fertige Cluster, um die-
sen anwenden zu können.

 i �Der KNN-Algorithmus kann sowohl zur Klassifikation als auch zur Regression einge-
setzt werden.
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