Contents

Chapter I		Preliminaries on Categories,	
-		Abelian Groups, and Homotopy	1
	§ 1	Categories and Functors	1
	§ 2	Abelian Groups (Exactness, Direct Sums,	
		Free Abelian Groups)	7
	§ 3	Homotopy	13
Chapter II		Homology of Complexes	16
	§ 1	Complexes	16
	§ 2	Connecting Homomorphism,	
		Exact Homology Sequence	19
	§ 3	Chain-Homotopy	23
	§ 4	Free Complexes	26
Chapter III		Singular Homology	29
	§ 1	Standard Simplices and Their Linear Maps	29
	§ 2	The Singular Complex	30
	§ 3	Singular Homology	32
	§ 4	Special Cases	33
	§ 5	Invariance under Homotopy	37
	§ 6	Barycentric Subdivision	40
	§ 7	Small Simplices. Excision	43
	§ 8	Mayer-Vietoris Sequences	47
Chapter IV		Applications to Euclidean Space	54
-	§ 1	Standard Maps between Cells and Spheres	54
	§ 2	Homology of Cells and Spheres	55
	§ 3	Local Homology	59
	§ 4	The Degree of a Map	62
	§ 5	Local Degrees	66
	§ 6	Homology Properties	
		of Neighborhood Retracts in R"	71

X Contents

	§ 7	Jordan Theorem, Invariance of Domain	78
	_	Euclidean Neighborhood Retracts (ENRs)	79
Chapter V		Cellular Decomposition	
		and Cellular Homology	85
		Cellular Spaces	85
		CW-Spaces	88
		Examples	95
	§ 4	Homology Properties of CW-Spaces	101
	-	The Euler-Poincaré Characteristic	104
	§ 6	Description of Cellular Chain Maps and	
		of the Cellular Boundary Homomorphism	106
	§ 7	Simplicial Spaces	111
	§ 8	Simplicial Homology	119
Chapter VI		Functors of Complexes	123
	§ 1	Modules	123
	-	Additive Functors	127
		Derived Functors	132
		Universal Coefficient Formula	136
	-	Tensor and Torsion Products	140
		Hom and Ext	146
	-	Singular Homology and Cohomology	
	0	with General Coefficient Groups	150
	8 8	Tensorproduct and Bilinearity	157
		Tensorproduct of Complexes.	
	0 -	Künneth Formula	161
	8 10	Hom of Complexes.	101
	3 - 0	Homotopy Classification of Chain Maps	167
	8 1 1	Acyclic Models	174
		The Eilenberg-Zilber Theorem.	17.
	3 12	Künneth Formulas for Spaces	178
Chantar VII		Products	186
Chapter VII	£ 1	The Scalar Product	
	-		187
		The Exterior Homology Product	189
	83	The Interior Homology Product	102
	0.4	(Pontrjagin Product)	193
		Intersection Numbers in IR ⁿ	197
	•	The Fixed Point Index	202
	§ 6	The Lefschetz-Hopf Fixed Point	00-
		Theorem	207
	§ 7	The Exterior Cohomology Product	214

Contents XI

	§ 8	The Interior Cohomology Product	
		(Product)	219
	§ 9	Products in Projective Spaces.	
		Hopf Maps and Hopf Invariant	222
	-	Hopf Algebras	227
		The Cohomology Slant Product	233
		The Cap-Product (~-Product)	238
	§ 13	The Homology Slant Product,	
		and the Pontrjagin Slant Product	245
Chapter VIII		Manifolds	247
	§ 1	Elementary Properties of Manifolds	247
	§ 2	The Orientation Bundle of a Manifold	251
	§ 3	Homology of Dimensions $\geq n$	
		in n-Manifolds	259
	§ 4	Fundamental Class and Degree	266
	§ 5	Limits	272
	§ 6	Čech Cohomology	
		of Locally Compact Subsets of IR"	281
	§ 7	Poincaré-Lefschetz Duality	291
	§ 8	Examples, Applications	298
	§ 9	Duality in ∂-Manifolds	303
	§ 10	Transfer	308
	§ 11	Thom Class, Thom Isomorphism	314
		The Gysin Sequence. Examples	325
	-	Intersection of Homology Classes	335
Appendix		Kan- and Čech-Extensions of Functors	348
	§ 1	Limits of Functors	348
	§ 2	Polyhedrons under a Space,	
		and Partitions of Unity	352
	§ 3	Extending Functors from Polyhedrons	
	-	to More General Spaces	361
		Bibliography	368
		Subject Index	371