Contents

1	Introduction	1
	Putting Reservoir Simulations into Context	2
	Idea Behind Truncated and Plurigaussian Simulations	
	Key Steps in a Plurigaussian Simulation	6
	Step 1: Choosing the Model Type	6
	Step 2: Estimating the Parameter Values	6
	Step 3: Generating Gaussian Values at Wells/Drill-Holes	
	Step 4: Simulating Values at Grid Nodes Given Values at Wells	
	Recent Developments	
	History Matching	8
	Layout of the Book	9
2	From a Mathematical Point of View	11
	Non Centered Covariance Between Two Indicators	16
	Centered Covariance Between One Indicator and One Gaussian	17
	Examples	17
	Linear Case with One Gaussian (n = 1)	17
	Non Linear Case with One Gaussian: A Gamma Process	18
	Nonlinear Case with One Gaussian and a Third Order Polynomial	20
	Linear Case with Two Gaussians $(n = 2)$	21
	Linear Case with Two Gaussians and Two Categorical Constraints	23
	Non Linear Case with Two Gaussians	24
	Linear Case with One Gaussian $Z(x)$ and Seismic Constraints $S(x)$	24
	Simulating a Truncated Gaussian	26
	Convergence of the Gibbs Sampler	28
	The Untruncated Case	28
	Convergence in the Truncated Gaussian Case	30
	Markov Chains	30
	Two Integral Operators	31
	Stationary Distribution	32
	Irreducible Chain	32

vii

	Distance Metric and Convergence	33
	The Gibbs Sampler	
	Truncated Gaussian Case	36
	Summary	38
	Annex 1: Conditional Distribution of a Gaussian	39
	Basic Properties of a Gaussian Vector	39
	•	
3	Basic Properties of Indicators	41
	Spatial Covariances, Variograms and Cross-Variograms	42
	Spatial Covariances	42
	Variograms and Cross-Variograms	42
	Variogram Properties	43
	Need for a Mathematically Consistent Method	48
	Transition Probabilities	49
	First Type of Transition Probability	49
	Second Type of Transition Probability	51
	Exercises	53
	LACICISCS	55
4	Proportions	59
•	How to Calculate Vertical Proportion Curves	59
	Example 1: The Ravenscar Sequence	
	Example 2: Facies with Contrasting Anisotropies in a Gold Deposit	62
	Horizontal Non-stationarity	63
		67
	Choosing the Reference Level	72
	Non-stationarity	12
5	Truncation and Thresholds	73
	Basic Principle in the Truncated Gaussian Method	73
	Defining the Thresholds	73
	Transitions Between Facies	74
	Link Between Thresholds and Proportions	76
	Non Stationary Facies	77
	Idea Behind the Plurigaussian Method	77
	Link with the Proportions	79
	Parameter Simplification: Use of Thresholds	79
	Choice of the Partition	80
		-
	Choice of the Correlation Matrix	81
	Calculating the Thresholds	83
	Generalisation to Non-stationary Case	84
	When Simulations Show "Prohibited" Contacts	84
	Higher Dimensional Rock-Type Rules	85
_		
5	Variograms and Structural Analysis	
	Experimental Variograms and Cross-Variograms for Facies	87

Contents ix

	Linking the Indicator Variograms to the Underlying Variograms	88
	Variograms	
	Cross-Variograms	89
	Truncated Gaussian Method	
	Cross-Variograms	90
	Truncated Plurigaussian Method	90
	Variograms	90
	Cross-Variograms	93
	Generalisation to the Non-stationary Case	93
	Experimental Variograms	93
	Indicator Variogram Model (Truncated Gaussian Model)	
	Variogram and Cross-Variogram Model (Truncated Plurigaussian	
	Method, two Gaussian Functions)	96
	Comparing Variogram Models for Indicators and Gaussian Functions	
	Sill of the Indicator Model	
	Shape of the Indicator Model	
	Practical Range of the Indicator Model	
	Anisotropies	100
	Variogram Fitting	101
	Stationary Case	101
	Non-stationary Case	102
	Transition Probabilities	104
7	Gibbs Sampler	107
	Why We Need a Two Step Simulation Procedure	107
	Simulating $Z(x)$ and $Z(y)$ When There Are No Constraints	108
	Simulating $Z(x)$ and $Z(y)$ When $Z(y)$ Belongs to an Interval	108
	Simulating Z(x) and Z(y) When Both Belong to Intervals	111
	Direct Simulation Using an Acceptance/Rejection Procedure	111
	Gibbs Sampler	112
	Four Sample Example	112
	Alternative Updating Strategies	115
	Experimentally Testing Convergence	116
	Burn-in Period	116
	Effect of the Range on the Burn-in Period	117
	The Impact of Different Parallel Runs	119
_		101
8	Case Studies and Practical Examples	121
	Choosing Which Simulation Method to Use	121
	Sequence-Based Pixel Models	121
	Object-Based Models	122
	Nested Simulations	123
	Building up the Reservoir or Orebody Model	124
	Step 1: Defining the Lithotypes	124

x Contents

	Step 2: Dividing Reservoir or Orebody into Units	124
	Step 3: Defining the Reference Level	124
	Step 4: Choosing the Grid Spacing	125
	Petroleum Applications of the Plurigaussian Approach	126
	Constructing the Lithotype Rule with Geological Constraints	126
	Simulation of Reservoir with Complex Facies Transitions	126
	Simulation of the Effects of Primary Diagenesis	
	in Complex Reservoir	129
	Simulating Progradational Patterns	131
	Simulation of Fractures Affecting a Specific Facies	132
	Testing the Impact of Simulation Parameters	132
	Testing the Impact of the Rock-Type Rule	134
	Handling Heterotopic Data	134
	Mining Applications of the Plurigaussian Approach	138
	Roll-Front Uranium Deposit	138
	First Issue	139
	Second Issue	142
	Simulation of a Porphyry Copper Deposit: Non-sedimentary	
	Environment	144
9	Freeware	149
	Introduction	149
	Installation	149
	Installation Instructions for Windows Users	149
	Installation Instructions for Linux Users	150
	Description of <i>PluriDemoSimu</i>	150
	The Choice of the Model	150
	The Rock Type Rule	151
	Vertical Proportions	152
	Simulation Outcome	152
	Limitations of the Program	154
	Description of <i>PluriDemoVario</i>	154
	Choice of the Model	155
	Rock Type Rule	156
	Proportions of Lithotypes	156
	Direction for Calculation	156
	Indicator Variograms	156
	Description of PluriDemoSet	158
	Choice of the Underlying GRF	158
	The Proportions	160
	Particular Case	160
	I MINOMIAL CUDO	100
Re	eferences	163
In	dex	173