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Liebe Leserin, lieber Leser,

@

Du hast dir was vorgenommen:

kiinstliche Intelligenz
programmieren!

[ (e

Und dabei unterstiitzen wir (und nattirlich

Schrodinger) dich tatkriftig. Lass dich von

zwei hervorragenden Autoren begleiten, die

sich ordentlich ins Zeug gelegt haben, um dir 2
Neuronale Netze, Entscheidungsbaume und
allerhand Algorithmen verstandlich und
Schritt fur Schritt ndherzubringen.

Schrédinger nimmt dir dabei das Lernen
zwar nicht ab, stellt aber mit Sicherheit
die ein oder andere gute Frage und tiiftelt
mit dir am Code, bis alles sitzt und du
alles verstanden hast. Dank eingefirbtem
Code, jeder Menge Ubungen und Tipps und
Tricks werdet ihr das Kind schon schaukeln!

~ o <
4 fqh/ ’ “/le %7{[/04 os9q '@”t.

L(aMwij/azuAhU 15t scAajh [ahjé-
Z\ackjeﬁlq‘ea ./

Na dann auf in die wilde Welt b A
der KI — wir winschen viel SpaB! v

Hast du Feedback oder Fragen? Dann melde dich
gerne uber schroedinger@rheinwerk-verlag.de bei uns.



mailto:schroedinger@rheinwerk-verlag.de

zw E ' Abstands-
() ()

metriken,
K-Means,
DBScan und

K-Nearest-
utgute =

AuchDatenpunkta hahen Nachbarm. Sabhalageklartist,
was=nanh«genauhelgensoll;gehtesumurel
Algorithmen; dievollaut Nachbarschattabtahren:
K=Means,denintiuencerunterdenNachharn,derimmer
ImMittelpunktstehenmuss; sowie denangepassten
K=N@arest=Neighhor,derKeinaeigenaMelnungzuhahen
schelnt;undschilelichDBScan,dereine Fartynurdann
schmelBt,wennauchgenug Besucher kommen.




Nun, lieber Schrodinger, zeige ich dir ein paar Klassifizierungsverfahren.
Diese Verfahren kannst du dir alle rdumlich vorstellen. Die Algorithmen
betrachten die Daten(punkte) im Raum und deren Abstinde zueinander.

Welclio, R tmeansh ol

Die Merkmale — also die Features — spannen einen Raum auf. Einen Raum mit
vielen Dimensionen. Jedes Merkmal spannt dabei eine eigene Dimension auf.
Die Werte des Merkmals werden in dieser Achse eingereiht. So erhalten wir fiir
jeden Datensatz einen Vektor mit Werten. Jeder Wert entspricht einem Merkmal.

[Zettel]
Hochstgeschwindigkeit = 280 km/h 280 Zur Veranschaulichung werd
Leistung = 306 PS == ( 306 > wir uns immer mit - .en
Gewicht = 2200 kg 2200 Iner, meijs-

te.ns Zwei, manchma| auch drej

E'Tel:(sionen begniigen. Aber
S Tunktioniert j

Das Schone an Punkten in einer Ebene oder vielen Hl:)nné::::wrgs;ea;.c.h mit

auch im (n-dimensionalen) Raum ist, dass wir slonen!

Abstinde messen konnen.

Wir haben bereits besprochen, dass es hiufig

nur darum geht, Datensétze so in einem Raum anzuordnen,

dass diese einer bestimmten Semantik — also Bedeutung - folgen.

Beispielsweise gibt es fiir die Verarbeitung von Sprache ein Modell

mit dem Namen »Word2Vec«.

Dieses Modell erlaubt es, Worter auf eine ganz bestimmte

Art und Weise in einen Vektor umzurechnen.

(/{h/ ~eas énhjlz &'{DLS?

Die Vektoren sind so angeordnet, dass wir damit rechnen konnen und dass sie die
Bedeutung abbilden. Beispielsweise konnen wir die Worter »Konig« und »Sohn« in
Vektoren umrechnen, sie addieren und wieder in ein Wort zuriickwandeln. Dieser
Ziel-Vektor zeigt ziemlich genau dorthin, wo auch das Wort »Prinz« steht. Addieren
wir zum Wort »Prinz« das Wort »Midcheng, sind wir in der Nihe der »Prinzessin«.

[Ablage]
Die Vektoren sind die Positionen der Worter ~ /"
in einem hochdimensionalen Raum. C\ 7 t

7 L\—-\ / T e
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Um Algorithmen auf die Daten anzuwenden, brauchen wir ein Mal fiir den Abstand, also die Distanz

zwischen Datenpunkten - eine Distanzmetrik. Es gibt verschiedene Distanzmetriken, wir schauen uns
ein paar einfache an.

Wie willeh ol Aen Aé%ﬂbw/ CranolessS e SSen

Die Linie ist der intuitivste Abstand - die euklidische Distanz.

Y ) Ich zeige dir noch andere einfache Arten, die Distanz zu messen.

N L)
[Zettel] )
Auch die aktuell grobten unc:—: e

e e e ner Wir beschrinken uns zur Anschauung auf den zweidimensionalen

| .
genhrSChemHChke.‘tsmaSChme'n Raum, das ist nicht nur in einem Buch zum Lernen leichter. Schau dir
Wad e ! s 8L die beiden griinen Punkte im Bild an. Welchen Abstand haben die?
e Fumen.

i ionalen Raum

hochdimensio

Manhattan

Grafische Darstellung der Abstandsmetriken

Abstandsmetrikena. K-Meansa DBScan und K-Nearest-Neighbor



/)/é L/)‘mé, Wo ,/gmééé'{// ﬂ{mh%da[.

Das 154 oles Absberad 2uwiscllo. oton Sercten, Poobiben.

Das ist die euklidische Distanz, das intuitivste MafS fiir den Abstand.

diStEuklid = \/sz + AyZ

[Begriffsdefinition]
Die euklidische Distanz
ist die Lange der direkten
Verbindung zwischen zwei Punkten und
/4[\' '01, kann mithilfe des pythagoreischen Lehr-

e . satzes ausgerechnet werden.
p{pzs mcéﬁ\//bK’AQ& /)hdM.

Genau, der Abstand ist die Hypotenuse, also das ¢ in Pythagoras'.
a’ + b? = ¢?

Jetzt stell dir vor, du bist in einer Stadt mit Stralen wie ein Schachbrettmuster, zum Beispiel in Mann-
heim oder Manhattan. Und du bist kein Vogel und darfst nur die Strallen entlang gehen. Dann sind
im Bild die hellgriinen Linien der Weg zwischen den Punkten. Dann bekommst du die Manhattan-

Distanz. Die ist viel einfacher zu berechnen: fiir jede Dimension den Abstand. Du summierst also
lediglich die Einzelkomponenten auf.

distyann = Ax + Ay

[Zettell .

Die euklidische Distanz hat dznal;lsazz\t;‘: Hin und wieder geht es nicht um den Abstand, sondern
dass die Berechnung des Q‘ua |r i AT die Richtung. Hierfiir existiert die Cosinus-Ahnlichkeit
die Berechnung fjer Wu_l.'ze e zom — (Cosine-Similarity), die beschreibt, ob sich die beiden
wendige Operationen o dhernhauﬁgpnicht Punkte in der gleichen Richtung befinden oder nicht.

sind. Auerdem gefi .eS » ermitteln Wenn ein Beobachter im Leuchtturm (am Ursprung)
darum, eine exakte Distanz ZEL: mente ’ zwei Schiffe erblickt, sagt uns die Cosinus-Ahnlichkeit,
sondern nur darum.- welcht‘; ) ird gerne wie »nah« die beiden Schiffe einander aus seiner Blick-
nanet bes\silnmegisstl::z. \?:'vfgnvc\:/iet. ° richtung sind. Ein hoher Wert bedeutet, dass er sein
die Manhattan-

Fernrohr nur wenig bewegen muss, um vom einen
zum anderen Schiff zu schwenken. Ein niedriger Wert
bedeutet, dass er es deutlich weiterbewegen muss.

72 Kapitel ZWEI



“é,/’/
e v
- 7

|

|

P ’ !
-~ Manhattan L [

________ A
/7
/ L7
1 Vs
Ve
/ i
! ’ (6) Cl'b
’\/ sim.,.= cos(f) = ———
;S cos llall - 1]l
> 4
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/ ’
/ Ve

Weas soll o, Ays bectevten €

Distanzmetriken vom Leuchtturm aus betrachtet

Ups, sorry. Also:

A und B sind die beiden Punkte. Im Zahler werden die x-Werte und y-Werte
von den Punkten multipliziert, die Ergebnisse addiert. Im Nenner haben wir

den euklidischen Abstand vom Nullpunkt zum Punkt, den wir betrachten.
Ich schreibe dir nochmals mit den Details fiir die Punkte A und B hin:

ayxby, + a,b,

/axz + a,? /bxz + by2

Oben im Zihler werden die Komponenten der Vektoren multipliziert und die Ein-

sim.ys(a,b) =

zelwerte addiert und unten im Nenner werden die Abstinde zum Nullpunkt (also
die Lingen der Vektoren) miteinander multipliziert.

[Hintergrundinfo]

Die Cosinus-Ahnlichkeit wurde bereits in .

den 1960er-Jahren fir die Ermittlung von /\/01 )“l
Ahnlichkeiten zwischen Texten verwendet. o

Sie wurde in Suchmaschinen (damals »Infor- 040!)/*
mation-Retrieval-Systeme«) eingesetzt.
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[Ablage]
Die Cosinus-Ahnlichkeit wird beispielsweise bei Bag-of-Words-Verfahren
(damit beschaftigen wir uns spéter) und anderen Verfahren eingesetzt, bei

denen es darum geht, ob zwei Vektoren unabhédngig von ihrer Lange in die
gleiche Richtung zeigen und somit eine dhnliche Bedeutung haben.
Vereinfacht kannst du dir es so vorstellen: »Heute scheint die Sonne«
und »Heute scheint die Sonne besonders stark« sind zwei dhnliche Satze.
Werden sie in Vektoren abgebildet, so zeigen diese in eine sehr dhnliche
Richtung — in der Zeitachse zeigen beide auf den heutigen Tag, in der Sub-
jekt-Achse beide in Richtung Sonne, in der Intensitdtsachse zeigen beide in
eine positive Richtung, wenn auch der eine langer ist als der andere. Nach
der Cosinus-Ahnlichkeit sind sich diese beiden Vektoren sehr dhnlich.

Und jetzt halt dich fest: Das geht auch mit sehr vielen Dimensionen.
Wie angektindigt funktionieren die Metriken in vielen Dimensionen.

Die kénnten wir nicht mehr mit Buchstaben wie X, y und Z erfassen.

Schrodinger, es sind viel mehr als 26!

Also nennen wir sie X,. Jedes I steht fiir eine Dimension.
Dann kénnen wir die entsprechenden Formeln verallgemeinern.

Die Manhattan-Distanz in N Dimensionen °® ®

N
diStManh = Z 1Axi
i=

Also statt nur zwei Werte zu addieren, zeigt die Summe an,
dass du die Werte fiir alle N Dimensionen aufaddierst. —

Die euklidische Distanz in N Dimensionen L/Qr

Wate! f\%q(j\(/\\/

I
i=1 ——

e’

distgykiq =
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Wunderbar!
Du hast verstanden, wie du die Ahnlichkeitsformeln verallgemeinerst.
Und jetzt die Cosinus-Ahnlichkeit.

— v N_ a;b;
S\ simg,s(a,b) = cos (0) = =

2
5 a 3 b

Schaut wieder schlimmer aus, als es ist. Unten stehen die Lingen der beiden Vektoren, also der

Abstand vom Nullpunkt zum Punkt, auf den der jeweilige Vektor zeigt — genauer gesagt die
euklidische Distanz —, und die werden wieder multipliziert. Im Zihler stehen die aufaddierten
Produkte der Einzelkomponenten des Vektors, also die Werte der einzelnen Merkmale.

[Achtung]

Euklid und Manhattan sind Distanzen, die
Cosinus-Ahnlichkeit ist wirklich eine Ahnlichkeit.
Bei den Distanzen gilt: je groRer, desto ungleicher.
Bei den Ahnlichkeiten verhilt es sich umgekehrt.
Um die Cosinus-Distanz zu erhalten, rechnest du
einfach 1 — Ahnlichkeit.

Und hier noch die
Cosinus-Distanz fur N Dimensionen

dist..s(a,b) =1 — sim.y(a,b)

Wihrend bei unseren folgenden Algorithmen erst einmal Manhattan und Euklid zum Einsatz kommen,
ist die Cosinus-Distanz wichtig fir NLP (Natural Language Processing) - wenn es also um Sprachen
und Suchmaschinen geht. Das Beispiel mit Word2Vec kennst du ja bereits.

Abstandsmetrikena. K-Meansa DBScan und K-Nearest-Neighbor
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Bei der Messung von Entfernungen missen wir noch darauf achten,
dass die Werte normalisiert sind.

Z,:A/e/r F f‘ﬂ{”’/"\ ;

Stell dir zwei Merkmale vor, die Linge eines Flugzeuges und die Reichweite. Die Linge wird in einigen
Metern gemessen, wahrend die Reichweite eines Flugzeuges Tausende Kilometer betragen kann. Wenn du dir
die Vektoren im Raum vorstellst, dann ist der Einfluss der Flugzeuglinge minimal.

Ich habe hier sechs Flugzeuge fiir dich dargestellt. Die Linge betrigt 37 m bis 73 m.

Die Reichweiten liegen jedoch zwischen 5765km und 15200km. Andert sich die Linge um 10%, dann
macht das kaum einen Unterschied in der Positionierung der Punkte. Andert sich jedoch die Reichwei-
te um 10%, dann sieht das Bild gleich ganz anders aus.

80 '
L ‘ [ ) Py
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Viele Algorithmen reagieren auf derartige Unausgewogenheiten allergisch. Sie wollen Werte, die sich im
gleichen Wertebereich aufhalten und nicht aus der Reihe tanzen. Deshalb normalisiert man die Daten.

[Achtung]

Eine wesentliche Aufgabe bei der Datenvorbereitung ist die

Normalisierung der Daten. Die dient dazu, dass Algorithmen —
gleiche bzw. dhnliche Bedingungen bei allen Merkmalen vorfin-

den und nicht durch ein Ungleichgewicht bestimmten Werten in é
Merkmalsvektoren zu viel Bedeutung zukommen lassen, wéh-

rend sie andere Werte im Merkmalsvektor ignorieren.
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[Begriffsdefinition]

Der Z-Score bezeichnet den nor-
malisierten Wert eines Merkmals
innerhalb eines Datensatzes und
ist wie folgt definiert:

Wir benoétigen also die Standardabweichung und den Durchschnitt der Werte des Merkmals.

Anschliefend gehen wir jeden Wert durch, subtrahieren den Durchschnitt und dividieren das Ergebnis
durch die Standardabweichung des Merkmals.

)a, e Séwﬁw/mévefcdwj

bear Mc4ma//4(/‘o‘,‘aw,

[Begriffsdefinition]
Die Standardabweichung misst die Streuung und

beschreibt die durchschnittliche Abweichung zum
Mittelwert. Sie ist wie folgt definiert:

1 _
= e i=1(x; — %)?

[Zettel]

Die Z-Werte sind Werte, deren
Durchschnitt 0 und eine Standard-
abweichung von 1 ergeben, und
swar unabhingig von der GroBe
und Einheit der Originalwerte.

[Begriffsdefinition]
Der Z-Wert wird oftmals auch
als Standard-Scaler bezeichnet.

Durch diesen Mechanismus hast du nun normalisierte Werte,

mit denen Algorithmen besser arbeiten konnen,
selbst wenn sie sich leicht ablenken lassen.
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Wie dhnlich wir uns doch sind

Ganz kurz miissen wir uns noch mit den Abstandsmetriken beschiftigen, sei es rechne-
risch — nur um sicherzugehen, du kannst das bestimmt schon — oder eben im Code.

Denn wie gesagt: Nahezu alle KI-Systeme machen sich Vektoren und Abstinde zunutze.
Implementieren wir also ein paar kleine Funktionen, die die Metriken ausgeben.

Distanzen mit

Pythagoras messen
Lgyklidische Distanz \

import math

def euclidean distance(pointl, point2):
return math.sqrt(sum((xl - x2)**2 for x1, x2 in zip@l(pointl,
point2)))

Ein Punkt hat mehrere Koordinaten und
ist so abgebildet: [x1, x2]. Die
Funktion z1p kombiniert zwei Listen.

So funktioniert
die zip-Funktion

listl = [1, 2, 3]
list2 ['a'y 'D', 'c']

# Verwende zip, um die beiden Listen zu kombinieren
zipped = zip(listl, list2){
print(list(zipped))
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[(1,'a"), 2,'D), B, 'c)] ’:\

[Einfache Aufgabel /

Was ist der Abstand zwischen
den Punkten p1(3,5) und
P2(4,6)>

"

l‘”

[Erledigt!]
pl = (3,5)
P2 = (4,6)

print(euclidean distance(pl, p2))

Abstande in New York

Bei der Manhattan-Distanz werden lediglich die positiven Differenzen
der Koordinaten gebildet und aufaddiert.
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[Einfache Aufgabe]
Schreibe nun die entsprechende Funktion

manhattan distance

[Erledigt!]
def manhattan distance(pointl, point2):
return sum(abs(xl — x2) for xl, x2 in zip(pointl, point2))

Wenn wir die gleichen Punkte einsetzen, erhalten wir hier einen Abstand von 2.

Die Cosinus-Ahnlichkeit

Du erinnerst dich an die Cosinus-Ahnlichkeit, die lediglich priift, ob die beiden Vektoren (der Pfeil
von (0,0) zum Punkt) in die gleiche oder in eine dhnliche Richtung zeigen. Diese Ahnlichkeit ist kein
Abstand, sondern umgekehrt kleiner, wenn die Richtung weiter auseinanderliegt. Man kann daraus
aber den Richtungsabstand ermitteln. Der Abstand ist dann eins minus der Cosinus-Ahnlichkeit.

Ubersetzen wir also die mathematische Formel in

Code fir den Richtungsabstand

Das ist der Zahler in der Formel.

def cosine similarity(vectorl, vector2):
dot_product = sum(x * y for x, y in zip(vectorl, vector2))il
magnitudel = math.sqrt(sum(x ** 2 for x in vectorl))@#
magnitude?2 = math.sqrt(sum(y ** 2 for y in vector2))

if magnitudel == 0 or magnitude2 == 0: Die beiden magnitude-
return 0.0F Werte kommen dann in den
Nenner.

return dot_product / (magnitudel * magnitude2)
def cosine distance(vectorl, vector2):
similarity = cosine similarity(vectorl, vector2)

Die Ahnlichkeit ist O,
wenn einer der Vektoren
ein Nullvektor ist.

return 1 - similarity
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Hier ergibt sich eine Distanz zwischen unseren beiden Punkten von 0,001.
Also zeigen diese Vektoren in die gleiche Richtung!

(/{h%»c, Fméﬁmﬂa-—‘ /{‘1«/(746*1—:/6._(&-\
j%&f wbe s nig 1w 2D~ Rengin

Bist du dir sicher? Probiere es aus:

pl = (3, 5, 1)
PZ = (4, 6, 2)

Euklid: 1.732
Manbhattan: 3
Cosinus: 0.006
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Abstoincte. Erau

/g/\
nnZo (v |

KI-Systeme, egal ob Algorithmen oder Modelle, basieren auf Abstinden und der

Anordnung von Daten in einem mehrdimensionalen Raum. Was wir daher bens-

tigen, ist die Moglichkeit, Abstinde zu messen. Und da der Computer gut mit Zahlen

kann, wird alles in Zahlen umgewandelt. Mit Zahlen kénnen wir gut Abstinde messen.
Wir verwenden nun Abstinde um Daten, die nahe beisammen sind, zu Gruppen
zusammenzufithren. Das ist Clustering. Wir verwenden also Abstinde, um neue
Datensitze im Raum einzuordnen und auf Basis von bekannten Daten in diesem
Raum, die nah an unserem Datenpunkt sind, Durchschnittswerte zu generieren
und somit Vorhersagen zu machen. Das ist beispielsweise Regression mit

K-Nearest-Neighbor.

Die Gesichtserkennung auf einem Smartphone macht nichts anderes als die Bilder, die der Rechner von dir
bereits gesehen hat, so in einem Raum anzuordnen, dass alle Bilder von dir in einem engen Bereich sind, wih-
rend Bilder von anderen Personen einen groferen Abstand haben. Ist der Abstand gering genug, so wird der

Rechner entsperrt.

/)u Cowz/om((/( vr‘ﬁ'ﬂw‘( PR 8/&,{%2

Nein, der Computer errechnet aus deinem Bild Merkmale,
also wieder Vektoren, die entsprechend eingeordnet werden.
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[Zettel]
Selbst Wérter werden in Vektoren
umgerechnet, um anschlieRend

Ahnlichkeiten zwischen Wértern
Zu ermitteln.



Sehen wir uns den ersten konkreten Algorithmus zur Bildung von Clustern an:
K-Means. Wenn du Daten — scheinbar ohne Bedeutung — hast, und diese in Bereiche
zusammenfassen mochtest, dann bist du oftmals mit K-Means gut bedient.

(el betfe vin oo Belﬁf/?(.

Du hast Farbbilder (mit bis zu 16,7 Mio. unterschiedlichen Farben) und du mochtest diese
Farben auf zum Beispiel 256 Farben reduzieren, um die Bilder stirker zu komprimieren.
Dann stellt sich die Frage: Welche der 256 Farben willst du verwenden?

Du konntest den ganzen Farbraum in moglichst gleiche Teile aufteilen und dann entspre-
chend reprisentative Farben verwenden. Wahrscheinlich hast du aber einzelne Bereiche,
die gar nicht vorkommen, und andere Farbbereiche liefen sich feiner aufteilen.

K-Means kann dir die Antwort liefern, welche Farben du verwenden sollst.

Egal, was du gruppieren mochtest, ob Dokumente, Farben, Kundensegmentierung oder
Gene (Genexpressionsanalyse) — K-Means macht genau das: Daten gruppieren. Das nennt
man auch »klassifizieren.

/ 5 oo Alyorthinas
Yol ZZ«V?’WZ@C&M/Q /S %X:Jv/é/ 4 v\,/u Ao sl

Erst einmal gar nicht. Das ist das K im K-Means, und das musst du festlegen.
Bei der Farbreduktion der Bilder wire K beispielsweise 256. Er wiirde dir
damit 256 Cluster erstellen. Wenn du Kunden in 3 Segmente einteilen moch-
test, dann verwendest du als K den Wert 3.
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Lege fest, wie viele Cluster du erstellen mdchtest. Lege also das K fest.
Erzeuge K Zentroide (Stellvertreter), die du an zufillige Positionen setzt.

Weise jeden Datenpunkt dem Zentroiden zu, der den geringsten Abstand
zum Datenpunkt aufweist.

Setze nun die Zentroide in das Zentrum der zugewiesenen Daten.

[Zettel]
Wiederhole den Vorgang so oft du willst und brich ab, Am einfachsten positionierst
wenn sich nichts mehr dndert. du die Zentroide, indem du

fir jede Dimension eine
Zufallszahl zwischen dem
(zette? N.\imma'.- und Maximalwert
Das Ergebnis des K-Means-Algorithmus sind die dieser Dimension S
K Stellvertreter (Zentroide), die die K Cluster
reprasentieren. AuRerdem kannst du mithilfe
dieser Zentroide auch neue Datensétze den
Clustern zuordnen. Du musst lediglich die
Abstinde zu den Zentroiden berechnen. Der
neue Datenpunkt gehort dann zum Cluster mit 7 :
dem geringsten Abstand zum Zentroiden. A 45&7/1& C?"'\«/O/O.v_‘_\
Jenesrieso oA
ZM&"‘&A..;.._\ i

Grofiahs,

[Begriffsdefinition]

Die Zentroide sitzen im Schwerpunkt des ent-
sprechenden Clusters. Der Schwerpunkt ist
nichts anderes als das Zentrum eines Clusters.
Das Zentrum kannst du ermitteln, indem du ein-
fach die Durchschnittswerte (Mittelwerte) fir
jede Dimension ermittelst.

bey voarte. -

Das passiert, indem du diese Zuordnung und Positionierung mehrfach durchfiihrst: 10 bis 100 Mal.
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Ist das garantiert das beste Ergebnis? Nein!

[Achtung]

Da K-Means mit zufélligen Positionen
startet, kann der Algorithmus bei den
gleichen Daten und bei mehrfacher

- \_—ff\’;’
—
Durchfithrung auch zu unterschiedlichen 7

Cluster-Ergebnissen fihren. /

Detan L‘/""% /cefL wiecls . p,,,%{/ / ,’ \

0 oas Ergx,éhnk /oas%./ m m
N

Ja, wir mussen das Ergebnis noch qualitativ tberpriifen und unter Umstidnden
den Algorithmus erneut durchlaufen lassen.
Wie wir diese Uberpriifung durchfithren kénnen, zeige ich dir im nichsten Kapitel. Vorab mochte

ich das Thema praktisch mit Code durchgehen und dir anschlieBend zeigen, was du tun kannst, wenn
du dir nicht sicher bist, welches K du wihlen sollst.

/)mg /;4;)'& HW({/
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[Zettell
Das Ergebnis des K-Means-Algo-

rithmus sind die Positionen der
Zentroide. Mithilfe dieser Positio-
nen konnen alle Datenpunkte und
neue Datenpunkte den Gruppen
zugeordnet werden. Somit sinc_i
mit den Positionen der Zentroide
und mit der Abstandsmetrik die
Cluster definiert.

[Achtung]
K-Means ist empfindlich gegeniiber Skalierungsthemen.
Deshalb solltest du die Werte vor der Anwendung des
Algorithmus mit dem Z-Score standardisieren. Damit du
spater neue Datenpunkte korrekt zuordnen kannst, musst
du zuséatzlich zu den Clusterzentren auch den Mittelwert
und die Standardabweichung der urspriinglichen Daten
speichern. Diese beiden Parameter haben wir fiir die Stan-
dardisierung benétigt und du brauchst sie, um neue Werte
e auf die gleiche Weise zu standardisieren wie die urspriing-
lichen. Nur so ist eine konsistente Zuordnung méglich.
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Dramaqueens und Sportskanonen

Ich mochte das Thema nochmal anhand eines Datensatzes mit dir durchgehen.
Ich zeige dir auch sofort das grafische Ergebnis und dann geht es ran an den Code.
Wir nehmen also unterschiedliche Tiere mit den Merkmalen Bewegungsdrang und dem Drama-Potenzial.

. Drama- Bewegungs- .
Tier . Begriindung
Potenzial drang
Pfau 10 2 Prasentiert stolz sein Rad, steht aber meist nur rum.
Faultier 1 1 Null Stress, null Show - lachelt in Zeitlupe.
. Springt bei jedem Rascheln in die Luft — Zoomies um 3 Uhr
Zwergkaninchen 6 9
nachts!
Koala 3 2 Schlaft einfach weiter - eukalyptushungriges Stativ.
Krake 8 7 Spritzt Tinte und entkommt aus Aquarien. 8 Arme = 8x Action!
(el 5 A Rollt sich bei Gefahr zur stacheligen Murmel - nachtlicher
& Snack-Laufer.
Quakt lautstark um Brotkrumen - watschelt, schwimmt, fliegt
Ente 7 6
kurz.
Panda 4 3 Fillt gelegentlich vom Baum - Bambus kauen ist Sport.
Hydne 9 8 Lacht hysterisch im Mondlicht - rennt Rudeln hinterher.
. Steht auf zwei Beinen und schreit »\GEFAHR!« — Buddel-
Erdmannchen 8 9
Marathons. (
Kanguru 7 8 Boxt und hiipft durch die Gegend - immer in Bewegung. p
Schildkrote 2 1 Langsam und gemiitlich — null Drama, null Hektik.
Papagei 9 6 Plappert den ganzen Tag - fliegt und klettert viel.
Eichhérnchen 5 7 Sammelt Niisse wie verriickt - flitzt durch die Baume.
i Steht elegant auf einem Bein - balanciert und watet ge-
Flamingo 8 5

machlich.

Wir wollen diese Tiere nun in 4 Cluster einteilen.
Z( 1A b4, e
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Wenn nun der Algorithmus durchlduft, dann werden 4 zufillige Werte fiir das Drama-Potenzial
und den Bewegungsdrang erstellt. Das sind die Werte unserer initialen Zentroide.

AnschlieBend weisen wir die Tiere dem riumlich nichsten Cluster zu und verschieben den Zentroiden

des Clusters in den neuen Schwerpunkt. Der Cluster hat einen Zentroiden mit dem durchschnittlichen
Bewegungsdrang und dem durchschnittlichen Drama-Potenzial der ihm zugewiesenen Tiere.

co /
/ Ab.

AnschlieRend weisen wir die Tiere wieder dem raumlich nichsten Zentroiden zu und berechnen
erneut die Position der Zentroide mit den durchschnittlichen Bewegungsdrang- und Drama-Werten.

Am Ende haben wir die Tiere in 4 Cluster eingeteilt.

Tier-Clustering: Drama vs. Bewegung
10
Cluster
9] .Zwergkamnchen .Erdrr'annchen @ Drama-Queens im Chil-Modus
@ Turbulente Theaterstars
) @ Sportliche Minimalisten
8 - g fyane @ Chillige Zeitgenossen
Turbulente Theaterstars
S 7 .Elchhornchen .Krake
i
—
‘;‘ 61 .Ente .Papagel
c
[
=
Flami
% 5 Py amingo
c
g‘ DOrama-Queens im Chill-Modus
el - i
= 4 X
L]
fia)
34 °Panda
Koala lprtliche Minimalisten
2 - L
Chillige Zeitgenossen
Faultler&chlldkrdte
1@ L)
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Drama-Potenzial (1-10)

Zuordnung der Tiere in Cluster mit den entsprechenden Zentroiden

Es konnen sogar Werte abgesondert werden, wie in unserem Fall der Pfau,
der einen eigenen Cluster bildet.

pDes Pf;wz 15 050, e Kasse /4? srcd.
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Schwere Stellvertreter '

Ich mochte mit dir kurz einen Teil eines berithmten Machine-Learning-Datensatzes
verwenden, und zwar des Iris-Flower-Datensatzes. In diesem Datensatz befinden sich
Messdaten verschiedener Orchideenbliiten. Es wurden die Kelchblitter (Sepal) und die
Bluitenbldtter (Petal) unterschiedlicher Spezies vermessen und aufgelistet. Es ist ein
Datensatz mit wenigen Merkmalen und daher fiir unsere Visualisierungszwecke hier
gut geeignet.

Wir werden den Datensatz in unterschiedlichen Schritten visualisieren, damit du
genau siehst, was hier passiert. Damit es einfach bleibt in der Visualisierung, ver-
wenden wir nur zwei Attribute.
Wi 166 1hn et 2000 A e wesstelu,
fodebomie S les becthinmit conch

ol 700 A nbuten.

Genau! Dieser Datensatz hier besitzt allerdings
erst einmal nur 4 Attribute insgesamt.

Wir verwenden nun K-Means mit zwei Clustern und den Attributen ‘

sepal lengthund sepal width.

from matplotlib import pyplot as plt
df.plot(kind='scatter', x='sepal length', y='sepal width', s=32, alpha=.8)

=.. B . . . .




3.5 A

sepal_width

W
(=]
1

6.0 6.5
sepal_length

Darstellung der beiden Attribute »sepal_width« und »sepal_length« als Scatter-Plot

Die Visualisierung zeigt, wie die Messergebnisse verteilt sind. Nun kannst du dir tiberlegen, wie
du selbst die Daten in zwei Gruppen einteilen wiirdest. Laut Algorithmus verwenden wir zufillige
Positionen fiir die Zentroiden.

[Notiz]

Die Position der Zentroide soll
irgendwo innerhalb der Daten
sein, daher verwenden wir einen
Zufallswert zwischen den Mini-
mal- und Maximalwerten.

Fel it oo s ZL/L{ taa
e Séa/w:xﬁwubw\j oloe LS 1

D

[Achtung]

Du hast vollkommen Recht!
Ich méchte dir jetzt erst einmal den
Algorithmus und den Ablauf zeigen.
Die Werte sind bei diesem Beispiel
nicht so weit auseinander und es
ergibt sich ein schéneres Bild, daher
verzichten wir hier vorerst auf die
Standardisierung.
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19009 0 00000

import random

df['sepal length'].min()
df['sepal length'].max()
df['sepal width'].min()
df['sepal width'].max()

sl min

sl max

sw_min

SW_max
centroidl x = random.uniform(sl min, sl max)

centroidl_y = random.uniform(sw_min, sw_max)
centroid2 x random.uniform(sl min, sl max) '
centroid2_y = random.uniform(sw_min, sw_max)

Jetzt zeichnen wir uns das Diagramm neu —
inklusive der Zentroide.

%
df.plot(kind='scatter', x='sepal length', y='sepal width', s=32, alpha=.8)

Die Zentroide zum Plot
hinzufiigen

plt.scatter( centroidl x, centroidl y, color='red', marker='x',
s=100, label='Zentroid 1"')

plt.scatter( centroid2 x, centroid2 x, color='blue', marker='x',
s=100, label='Zentroid 2')
plt.legend()

plt.show()
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Der Datensatz mit den Zentroiden

Der nichste Schritt im Algorithmus ist die Zuordnung jedes Datensatzes zum entsprechen-
den Zentroiden. Hierfiir verwenden wir numpy. Das ist eine beliebte Python-Library mit
unzédhligen nitzlichen Datenstrukturen und Funktionen fiir Berechnungen.

import numpy as np

df['distance to_centroidl'] = np.sqrt((df['sepal length'] -
centroidl x)**2 + (df['sepal width'] - centroidl y)*%2)*2
df['distance to centroid2'] = np.sqrt((df['sepal length'] -
centroid2 x)**2 + (df['sepal width'] - centroid2 y)*%*2)

Es werden zwei Spalten zum Pandas-
DataFrame hinzugefiigt: die Distanz zum
ersten Zentroiden und die Distanz vom

Datenpunkt zum zweiten Zentroiden.

[Einfache Aufgabel
Sieh dir den Code genau an. Wel-

che Distanzmetrik wird verwendet? L‘/I/I"\&W( n ')("620;01&'{"41[ aen
Aos 154 olos EublaA!
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Wunderbar, du hast das vollkommen richtig erkannt.
Wir erstellen eine neue Pseudospalte, in der der Zentroid steht.

Kapitel ZWEI

In der Spalte closest_centroid
steht nun entweder 1 oder 2, je nachdem,
welcher Zentroid dem Datensatz néher ist.

df['closest centroid'] = np.where(df['distance to centroidl’']
< df['distance_to_ centroid2'], 1, 2)

Péaan ]41?6& wir vaal e _\_(

plt.figure(figsize=(8, 6))

for centroid in [1, 2]:
subset = df[df['closest centroid'] == centroid]
plt.scatter(subset['sepal length'],

subset['sepal width'], label=f'Zuordnung zu {centroid}', alpha=0.7)

plt.scatter(centroidl x, centroidl y, color='red', marker='x', s=100,
label='Zentroid 1'")
plt.scatter(centroid2 x, centroid2 y, color='blue', marker='x', s=100,
label='Zentroid 2'")

plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Data Points Colored by Closest Centroid')
plt.legend()
plt.show()



Data Points Colored by Closest Centroid

Zuordnung zu 1
Zuordnung zu 2
Zentroid 1
Zentroid 2
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Initialzuordnung der Datenpunkte zu den Zentroiden

Durch die zufillig gewdhlten Startpositionen ergeben sich nun die Zuordnungen in der Abbildung. Offensicht-
lich sind die Zentroide aber nicht im Schwerpunkt der Punkte.

Also mf&mwz norclisho, So'/\r/%[,' :
Ao ectroicte 1n e Sa:{'a/u/ohmés,é vesscliebe . .

Wir berechnen uns also den Durchschnittswert der X-Werte (S epal_length) von den Daten, die dem
ersten Zentroiden zugeordnet sind, und setzen den entsprechenden X-Wert. Gleiches wird mit den Y-Werten
(s epal_width) gemacht und anschliefend wiederholen wir das Szenario flir den zweiten Zentroiden.

new_centroidl x df[df['closest centroid'] 1]['sepal length'].mean()
new centroidl y df[df['closest centroid'] 1]1['sepal width'].mean()

Wir selektieren nur die Daten des ersten
Zentroiden und verwenden die Werte der
sepal_length. Davon wird der
Mittelwert berechnet.

new_centroid2 x df[df['closest centroid'] 2]1['sepal length'].mean()
new_centroid2 y df[df['closest centroid'] 2]['sepal width'].mean()
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[Erledigt!]

plt.figure(figsize=(8, 6))
for centroid in [1l, 2]:
subset = df[df['closest centroid'] == centroid]

plt.scatter(subset['sepal length'], subset['sepal width'],
label=f'Zuordnung zu {centroid}', alpha=0.7)

plt.scatter(new_centroidl x, new centroidl y, color='red',

marker='x', s=100, label='Neuer Zentroid 1'")
plt.scatter(new_centroid2 x, new centroid2 y, color='blue',

marker='x', s=100, label='Neuer Zentroid 2'")
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Data Points with Updated Centroids')
plt.legend()
plt.show()

Data Points with Updated Centroids

Zuordnung zu 1
Zuordnung zu 2
Neuer Zentroid 1
Neuer Zentroid 2
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eupositionierung der Zentroide
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Nun stimmen die Zuordnungen allerdings nicht mehr, da wir die Zentroide verschoben haben.
Wir ordnen die Datenpunkte daher den neuen Zentroiden zu. —

Sobald sich etwas dndert, sitzen die Zentroide wieder nicht im Schwerpunkt und dieser Schritt
wird wiederholt — und so geht es weiter ...

Nach 10 Durchlaufen ergeben sich folgende
Zentroide und Zuordnungen:

Data Points with Final Centroids
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K-Means-Clustering nach 10 Durchlaufen

Hattest du auch diese Cluster gebildet?
.

gld’"l/ ”‘f"’:"l
1ol Lol wo
waﬂ( olen ,Qe,g‘l[ ZuSotann fontnn

[Achtung]
Aufgrund der zufélligen Startpunkte der Zentroide

([ elss e Podibe lonks obe—
ﬁs%.

kénnen sich bei dir andere Cluster ergeben, wenn

du den Code ausfiihrst. Das ist nicht falsch, sondern
liegt einfach an der Art und Weise, wie dieser
Algorithmus funktioniert.
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[Schwierige Aufgabe]

Implementiere den Prozess nun so, dass er automatisch
10 oder 100 Mal in einer Schleife die Zentroide anpasst.
Am Ende soll die angepasste Plot-Ausgabe erscheinen.

& Eine kleine Hilfsfunktion fiir die
Distanzberechnung mit dem Euklid

random.uniform(df['sepal length'].min(), df['sepal length'].max())
random.uniform(df['sepal width'].min(), df['sepal width'].max())

random.uniform(df['sepal length'].min(), df['sepal length'].max())
random.uniform(df['sepal width'].min(), df['sepal width'].max())
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Nach der Schleife kannst du das Diagramm noch ausgeben.
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[Erledigt!]

for column in ['sepal length', 'sepal width']:
df[column] = (df[column] - df[column].mean()) /
df [column].std()

[Achtung]

Die Standardisierung ist normaler-
weise der allererste Schritt, noch
bevor du die Zentroide erstellst.

Vergiss nicht, dass der Algorithmus unterschiedliche Clusterergebnisse liefern kann. Ich habe hier
zwei Abbildungen mit 100 Durchldufen und den standardisierten Werten, dennoch kommen zwei
ganz unterschiedliche Cluster heraus. Welches der beiden Ergebnisse besser ist, sehen wir uns im
ndchsten Kapitel tiber die Clusteranalyse an.
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Datenpunkte mit finaler Zuordnung (Normalized)
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Wiederum 100 Durchlaufe, allerdings eine komplett andere Clusterbildung

040(}/, V&r%&vvﬂ‘é}\ -

Nun kannst du diesen Algorithmus noch erweitern, sodass er nicht nur mit zwet,
sondern mit beliebig vielen Dimensionen arbeitet.

Das j/éf es 06cl besh it scllon Mj

Natiirlich. padunun weillt, wie dieser Algorithmus funktioniert, kannst du dir, wenn du

willst, die Arbeit sparen und eine fertige Library verwenden. Dann lass uns das Gelernte lieber
noch etwas festigen mit der SKLearn-Library.
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Orchideentypen

[Notebook]
Den Code fiir den folgenden
Abschnitt findest du unter
Kapitel 2/02-kmeans-iris-
sklearn.ipynb.

Nachdem du nun den K-Means-Algorithmus mit allen Facetten selbst implementieren
kannst, zeige ich dir jetzt, wie du das mit einer Library umsetzen kannst. Und wie so
oft beim maschinellen Lernen ist die Datenvorbereitung fiir die Library der Vorgang,
der den meisten Aufwand erzeugt.

Verwenden wir doch den gleichen Datensatz wie bisher — nur, dass wir nicht zwei,
sondern drei Cluster erzeugen und alle vier Merkmale verwenden, die unser Daten-
satz hergibt.

Schoén, die Implementierung

heilt wie der Algorithmus.
Dieser Scaler ist der Vorberei-

tungsschritt fur die Standardisierung
mit dem Z-Score.

from sklearn.cluster import KMeans]
from sklearn.preprocessing import StandardScaler{@
path = kagglehub.dataset download("smritisinghl997/species-segmentation-using-iris-

dataset")
filename = path + '/iris-dataset.csv'
df = pd.read csv(filename)
features = ['sepal length', 'sepal width', 'petal length', 'petal width']§
X = df[features]

In Machine-Learning-Algorithmen

werden die Merkmale immer mit X
benannt, die Labels mit Y. Das kommt
wohl aus der Statistik.
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# Standardize the features

scaler = StandardScaler()

& Skalierung durchfihren.
X scaled = scaler.fit_transform(X)E

kmeans = KMeans(n_clusters=3E, random_state=0ﬁ)

df['cluster'] = kmeans.fit predict(X scaled)id i& Durchfiihren des K-Means-

Algorithmus mit 3 Clustern.
N
print(df.head())

& Die bestehenden Daten werden
\ nun den Clustern zugeordnet.

Der Wert 0 bedeutet, dass an zufélligen
Positionen gestartet wird. Wenn du hier
einen beliebigen anderen Wert einsetzt,

wird das als Seed fiir den Zufallsgenerator

verwendet.

[ZZ:tft;jllszahlengeneratoren in der Inforfnatik.!lefe;'nt
keine echten Zufallswerte, sondern eine mogl:jc S
lange Sequenz, die sich zwar irgendwan!'\ W|.e e;\rt
holt, aber sehr zuféllig wirkt. Der S?ed ist eine
Startpunkt dieser Sequenz. Durch die Fest_legbur:g
des Startpunktes wird der Zufall reproduIZIer ar, _
denn er legt die Reihenfolge fest. Pfats klingt para
dox, wird aber immer wieder benbtlg?c, um reprod—
duzierbare Ergebnisse zu erhalten. Wird der See
dem Zufall tberlassen, so wird ein Wert.von delr
aktuellen Uhrzeit, Hardware etc. abge“leltet — also
von Faktoren, die sich immer wieder dndern.

Lﬁ-—vqjs‘ﬂ,m jéwzéé /%,
e Z(/"/s)’fkﬁ birnm o jtw lra Céffmjmhmluk\

Aber es stimmt schon, dass hier sehr viel weniger Know-how
zum Thema Softwareentwicklung benoétigt wird als bei der klassischen Softwareentwicklung, da

nahezu jeder Algorithmus als Library verfiigbar ist. Dafiir ist im Bereich des maschinellen Lernens
viel mehr Statistik und Mathematik erforderlich.

Bestimmt fragst du dich, wie du nun die Ergebnisse — also die Skalierungs-Parameter und
die Positionen der Zentroide erhiltst.

)/z?if, woe 0'?44 eg Smj%
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scaler_params = {
'mean': scaler.mean ,
'scale': scaler.scale_

}
print('Das K-Means-Modell')

print('Scaler-Parameter:', scaler_ params) //

print('Zentroide:', kmeans.cluster centers )

Das K-Means-Modell
Scaler-Parameter: {'mean': array([5.84333333, 3.054, 3.75866667,

1.19866667]), 'scale': array([0.82530129, 0.43214658, 1.75852918,
0.76061262])}

Zentroide: [[-0.07723421 -0.92778421 0.32291983 0.23786769]
[-1.01457897 0.84230679 -1.30487835 -1.25512862]
[ 1.06889068 0.06560955 0.9690362 1.00197871]]

[Zettel]
Die Mittelwerte und Standardab-
Mit der Library pickle kannst du beispielsweise weichungen, die fir die Standar-
disierung verwendet wurden,

Werte laden und speichern.
existieren fiir jede Dimension.

\7
import pickle i

scaler params = {
'mean': scaler.mean ,
'scale': scaler.scale_

}

with open('scaler params.pkl’, 'wb'@l) as f:
pickle.dump(scaler params, f)

& Die Datei schreibend 6ffnen
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# Laden der Werte aus der Datei
with open('scaler params.pkl’, 'rb'@#) as f:

scaler_params = pickle.load(f)
# Neuen Scaler erstellen und Parameter setzen & Die Datei lesend offnen
new_scaler = StandardScaler()
new scaler.mean = scaler params['mean']

new_scaler.scale_ = scaler params['scale']

[Einfache Aufgabe]
Implementiere das Speichern und
Laden fur die Cluster-Zentroide.

X

3D-Visualisierung ist wunderbar, aber sei dir bewusst,
dass eine (moglicherweise wesentliche) Dimension fehlt.

&

S193UdD I931SNTD = SI93USD I9ISNTD°SUBIUWY MU
(0=°3®1S WOpuUBI ‘C=SI93ISNTD U)SUBSIY = SUBSUWY MU
U92z19S USIJUSZ-I9ISNTH PuUn UST[IISID T[TOPOW-SUEBSK-) SonaN #

(3)peoT*oToTd = si93ued 193SNTD
:3 se (,qx, ¢,7ddrsas3uso i93asnyo,)usdo Yyatm
U9pPBRT USIQUDZ-I93SNT) #

(3 ¢ saeo3ued ao3snTo°sueawy])dunp oToTd
:3 se (,qm, ¢,7drsas3uso i93snyo,)usdo yitm
U9(qToIYDS USIJUDZ-IISNTD #
[8unsgT]

[Schwierige Aufgabe]

Visualisiere mithilfe eines 3D-Scatter-Plots die Merkmale

sepal length, sepal widthundpetal length.
Die Farbe ¢ soll je nach Cluster unterschiedlich sein. Blattere
zuriick zur Seite 51, auf der wir gemeinsam ein 3D-Diagramm
erstellt haben, und passe den Code entsprechend an.
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Darstellung der Features in einem 3D-Scatter-Diagramm

Im Diagramm siehst du, dass die Elemente im gelben Cluster besser abgetrennt sind als die anderen beiden
Cluster. Nun jedoch alle Elemente und Kombinationen durchzugehen, das wire schon etwas aufwendig.

Jetzt zeige ich dir einen Mega-Geheimtrick
zur Visualisierung.
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[Notiz]

Die Library seaborn zeigt dir
gleich alle méglichen Zusammen-
hange und Diagramme der Merk-

malsaufteilungen.

import matplotlib.pyplot as plt

import seaborn as sns

sns.pairplot(df, hue='cluster', vars=features)

plt.show()
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Egal, welche Merkmale du dir in den Diagrammen ansiehst -

der eine Cluster ist in jeder Dimension sehr gut differenzierbar.

Die anderen beiden sind schwer eindeutig zu trennen.
[Einfache Aufgabel
Welche beiden Diagramme zeigen dir
noch die beste Trennung zwischen

den beiden hellen Clustern und dem
dunklen?

[Losung]
petal lengthund sepal width sowie
sepal widthund petal width

Bei diesen Diagrammen kannst du noch am ehesten eine Trennlinie ziehen.
Auch sepal widthund petal length geht noch ziemlich gut.
Aber fehlerlos kannst du kaum eine gerade Linie ziehen.

. - . '“ 2L S 02105 —
V/@//QJCV/JZWA/&’J el ns 2 fdsa 2ove) Clnstes.



DicksFromnce | B |

Zum Clustern und zum Erkennen von Ausreilern ist der DBScan-Algorithmus
eine gute Wahl.

Ein /)%&héﬁb-vvé‘/d{é/ﬂ%wmf.z

Nein, DB steht nicht fiir Datenbank, sondern fiir Density Based - also dichtebasiert.
Dieser Algorithmus bildet Cluster von Datenpunkten, die eine bestimmte Dichte aufweisen,
und wurde 1996 veroffentlicht.

Es ist hier auch nicht erforderlich, dass du die Anzahl der Cluster vorab festlegst.
Die Anzahl ergibt sich automatisch durch den Algorithmus. Ganz ohne Parameter
geht es jedoch auch nicht. Wir benétigen hier zwei Werte: eine Mindestanzahl von
Datenpunkten MinPts) und einen Radius € (sprich: Epsilon), der den Bereich
definiert, der analysiert wird.

Der Algorithmus ordnet die Punkte
in drei Kategorien ein:

Kernpunkte: Punkte, die mindestens MinPts Nachbarn innerhalb eines Radius
von &€ haben.

Randpunkte: Punkte, die innerhalb des &-Radius eines Kernpunkts liegen, aber
selbst nicht gentigend Nachbarn haben, um Kernpunkte zu sein.

Rauschpunkte: Punkte, die weder Kernpunkte noch Randpunkte sind und somit
als AusreiBBer betrachtet werden.

Der Algorithmus hat Erdloir cnir esst mal, h/,.é oloe Alyorithins /{\hé{c;n/%
folgende Schritte: /A 1ol bechomt el %WM}[”

Wihle einen unbesuchten Punkt aus deinem Datensatz aus.

Bestimmte die &-Nachbarschaft des Punktes — welche Punkte sind innerhalb
des Radius &€ vorhanden?

Wenn die Anzahl der gefundenen Nachbarn gréRer oder gleich den MinPts ist,
markiere den Punkt als Kernpunkt und erstelle einen neuen Cluster.

Fuge alle Punkte in der &-Nachbarschaft zum Cluster hinzu.

Wiederhole den Prozess fiir jeden Punkt im Cluster, bis keine neuen Punkte
mehr hinzugeftigt werden kénnen.

Wiederhole die Schritte 1-5, bis kein Punkt mehr unbesucht ist.

Alle Punkte, die zu wenige Nachbarn haben, um einen Cluster zu bilden,
sind Rauschpunkte — also Ausreiler.
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Konzept des DBScan-Algorithmus

In der Abbildung siehst du, wie ein Punkt ausge-
wihlt und die Anzahl der Nachbarn ermittelt wur-
de, die nicht weiter als € davon entfernt sind. All
diese Nachbarn werden dem Cluster (dem blauen
Kreis) zugeordnet, sofern mindestens MinPts
Nachbarn vorhanden sind.

Anschliefend wird jeder dieser Punkte als neues
Zentrum mit dem gleichen &-Wert analysiert und
so der Cluster schrittweise erweitert. Wenn nicht
geniigend Nachbarn vorhanden sind, wird der
Punkt nicht dem Cluster zugeordnet.

Wenn der Algorithmus durchgelaufen ist, ergeben sich beispielsweise T 0 L gen de Cluster:

solche Form erkennen. Ich zeige dir ein Vergleichsbild:

108

Clusterergebnis des DBScan-Algorithmus.

Es wurden zwei Cluster und drei AusreilRer gefunden.

Dieser Algorithmus hat wieder wenige einfache Schritte und erkennt selbst die Anzahl
der vorhandenen Cluster sowie die Ausreiler. Zusitzlich ergibt sich der Vorteil, dass der
Algorithmus im Gegensatz zu K-Means Cluster mit beliebigen Formen und GréBen
erkennt. Und er ist eben robust gegeniiber Ausreiflern.

Wit tneqinst ol Aas it olon Foro.

Wenn du beispielsweise einen Cluster hast, der einen anderen ganz oder teilweise umschlieft, dann konnte
der K-Means-Algorithmus diesen nicht erkennen. Der DBScan folgt aber der Dichte der Punkte und kann eine
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KMeans Clustering

DBSCAN Clustering

-1.0

Das Wlhﬁ’{ /m/“SCé:O!;\Z Ve ari,é//é ,&"(01 é% /cé
Aen coraoleco, A/é/n;z@ws j@c‘é 2eg Serte.

1.0

Wenn die Punktedichte stark variiert, hat der Algorithmus Probleme. Die Scatter-Diagramme
helfen dir bei der Darstellung und Einschitzung.

Nichtsdestotrotz sind die Einsatzgebiete des DBScan-Algorithmus vielfiltig.

Du kannst Bilder auf Basis ihrer Farbintensititen bzw. ihrer Farbwerte segmentieren (also entspre-
chende Bereiche in Bildern feststellen), oder du nutzt den Algorithmus zur Anomalieerkennung (Aus-
reiBererkennung) bei Finanzdaten, im Netzwerkverkehr oder in Produktionsprozessen. Auch bei

der Analyse von Geodaten, Erdbebendaten oder der Verbreitung von Pflanzenarten findet dieser Algo-

rithmus seine Anwendung, zum Beispiel durch die Bildung geografischer Cluster.

Won, oles [\Afja wirdloil, tibesall <erne /:/hy'*/ rean S/o/;/(’./

Abstandsmetriken. K-Means. DBScan und K-Nearest-Neighbor

Der Rechenaufwand des Algorithmus ist relativ hoch. Die Ermittlung der £-Nachbarschaften ist
rechenintensiv. Bei grolen Datenmengen empfehle ich dir, zu tiberlegen, wie du einen Index
aufbauen kannst, um moglichst effizient die Nachbarschaften zu ermitteln — zum Beispiel
durch einen R*-Baum oder einen KD-Baum. Dadurch kannst du diesen Nachteil ausrdumen.

Leider ist der Algorithmus empfindlich gegentiber den Parametern. Die Wahl der sogenannten
Hyperparameter € und MinPts kann das Ergebnis stark beeinflussen.

109



Stressige Tage

[Notebook]
Wenn du chillen willst, statt stressig Code zu
tippen, findest du den Code hier: Kapitel 2/
DB Scan 1 - Selbst implementiert.ipynb.

Ich habe einen Kaggle-Datensatz fiir dich ausgewihlt,
bei dem es um Sportiibungen, Schlafzeiten und das Stresslevel geht.
Auf diesen Datensatz wollen wir nun einen selbst implementierten
DBScan-Algorithmus anwenden.

Montag

D-— kagglehub ...A pandas Labe 14

scliom /;M/o(;r?{L{f‘. L()S 9,&[\][/3 /

=\

path = kagglehub.dataset download("forrestcarltonl/stress-levels-dataset")

filename = path + "/Stress levels dataset.csv" '
df = pd.read csv(filename) ‘

print(df.info())

[Einfache Aufgabe]
Wie viele Datensdtze

hat der Datensatz? /)ms 1A &M]Qcé /
Ernlioclest Stk

(/{m/ p'(rd S/M/Sém.
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Die Spalten in unserem Datensatz heilen Hours_of Exercise per Week,
Hours of Sleep per Night und Stress Level.

.v [Schwierige Aufgabe]

Sieh dir das Histogramm des Stresslevels an —
damit stellst du die Verteilung der einzelnen
Stresslevel dar. Erstelle das Histogramm mit
8 Balken.

[Erledigt!]

import matplotlib.pyplot as plt
plt.figure(figsize=(8, 6))
df['Stress_Level'].hist(bins=8, grid=False) r

plt.xlabel('Stresslevel') |
plt.ylabel('Hiufigkeit"') |
plt.show()
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Verteilung der Stresslevel
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Nun wissen wir, wie die Daten aussehen, und konnen uns an den Algorithmus machen. Wir benétigen eine
Distanzfunktion, da wir die Abstinde zwischen zwei beliebigen Datenpunkten messen miissen.

Da bgboa, wir J‘a scllom cnSore euclidean_distance“/:r—w\éﬁén.

import math
def euclidean distance(pointl, point2):
return math.sqrt(sum((x - y)**2 for x, y in zip(pointl, point2)))

Einen kleinen Teil haben wir schon. Jetzt miissen wir es nur noch schaffen, die Nachbarn
von einem Datenpunkt zu finden, deren Abstand zum Punkt nicht groBer ist als €.

Es werden alle Datenpunkte
durchgegangen und sowohl der Index 1
als auch der Punkt an sich betrachtet.

def region query(data, point, eps): mneighbors = []
for i, other_point in enumerate(data)il:

if point != other point and euclidean distance(point, other point) <= eps@l:

neighbors.append (i)
return neighbors

@4 Wenn es sich nicht um den gleichen
unkt handelt, wird die Distanz zum Punkt
berechnet. Ist diese kleiner als das
gewdhlte &, dann ist es ein relevanter

& Wir merken uns lediglich
e 8 Nachbar.

die Indizes der Nachbarn.

/)/F H/( 114746'1—:4—-—\ S%‘m?'( also Uéaﬁj{.
e)&éf‘;dh oo o DBScan!
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DONNERSTAG

&l Alle Daten vorab als AusreiBer
markieren. Wir beweisen dann im Laufe
des Algorithmus das Gegenteil.

@& Wenn der Datensatz "M

bereits zugeordnet ist,
ignorieren wir diesen.

def dbscan(data, eps, min pts):
labels = [-1] * len(data)@
cluster_id = 0

Die Nachbarn im
Umbkreis ermitteln.

&1 Wenn nicht geniigend Nachbarn
vorhanden sind, bleibt der Daten-

for i, point in enumerate(data): punkt ein Ausreifer. Wir sehen uns
if labels[i] != -1:@& gleich den néachsten an.
continue
Yippie, wir haben einen
neighbors = region query(data, point, eps)i neuen Cluster gefunden!

if len(neighbors) < min pts:

continue@l E Wir kopieren die Nachbarn, denn diese
wollen wir im nachsten Schritt weiter

- analysieren, und sehen, ob sich der Cluster

cluster_ld += 18 hier erweitert. Alle Punkte, die den Cluster

labels[i] = cluster_id potenziell erweitern kénnen, werden in

seed_set = neighbors .copy ( )E diese Liste aufgenommen.

Solang noch ein Punkt in der Liste tbrig
while seed set: ist, wird alles wiederholt. Der erste Punkt
= wird rausgenommen. Falls dieser noch
keinem Cluster zugewiesen ist, weisen wir

diesen dem Cluster zu.

current_point index = seed_set.pop(0)il
if labels[current point index] == -1:
labels[current point index] = cluster_id

elif labels[current point index] == 0:§
labels[current point index] = cluster id Randbereichprifung. Der Punkt ist zwar
- - - nahe genug, hat aber selbst zu wenige
else Nachbarn, um als Zentrum zu fungieren.
continue # Bereits Teil von einem Cluster Das wird ein Randpunkt.

current point neighbors = region query(data, data[current point index], eps)fl

if len(current point neighbors) >= min pts:
seed set.extend([n for n in current_point neighbors if n not in seed

set])§ll

return labels Von diesem Punkt aus

werden erneut die Nachbarn

&1 Nachdem gepruft wurde, ob gentigend gesucht.

Nachbarn in der Ndhe sind, werden all
diese erneut in die Liste der potenziellen
neuen Clustermitglieder hinzugefiigt,
damit der Cluster wachsen kann.

Du bist bestimmt schon gespannt auf das Ergebnis.

Wir haben es fast geschafft!

Nur noch die Funktion aufrufen und die Ergebnisse zeichnen.
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J [Code bearbeiten]
Rufe die Funktion mit den zwei Spalten

~ Hours of Exercise per Week
und Stress Level auf.

Abes was soll 1c 50 cten ) Trinctespodilen o € olgettn

Nimm erst einmal 6.5 fiir €

und 4 fiir die Mindestpunkte. (Notiz]

oftmals ein Herantasten. Ich zeige
dir im Laufe der Zeit noch, wie du
diese sogenannten Hyperparameter
ermitteln kannst.

[Erledigt!]

selected columns =
['Hours of Exercise per Week', 'Stress Level']
data = df[selected columns].values.tolist() |rl
eps = 6.5

min pts = 4

labels = dbscan(data, eps, min pts)

Wunderbar, wir haben die Labhels — also die Cluster.
Lass uns die Cluster aufzeichnen und sehen, wie die Stresslevels mit der korperlichen Ertiichtigung
zusammenhidngen und wie diese durch den DBScan-Algorithmus in Cluster zusammengefasst werden.

import matplotlib.pyplot as plt

x coords = [point[0] for point in datal]
y_coords = [point[l] for point in data]
plt.figure(figsize=(8, 6))
plt.scatter(x _coords, y coords, c=labels, cmap='viridis')
plt.title('Clustering Ergebnis')
plt.xlabel('Sport') FRE"'AG
plt.ylabel('Stress Level')
plt.colorbar(label='Cluster"')
plt.show()

14 Kapitel ZUWEI



Clustering Ergebnis
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Clustering der Datenpunkte durch DBScan
[Einfache Aufgabe]
Wie viele Cluster kannst
du aus der Grafik ablesen? /)rd , es,y

Es sind drei. Das Gelb und die zwei Griintone. Die lila Punkte sind diejenigen mit dem Wert -1,

die keinem Cluster zugeordnet worden sind. Das sind unsere Anomalien.

Aber wie du weilit, funktionieren diese Algorithmen ja in mehreren Dimensionen. Und eine
unausrottbare Eigenschaft von KI-Datensitzen ist, dass die Datensitze immer viele Dimensionen
haben. Gut, hier haben wir jetzt nur drei, aber meist sind es noch mehr.

[Schwierige Aufgabe]

Aktualisiere den Code mit der dritten
Dimension und gib ein 3D-Diagramm
aus. Verwende nun 8 als € und 3 als
Mindestpunkteanzahl.

N
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selected columns = ['Hours of Exercise per Week', 'Stress Level',

'Hours of Sleep per Night']
data = df[selected columns].values.tolist()

eps = 8
min pts = 3
labels = dbscan(data, eps, min_pts)

# Prepare data for plotting

x _coords = [point[0] for point in datal
[point[l] for point in datal]
[point[2] for point in datal]

y_coords

z_coords

# Plotting
fig = plt.figure(figsize=(10, 8))
ax = fig.add subplot(lll, projection='3d")

scatter = ax.scatter(x coords, y coords, z coords, c=labels, cmap='viridis')

ax.set_xlabel(selected columns[0])
ax.set_ylabel(selected columns([1])
ax.set_zlabel(selected columns[2])
ax.set_title('DBSCAN Clustering Results (3D)')
plt.colorbar(scatter, label='Cluster ID')

DBSCAN Clustering Results (3D)

5 8

v Ry
Hours;of_sleepgpcr_hlighr
Cluster ID

Clustering-Darstellung im 3D-Raum
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Drama-Nachbarn, die nicht ins Bild passen

Du erinnerst dich bestimmt an unsere Drama-Tiere.

loirnte 168 mich] /\um%/
/;ﬁhﬁ%‘&ti{hﬂ )

Wir haben Cluster fiir die Tiere mithilfe von K-Means erstellt. Und nun verwenden wir wie-
der SKLearn, um diese Cluster mithilfe von DBScan zu unterteilen. Wir wollen uns ansehen,
ob es Punkte gibt, die nicht ins Bild passen.

[Einfache Aufgabe]

Kopiere dir die Daten in ein neues
Notebook und lade sie wie gewohnt
in einen Pandas-Dataframe.

[Notebook]
Den gesamten Code findest du hier:
Kapitel 2/DBScan2 - Tiere.ipynb.

Standardisieren wir die Werte als Erstes mit dem
bekannten StandardScaler.

from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
# Merkmale auswdhlen

X = df[["Drama", "Bewegung"]].values

# Skalieren

scaler = StandardScaler()

X scaled = scaler.fit transform(X)

Nun fithren wir den DBScan aus und schreiben die ermittelten Cluster zuriick in den DataFrame —
in eine eigene Spalte mit dem Namen Cluster.
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dbscan = DBSCAN(eps=0.9, min samples=3)

clusters

= dbscan.fit predict(X scaled)

df['Cluster'] = clusters

A/&"‘;\/ “l&v-;\/ )
166, wnll Ans )%{{
sclion jm(%gcé celyn. [Zettel]

Ausreilfer werden dem
Cluster -1 zugeordnet.

colors = {} &1 AusreiRer haben
labels = {} den Wert -1.
for k in unique_labels:
if k == -1:{
colors(k] = [0, O, O, 1]
labels[k] = 'Wir passen nicht ins Bild - AusreiBer'
elif k ==
colors[k] = 'purple'
labels[k] = 'Chillige Zeitgenossen' i Sollten sich weitere Cluster
elif k == 1: ergeben, wird eine Farbe und die
colors[k] = 'blue’ Clusterbezeichnung gewahlt.
labels[k] = 'Drama-Queens im Chillmode’
else

colors[k] = plt.cm.Spectral(k/len(unique_labels))i&
labels[k] f'Cluster {k}'

for k in unique labels:

class_member mask = (clusters == k)
xy = X[class member mask] &) Zeichnen der
names = df['Tier'][class member mask].values Clusterpunkte.

plt.plot(xy[:, O], xy[:, 1], 'O', color=colors[k],

markersize=10, label=labels.get(k,f'Cluster {k}'))E

for i, txt in enumerate(names) : @

plt.
plt.
plct.
plt.
plt.
plt.

plt.annotate(txt, (xy[i, O], xy[i, 11),
textcoords="offset points", xytext=(5,5), ha='left')

title('Tier-Clustering')

xlabel('Drama') & Die Tierbezeichnung
ylabel('Bewegung') wollen wir auch sehen.
legend()

grid(True)

show ()
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Tier-Clustering
T T q =
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@ wir passen nicht ins Bild - AusreiRer Kanguru Hyane
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Drama

Clustering der Tiere mit DBScan

Whe e st et O7
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[Einfache Aufgabe]

Passe den e-Wert an. Wéhle zum
Ausprobieren 0. 8. Was kannst
du beobachten?

[Losung]
— o Jetzt ist auch das Eichhornchen
ein Ausreiler geworden.

Wie wir mehrfach gesehen haben, ist der Algorithmus in der Lage, Ausreiller

zu erkennen. Diese werden entweder im Detail analysiert, wenn es beispielsweise
um ungewohnliche Kreditkartenabrechnungen geht, oder eben entfernt, weil
Ausreiler im Datensatz moglicherweise stérend sind.

[Schwierige Aufgabel
Entferne die Ausreiler und
zeichne die Grafik erneut.
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Tier Clustering (ohne Ausreier)
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Tier-Clustering ohne AusreiBer mit einem £-Wert von 0,8 und einer Mindestpunkteanzahl von 3

[Einfache Aufgabel
Lass dir zur Kontrolle noch
die Ausreiler ausgeben.

[Losung]

outliers = df[df['Cluster'] == -1]['Tier'].values
print ("AusreiBer:") .

for outlier in outliers: L~

print (f"- {outlier}")

®m™O0N

AT Wunderjb gr , du bist bereit fiir den'nachsten A.lgorlthm.us. Flsher

- Pfau haben wir immer Datenpunkte gruppiert. Nun wird es Zeit, sich darum
zu kimmern, neue Datenpunkte bestehenden Clustern zuzuordnen.

- Eichhérnchen
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In vielen Recommendation-Engines wird der Algorithmus K-Nearest-Neighbors, kurz
KNN, eingesetzt. Wenn dir der nidchste Film, der dir wahrscheinlich gefillt, der nichste
Song oder ein Produkt in einem Onlineshop vorgeschlagen werden soll, steckt oftmals
der KNN-Algorithmus dahinter. Auch in der medizinischen Diagnostik, bei der Bildana-
lyse oder im Finanzbereich findet der Algorithmus Anwendung.

[Achtung]

Die Bezeichnung KNN wird auch gerne
b als Abktirzung fiir »kiinstliche neuronale
‘ Netze« verwendet. Nicht verwechseln!

Wir haben mit KNN nun einen Algorithmus, der in die Kategorie Supervised
Learning fillt — also iberwachtes Lernen. Du bendtigst bereits fertige Cluster
und weist neue Datenpunkte diesen Clustern zu.

[Ablage]
: c et KNN beantwortet die Frage, zu
Clnste(n keeman A j“ )%d‘ welchem bestehenden Cluster ein
neuer Datenpunkt hinzugefligt
werden soll.

s A oder B?

Zu welchem Cluster gehort der neue Datenpunkt?
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KNN ist ein demokratischer Algorithmus. Es wird ein Mehrheitsentscheid verwendet,
um die Clusterzugehorigkeit zu entscheiden. Du musst fiir diesen Algorithmus nur einen
Parameter festlegen: das K.

Unol woohiin stolf olos k'

\\’\\..
[Ablage]
K ist die Anzahl der nachsten

Nachbarn, die betrachtet werden
\X sollen.

Du benotigst also die aktuelle Clusterzuordnung der Datenpunkte, die Anzahl der nichsten Nachbarn,
die du verwenden willst, und - wie so oft — eine Distanzmetrik: Euklid oder Manhattan etc.

Analyse der drei nachsten Nachbarn

Der Algorithmus sucht sich also die K Nachbarn mit der minimalen Distanz. Er analysiert,
welche der Nachbarn zu welchem Cluster gehoren und schlieBt sich der Mehrheit an. In
der Abbildung ist zu sehen, dass fiir unseren Punkt zwei Nachbarn aus dem Cluster B und
ein Nachbar aus dem Cluster A in Frage kommen. Diese werden untersucht. Demnach
entscheidet der Algorithmus, dass der neue Datenpunkt dem Cluster B zugewiesen wird.

/)ag s Scémz

Ja, so einfach ist es.
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[Ablage]

Der wesentliche Nachteil dieses Algorithmus
ist, dass er empfindlich gegeniiber irrelevanten
Merkmalen ist. Also erweitere deinen Daten-
satz nicht um nutzlose Merkmale wie zum Bei-
spiel IDs und verwende die Merkmalskorrela-
tion, um unnotige Features zu entfernen.

[Achtung]
=T Was KNN definitiv nicht kann,
6 ist die Generierung neuer Cluster.
Er erméglicht nur eine Zuordnung
zu den bestehenden Clustern.

KNN kann nicht nur neue Datensitze zu Clustern zuordnen. Du kannst den Algorithmus auch
benutzen, um Werte vorherzusagen. Stell dir beispielsweise einen Datensatz fiir Fahrrader und
Fahrradpreise vor, in dem Merkmale wie Preis, Gewicht, Anzahl der Gidnge etc. aufgelistet sind.
Wenn du jetzt bei einem neuen Fahrrad den Preis einordnen mochtest, dann verwendest du alle
Informationen aus dem Datensatz (mit Ausnahme des Preises) und sortierst den Datenpunkt
ein, vergleichst also Gewicht, Anzahl der Ginge und so weiter. Anschliefend nimmst du die
entsprechenden Nachbarn, also Ridder mit dhnlichen Merkmalen, und verwendest den Durch-
schnittspreis (oder den mit den Abstinden gewichteten Durchschnittspreis) der Nachbarn.

CQM -/ Yoo ebo b scllae 164 onir tmegnoe. Dat@usets.
MCZC "\-&’64 W@/j@—v'zéoféﬂq% |

Du kannst sogar die Linien oder Flichen berechnen, an denen sich die Zuordnungen zum
einen oder anderen Wert dndern - je nachdem, wie viele Nachbarn rundherum sind und
wann sich die Ndhe zum nichsten Nachbarn ergibt.

‘ L Aot s b gz resiaadten.
0“/%2[ 4?'{015 Zv(é(’. /64 W(dkw%{ cr~l
M I L‘/’é W'{% "44 R'(ots? j
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Angenommen, wir haben lediglich eine Quadratmeteranzahl und den Preis
eines Hauses. Normalerweise ist der Preis natiirlich noch von vielen weite-
ren Parametern abhidngig, aber zur einfachen Visualisierung setzen wir mal
diese vereinfachte Zuordnung voraus. Nun hast du ein neues Haus mit einer
bestimmten Quadratmeteranzahl und mochtest den Hauspreis mithilfe von
KNN ermitteln. Also suchst du dir drei Hiuser aus deinem Datensatz, die
eine dhnliche Quadratmeterzahl haben, und nimmst den Durchschnittspreis
von den drei Hiusern — das ist der Preis, den du fiir das Haus erwarten
kannst. Wenn sich jedoch die Quadratmeter leicht erhohen oder reduzie-
ren, kann es sein, dass andere Hiuser aus dem Datensatz nun deinem am
dhnlichsten sind und sich ein ganz anderer Durchschnittspreis ergibt.

04&)/ / e ssherolen.

Und wenn du alle Werte durchgehst und jeweils die Berechnung betrachtest,
siehst du, wo die Preisspriinge sind. Das siehst auf der Abbildung noch mal genauer.

K-Nearest-Neighbors-Regression (1D-Beispiel)
700000 { ® Daten *
—— KNN-Vorhersage (k=3)
600000 -
=
T 500000 |
o
£
400000
300000
T T T T T T T
100 120 140 160 180 200 220
HausgroBe (qm)
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Geselischaftsspiele in der Nachbarschaft

[Notebook]
Der Code zu diesem Beispiel
ist in Kapitel 2/03-knn-

games-classification.ipynb
zu finden.

Du hast jetzt verstanden, wie der Algorithmus

funktioniert, und dass er flexibel einsetzbar ist — sowohl zur Klassifizierung
als auch zur Vorhersage konkreter Zahlenwerte, also fiir Regressionsaufgaben.
Lass ihn uns implementieren. Bestimmt juckt es dich schon in den Fingern.
Das ist unser Datensatz:
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Wir wollen wissen, wie Starcraft 2 mit einem Komplexititslevel von 6.5
und einem Action-Level von 7 klassifiziert wird. Im Diagramm sieht das wie folgt aus:

10 4 .Call of Duty
g @5uper Man'n.DOOM .Dark Souls
/
8 .ﬁﬂﬂs ‘l'.‘
Portal
71 ® candy Crush [ ] Starcraft 2
]
=
[
%: 6 .Command & Conquer
s
k4
5
44 .Age of Empires
34 .The Sims .Stardew Valley .Civillzation \il
2 .Animal Crossing Y Schiach
T T T T T T T
2 3 4 5 6 7 8 9
Komplexitat

Spieleklassifizierung mit K-Nearest-Neighbors

Wunderbar, unser Datensatz soll wie folgt aussehen: erst die Bezeichnung des Spiels,
dann die Komplexitit in Form eines Punktes und dann das Action-Level.

game data = {
"Schach": (9, 2), "Civilization VI": (8, 3),.. }

Zusatzlich benotigen wir das Label fiir alle Spiele, da diese bereits klassifiziert sind.

labels = {
"Schach": "Strategie", "Civilization VI": "Strategie",
"Age of Empires": "Strategie", .. }
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Jetzt kommt unser neuer Datenpunkt, den wir einordnen wollen, und die Hilfsfunktion fir den
euklidischen Abstand zwischen zwei Punkten:

new game = (6.5, 7) # Starcraft 2

[Einfache Aufgabe]
Erstelle die Hilfsfunktion
euclidean distance.

[Erledigt!]
import math
def euclidean distance(pl, p2):
return math.sqrt((pl[0] - p2[0]) ** 2 + (pl[l] - p2[1l]) ** 2)

Super, Schrodinger! Die Implementierung von KNN ist nicht nur bei der Erklarung
einfach, sondern auch im Code. Wir berechnen die Distanz zwischen dem neuen
Punkt und jedem anderen Punkt im Datensatz und merken uns diese Informationen
in einer Liste. AnschlieBend sortieren wir den Datensatz nach der Distanz, verwenden
lediglich die K ersten Elemente und wihlen von denen die hiufigste Kategorie aus.

&1 Berechne die Distanz zu
jedem bekannten Spiel. @ Distanz und Label werden als
Tupel in das Array hinzugefligt.

def knn manual(train data, train labels, new point, k=3):
distances = []

for game, coords in train data.items() 1 & sortieren nach Distanz und

distance = euclidean distance(coords, new_point) e T naehsien Neakbam
distances.append((distance, train labels[game])){# auswahlen.

distances.sort ()
k nearest = distances|:k] &Z! Abstimmen und Stimmen auszihlen.

category count = Counter(label for , label in k nearest)i

return category_ count.most common(1l)[0][0] &5 Am héufigsten vertretene
Kategorie zuriickgeben.
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[Code bearbeiten]

Vergiss nicht, das Counter- 1
Objekt von collections ‘
zu importieren. ‘\}\’

[Erledigt!]
from collections import Counter

Na, bist du schon gespannt, wie Starcraft 2 klassifiziert wird?

Streraft ¢ 1 gl ko
o EL "_e/z“sﬂwéj/eﬁf"”( - >

Dann fragen wir mal unseren Algorithmus:

predicted category = knn manual(game data, labels, new_game, k=3)
print(f"Starcraft 2 wurde klassifiziert als: {predicted category}")

[Code bearbeiten]

Sieh dir nochmal die Werte an,
vielleicht haben wir uns ganz am
Anfang mit einem Komplexitdts-
wert von 6,5 ja verschatzt.

Sﬁwm—.lz, Aos 10 catnctystos g,
Ween msan $1C8 e anaslecon, S/o/:v(é in olos Tabelle so cschant.
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[Achtung]

Ja, die Eingangsdaten mussen natirlich
korrekt sein, damit der Algorithmus ein
richtiges Ergebnis ausspuckt. Das soll aber
keine Einladung sein, dass du kiinftig immer
die Eingangswerte so anpasst, dass das
Ergebnis deinen Erwartungen entspricht.

Auf o lotee witarete 106 rnne bovtmm !

Ubrigens sind das jetzt die Nachbarn, die wir betrachtet haben.
So eindeutig ist das gar nicht ...

Spielklassifikation mit K-Nearest Neighbors
10 4 .Call of Duty
9 @Super Mariog DOOM @ra k Souls
8 .Tetris
@fortal

71 .candy crush - Starcraft 2
w
z
I 6 ommand & Conguer
[ =
S
=1
<

5 4

4 .Age of Empires

3 The Sims Stardew Valley .Cwillzatiun Vi

3 4 Animal Crossing .S(hach

T T T T T T T T
2 3 4 5 6 7 8 9
Komplexitat

Die stimmberechtigten Nachbarn
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[Notiz]

Bei nicht eindeutiger Abstimmung
erhdlt der Cluster mit dem Punkt mit
der kiirzesten Distanz den Zuschlag.

Larmbeléastigung in der Nachbarschaft?

[Notebook]
Den zugehdérigen Code findest du unter
Kapitel 2/04-knn-loudness.ipynb.

Jetzt schauen wir uns auch noch ein Regressionsbeispiel an, in dem wir einen konkreten Wert vorhersagen.
Und zwar wollen wir auf Basis von Grofe und Flauschigkeit auf die Lautstirke von Tieren schliefen.

[Schwierige Aufgabe]
Versuchen wir doch mal, den Roten Panda
mit der Gr6Be von 4 und der Flauschigkeit
von 9 einer Lautstdrke zuzuordnen.
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[Notiz]
Das Verfahren von KNN bei der Wertvorhersage ist das
gleiche Prozedere wie bei der Clusterzuordnung. Der
einzige Unterschied liegt darin, am Ende keinen Mehr-
heitsentscheid zu machen, sondern den (gewichteten)
Durchschnittswert zu berechnen.

KNN-Regression zur Lautstarkeschatzung von Tieren
10 @ Lowe (114 dB)
@ Eule (45dB)
® . @ Schlange (0 dB)
@ Fuchs (65 dB)
8 @ Elefant (120 dB)
@ Papagei (90 dB)
® @ Hamster (20 dB)
@ Ente (70 dB)
= 64 ] Husky (95 dB)
u ?
é . Roter Panda (7)
£ o
©
= 4 @
[ ]
2 1 @
0 L]
\\ 2 4 6 8 10
N Grofe

Flauschigkeit und GroBe der Tiere

& Fir jedes Tier die Distanz
def knn regression(train_data, new_point, k=3): zum Roten Panda berechnen.

distances = []

for animal, (size, fluff, loudness) in train_data.items():ﬂ]
distance = euclidean distance((size, fluff), new_point)
distances.append((distance, loudness))

distances.sort ()@ & sortieren und die k

k_nearest = distances[:k] Nachbarn selektieren.
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avg loudness = np.mean([loudness for , loudness in k_nearest])E
return avg loudness

predicted loudness = knn regression(animal data, new animal, k=3)
print(f"Der geschidtzte Lautstdrkepegel des Roten Pandas betridgt: {predicted
loudness:.2f} dB")

&l Hier ist der Unterschied zur

& Die Lautstirke des Clusterzuordnung: Es wird der
Pandas vorhersagen. Durchschnittswert der Nachbarn
gebildet und keine Abstimmung
durchgefihrt.

Der geschitzte Lautstiarkepegel
des Roten Pandas betrigt:

53.33 dB

[Fehler/Miill]
Unser KI-Modell zeigt die Funktionsweise des Algorithmus
auf hoffentlich einpragsame Art und Weise. Allerdings ist
dieses Modell nicht performant und selbstverstandlich
Mill. Es kann keine zuverldssigen Vorhersagen machen!
Die Werte haben nichts miteinander zu tun und von der
Grole und der Flauschigkeit eines Tieres lasst sich keine
Lautstdrke ableiten. KI-Modelle kdnnen nur Muster (statis-
tische Zusammenhange) lernen — und hier gibt es kein
Muster, das erlernt werden kdénnte.

‘/ Anss Ao S 7["””[ /%

o b
o Z\Aiyfma gbetln sk, i Fluscligfet

von 304&«3(% o 2usclioh2o ..

Dann wagen wir uns jetzt mal an einen richtigen Datensatz und die Verwendung einer Library.
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An die Nachbarn angepasst
statt nur geschatzt

[Zettel]
SKLearn bietet fiir bestimmte Daten-
satze eine einfache Art und Weise,
diese zu laden. Unter anderem ist
darin der Iris-Datensatz enthalten,
den wir bereits benutzt haben.

[Notebook]
Den Code zu diesem Beispiel findest du hier:
Kapitel 2/05-knn-sklearn.ipynb.

Der Iris-Datensatz enthilt auch Labels fiir die Blumen und ist daher wunderbar fiir eine
kleine K-Nearest-Neighbors-Ubung einsetzbar:

import numpy as np
from sklearn import datasets

Die Daten an sich sind from sklearn.neighbors import KNeighborsClassifier

in der Eigenschaft data
enthalten.

iris = datasets.load iris ()i
X = iris.data@
y = iris.target{

Die Labels auslesen.
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[Notieren/Uben] e ! ’ [
Sieh dir die Daten von

dataund target an.

ﬁ/\_ﬁ/\_
EEC NS

Das 15t e, Arsy vom Aerays sl im el W/ o

Richtig, jedes Array entspricht einer Blume. Und da es viele Blumen sind, ist es ein Array von Arrays.
Die Labels sind nur Werte von 0-2.

Wenn du iris.target names verwendest, siehst du die Bezeichnungen der Blumen-
Klassen.

['setosa’ 'versicolor' 'virginica'l

['sepal length (cm)', 'sepal
width (cm)', 'petal length
(cm)', 'petal width (cm)']
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Nachdem du jetzt die Daten verstanden hast, wollen wir doch mal sehen,
wie KNN die Klassifizierung durchfiihrt.
m KNN verwenden

mit 3 Nachbarn
knn = KNeighborsClassifier(n neighbors=3){l

kom FLE (X Y)”"‘2%—*\Y—~7r”“25’-\»———~\//’?/—-\\4//"‘(T\\\‘—
2

new flower = np.array([[5.1, 3.5, 1.4, 0.21]1)&
prediction = knn.predict(new_flower)i
print(f'Die Vorhersage fiir die neue Blume ist: {iris.target names[prediction][0]}')

Trainieren

Beispielblume

initialisieren
& Vorhersage treffen

04, abes Aus sra bl &M}éxc/k nies E1nzeslor?

® 00

Die Vorhersage fiir die neue
Blume ist: setosa

Nur ein Einzeiler, und dennoch fehlt etwas Wesentliches —
die Normalisierung!
o 04)“/ ek J

[

fos

[Einfache Aufgabel
Baue die Normalisierung ein.




[Losung]
from sklearn.preprocessing import StandardScaler

# Vor dem Aufruf der fit-Funktion das Normalisieren der Werte
nicht vergessen!

scaler = StandardScaler()

X = scaler.fit_ transform(X)

Lust auf eine Regressionsaufgabe?

Selbstresshontln et .
Léfot,‘ wir (o5

[Lésung]
Hier findest du die fertige Losung:
Kapitel 2/06-knn-sklearn-regression.ipynb.

Es gibt auch einen Datensatz mit dem Namen fetch california housing,
den du von sklearn.datasets importieren kannst.
Die Struktur ist wieder dieselbe und wir verwenden diesmal nicht den
KNeighborsClassifier, sondern KNeighborsRegressor
und fiinf Nachbarn.
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[Schwierige Aufgabel

Importiere den Datensatz und lass
dir die Merkmale und das Label
ausgeben.

[.[eASNOHPaW,]

(seweu 3981e3l°EBTUIOITTED)IuTid
[.epmiduoT, ‘,9pm

-ne7], ', dnoooaay, ‘,uonendog,
! SULIPagaAY, ‘,SUIO0YIAY/,
‘,93yasnoy, ‘,ouIpa,]

(sameu_alnnea;'equo;IIeo)Julld
1981e3°BTUIOITTEBO = £

B1EP BIUIOJITED = X

()8uTsSnoy BTUIOIT[EO Y019 = BIUIOJFTTED

uope z3lesuole(-3UTSNOH-BIUIOITTE) #

1oTeogpaiepuels jiodut Fursseooidsiad-uiesTds woiF
10ssai139ysioqu3ToNy 2i10duT SI0qUITOU°UIBSTNS WOIJ
guTsSnoy BTUIOITTED UYo31oJ 310dwT S19SBIBP UIBSTYS WOILJ

Wie du siehst, sind die Merkmale im Datensatz wie folgt aufgebaut: W

MedInc: Medianes Einkommen in der Blockgruppe

HouseAge: Durchschnittliches Alter der Hiuser in der Blockgruppe
AveRooms: Durchschnittliche Anzahl der Zimmer pro Haushalt
AveBedrms: Durchschnittliche Anzahl der Schlafzimmer pro Haushalt
Population: Bevslkerung der Blockgruppe

AveOccup: Durchschnittliche Anzahl der Bewohner pro Haushalt

Latitude: Geografische Breite der Blockgruppe

5 % 5 8 § % § 1§

Longitude: Geografische Linge der Blockgruppe

[Einfache Aufgabe]
Erstelle den Regressor und
trainiere das Modell.
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[Lésung]
knn regressor = KNeighborsRegressor(n neighbors=5)

# Normalisieren der Werte nicht vergessen!

scaler = StandardScaler()
X = scaler.fit transform(X)

knn regressor.fit(X, y)

Nun reicht es, ein Beispielhaus zu verwenden und wieder die predict-Methode aufzurufen.

np.array([[8.5, 41.0, 6.9, 1.1, 322.0, 2.5, 37.88, -122.231])

new_house =
predicted price = knn regressor.predict(new_house)
print (f'Der Preis fiir das neue Haus ist: ${predicted price[0] * 100000:.2f}'")

®00

Der vorhergesagte Preis fiir
das neue Haus ist: $205420.00

Nun kannst du nicht nur Cluster erstellen, sondern diese auch fuir Klassifizierungen oder
fiir Wertvorhersagen benutzen. Deinem Empfehlungssystem steht nichts mehr im Wege.

V/é///élcél[ 46L-v1h /64 Z\/U W(MS i«vm(:é‘z-—\, .
y@s»wﬁ\mﬁshdb@%&//a%ﬁQQ&Kxhzﬂ\maﬁéﬂf.

Und was, wenn der Algorithmus sagt,
heute gibt es Dinkelpfannkuchen?

Péean 94’1/-"’”'{ has M%{

Sehen wir uns im nichsten Kapitel an, wie du priifen kannst, wie gut die generierten

Cluster sind — und was du damit anfangen kannst.
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Viele Algorithmen arbeiten mit Abstandsmetriken, die nicht nur in zwei- oder drei-
dimensionalen Riumen funktionieren, sondern auch in hochdimensionalen Datenriu-
men zuverldssig eingesetzt werden konnen.

Clustering-Algorithmen erstellen Cluster von Datenpunkten in diesem hochdimensio-
nalen Raum, die niher beisammen sind.

K-Means-Daten sollten standardisiert oder normalisiert werden, da diese anfillig fiir
unterschiedliche Skalierungen sind.

Zur Standardisierung wird der Z-Score verwendet.
K-Means-Clustering startet mit zufilligen Positionen fiir die Zentroide.

Bei K-Means werden die Datenpunkte dem néichsten Cluster zugeordnet — also dem
Cluster mit dem geringsten Abstand laut Abstandsmetrik.

Nach der Zuordnung zu einem Cluster wird beim K-Means der Zentroid neu berechnet
und in den Schwerpunkt des Clusters gesetzt. Die Zuordnung beginnt erneut.

Zur Ermittlung von K bei K-Means kannst du die Ellenbogenanalyse oder die Silhou-
etten-Analyse durchfithren - dazu mehr im nichsten Kapitel. Der DBScan-Algorith-
mus kann Ausreifler/Anomalien erkennen.

Der DBScan-Algorithmus ist ebenfalls auf Standardisierung oder Normalisierung
angewiesen.

Im Gegensatz zu K-Means generiert der DBScan-Algorithmus beliebige — auch
gebogene - Cluster-Formen.

Wir benétigen die Dichteangabe - die minimale Anzahl der Datenpunkte - sowie den
Radius, den wir betrachten, als Hyperparameter beim DBScan. Die Anzahl der Clus-
ter ergibt sich dann aus der Bildungsregel der Cluster.

K-Means und DBScan sind zwei Algorithmen aus der Klasse des uniiberwachten Ler-
nens.

KNN steht fiir K-Nearest-Neighbors. Also die K nichsten Nachbarn, wobei du den
Wert fiir K wihlst — also wie viele Nachbarn du betrachtest.

KNN fillt unter iiberwachtes Lernen. Du benétigst also bereits fertige Cluster, um die-
sen anwenden zu kénnen.

Der KNN-Algorithmus kann sowohl zur Klassifikation als auch zur Regression einge-
setzt werden.
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