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1 Introduction 
Many materials that surround us have a particulate form or are produced using 
processes that involve such materials. According to some studies (Merkus, 
2009), about three-quarters of all industrially produced goods have a particular 
form, including particles of solid (granules, powders, etc.), liquid (emulsions, 
sprays, etc.), and gaseous (bubbles, foams, etc.) forms. According to others 
(Schulze, 2014), 60% of all products manufactured by the European chemical 
industry are estimated to be bulk materials, and a further 20% of products involve 
bulk materials in production. Other industries that heavily involve or produce 
granular materials include pharmaceuticals, metallurgy, mining, food processing, 
agriculture, and ceramics, to name a few.  

In many of these industries, to obtain bulk products with desired properties, it is 
often necessary to combine several stages of material processing, and each 
stage can be performed on different types of equipment. These steps include, for 
example, agglomeration, classification, crystallisation, granulation, grinding, or 
sintering. Examples of such processes include clinker and cement manufacturing 
(Van Oss and Padovani, 2002; Rahman et al., 2013), crushing plants (Bengtsson 
et al., 2009; Asbjörnsson et al., 2022), granulation processes (Cotabarren et al., 
2015; Diez et al., 2018), tablet manufacturing (Singh et al., 2013; Bano et al., 
2022), carbon capture in combustion reactors (Haus et al., 2017), and soil wash-
ing (Toebermann et al., 1999). 

As a result of advances in these areas, the technological structures of production 
processes become increasingly complex, leading to corresponding challenges in 
their design, integration, maintenance, and optimisation. Therefore, it is unsur-
prising that interest in developing approaches and methods for studying such 
complex processes regarding their stability, predictability, and dynamic behav-
iour is only growing. Numerical modelling can make a significant contribution to 
solving all these problems. However, the need to consider the complex structure 
of the processes under study makes their modelling a challenging task. The most 
straightforward approach is to study the different unit operations and sub-steps 
of the process individually. However, this does not allow us to see the whole 
picture since, due to the interdependence of individual operations, the work of 
one block often affects the entire process. As a result, it is necessary to study the 
entire process as a whole. Flowsheet simulation proved to be a powerful tool for 
this. 

Due to its heterogeneity, the granular nature of the solid phase introduces unique 
challenges to both unit operation models and flowsheet simulation frameworks. 
Another critical level of complexity arises from the fact that many solids pro-
cessing plants include unit operations that exhibit transient behaviour. 
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Consequently, there is an urgent need for simulation tools capable of capturing 
the dynamics of these systems. However, despite the importance and diversity 
of the solids processing, the tools for their dynamic flowsheet simulation remain 
underrepresented. 

This work addresses this gap by focusing on the development of a generally ap-
plicable system for the dynamic modelling of solid-phase processes. The pro-
posed framework aims to integrate advanced modelling techniques, which allow 
the correct treatment of distributed parameters of granular materials and the ef-
ficient description of their transient behaviour, into a robust, holistic, and flexible 
simulation environment. 

1.1 Flowsheet simulation 
Modern manufacturing processes strive to operate continuously (Dosta et al., 
2020), where raw materials are consistently introduced into the system while final 
products are simultaneously extracted at a similar flow rate, ensuring a steady 
output of the final goods (Lee et al., 2015). This gives a lot of advantages, such 
as greater flexibility in the quantity of product produced, better scalability, higher 
throughputs, optimisation of used space, raw materials, and equipment, better 
suitability for automation, and even the reduction of waste (Plumb, 2005; Bou-
kouvala et al., 2012). The downside of continuous operation is that due to the 
rising need to combine different production steps into one composite manufac-
turing chain, processes become more complex, making them difficult to design, 
analyse, change, control and optimise. Overcoming this challenge requires better 
process understanding, which is what flowsheet simulation tools can provide. 

Flowsheet modelling, also referred to as process system modelling, is generally 
understood as a computer-aided technique for simulating the interconnected op-
erations of entire chemical and process engineering plants. It typically involves 
representing the sequence of the process units, such as mixers, crushers, sepa-
rators, and reactors, by their mathematical models and connecting them with 
streams that carry materials between units in the process chain. By solving these 
models and the corresponding equations of mass and energy balances, engi-
neers can better understand how various individual operations interact and how 
they affect the overall manufacturing process and the properties of products.  

Flowsheet modelling is typically classified as macroscopic modelling. This ap-
proach focuses on studying processes as a whole without delving into fine de-
tails. For example, macroscopic process modelling does not predict the motion 
of individual particles or the behaviour of each component within a machine. Nor 
can it account for the impact of subtle geometric features of the equipment on 
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the properties of the final product. Instead, it provides the broad, system-wide 
perspective needed to understand overall process behaviour and performance. 

Flowsheet simulations serve multiple purposes across research and develop-
ment and are also applied to address specific problems within industrial settings. 
Among the prominent use cases can be distinguished:  

 Process planning and design by facilitating initial sizing, estimating equip-
ment costs, and helping in early-stage decision-making (Coker, 2007);  

 Process optimisation, aiming to minimise energy consumption, waste pro-
duction, or raw materials use, to reduce production time, or improve prod-
uct quality (Wang et al., 2017; Asprion and Bortz, 2018);  

 Support in the scale-up of production from laboratory to industrial level by 
simplifying process validation and regulatory compliance checks 
(Rakicka-Pustułka et al., 2020); 

 Testing hypotheses or investigating the design alternatives, allowing en-
gineers to evaluate “what if” scenarios and assisting them in understand-
ing system responses under various operating conditions (Morais et al., 
2010); 

 Process analysis in order to gain a better understanding of process be-
haviour, identify bottlenecks, and assess the sensitivity of the process to 
specific influences (Schwier et al., 2010; Asprion et al., 2022);  

 Support decision-making during the process operation by offering a sys-
tematic and quantitative analysis of the process’s responses or by apply-
ing strategies of model-predictive control (Cotabarren et al., 2015; 
Luyben, 2015; Neugebauer et al., 2019).; 

 Operator training using simulated scenarios, allowing for the reduction of 
the risk of equipment damage and enhancing operational safety (Toro et 
al., 2013; Patle et al., 2014); 

Thus, one of the main advantages of flowsheet modelling is its ability to explore 
complex interactions in interconnected systems without needing physical exper-
iments, significantly reducing costs and time spent. However, it has its limitations. 
For example, developing models of the unit operations is often a complex task, 
and even using the modelling tools can be quite challenging (Bezzo et al., 2004). 
Both tasks are further complicated in the context of dynamic modelling. Accurate 
flowsheet modelling may require extensive data and accurate parameter estima-
tion, which can be challenging, especially for highly dynamic processes. In addi-
tion, high-fidelity modelling can be computationally demanding, and simplifica-
tions made to reduce model complexity or improve simulation performance can 
lead to discrepancies between modelling results and actual data. 

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Introduction 

4 

Given their advantages and broad applicability, flowsheet simulations are utilised 
across various industries and for numerous processes: food processing (Ureta 
and Salvadori, 2023), mixing of pharmaceutical powders (Dias et al., 2023), tab-
let manufacturing (Boukouvala et al., 2012; Gavi and Reynolds, 2014; Nagy et 
al., 2021); dry granulation (Park et al., 2018), wet granulation (Metta et al., 2019), 
biopharmaceutical production (Malinov et al., 2024), porcelain manufacturing 
(Alves et al., 2021), battery recycling (Punt et al., 2023), carbon capture (Haus et 
al., 2018), petroleum refining (Azad et al., 2016), biomass gasification (Inayat et 
al., 2020), to name a few. 

1.2 Complexity of solids 
As solid particle processes, one defines those that involve solids unit operations, 
such as crystallisation, drying, granulation, filtration, milling, or sieving within the 
process sequence. This definition applies regardless of whether the solids are 
feed materials, intermediates, or final products (Rajagopal et al., 1992). Many 
studies emphasise the need to distinguish between the modelling of processes 
involving fluid and solid materials since the latter are more complex in nature, 
more complicated to handle, and require different, often more sophisticated al-
gorithms and processing methods (Rajagopal et al., 1992; Toebermann et al., 
1999, 2000; Werther et al., 2004; Hartge et al., 2006; Pogodda, 2007; Dosta et 
al., 2010, 2020; Dosta, 2013; Boukouvala et al., 2012).  

In flowsheet modelling, liquids and gases are generally described using funda-
mental principles of thermodynamics and fluid dynamics, applying straightfor-
ward equations to calculate properties like density, temperature, and pressure. 
In contrast, modelling solids demands consideration of additional influences, in-
cluding particle size, particle shape and roughness, bulk compaction, segrega-
tion, breakage, attrition, etc. (Rhodes and Seville, 2024). Subtle differences in 
these properties and slight variations in process conditions or equipment perfor-
mance can lead to considerable differences in process behaviour (Muzzio et al., 
2002) due to effects of segregation (Umbanhowar et al., 2019), clogging (Cer-
vantes-Álvarez et al., 2023), jamming (Behringer and Chakraborty, 2019), unde-
sired breakage (Reynolds et al., 2005) and others. All this makes bulk materials 
susceptible to higher degrees of variability, complicating their modelling due to 
the need to introduce a significant number of new parameters and due to the 
emerging nonlinearities and discontinuities, which in turn complicate the conver-
gence and accuracy of calculations. 

Considering characteristic values of bulk properties like size, abrasiveness, hard-
ness, or moisture content is often insufficient (Toebermann et al., 2000; Asbjörns-
son et al., 2022), leading to the introduction of distributed parameters to describe 
these properties. In most cases, the particle size distribution is the primary and 
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most important distributed parameter of the solid phase (Hill and Ng, 2002). How-
ever, additional distributions can also be critical to a particular piece of equip-
ment. For example, porosity and saturation are essential in agglomerators (Ive-
son et al., 2002), while particle shape and orientation are critical in crystallisers 
(Kovačević et al., 2017). Similarly, yield strength is significant in granulators (Liu 
et al., 2000), moisture content is important in dryers (Alaathar et al., 2013), and 
chemical composition is essential in various pharmaceutical processes (Metta et 
al., 2019). Therefore, a solid-state processing equipment model must be able to 
consider these interconnected distributed parameters, making its development 
and calculation quite challenging. 

Even describing such distributed parameters presents a unique challenge. Gran-
ular materials typically consist of individual heterogeneous particles, each with 
parameters that vary within a specific range. Mathematically, one can accurately 
describe the entire granular material using continuous distribution functions that 
capture the behaviour of all varying parameters. However, such continuous rep-
resentation is often impractical for modelling and numerical analysis. To address 
this, the full range of a given parameter is usually divided into several shorter 
discrete intervals, referred to as classes. Each class is assigned a representative 
value, such as the average within that interval. The material is then distributed 
across these classes, assuming that all particles inside the class share the same 
parameter values. In this way, rather than relying on continuous functions, distri-
butions are represented as finite sets of discrete values, describing the material 
quantity (such as particle number, mass, or volume) within each class (Skorych 
et al., 2020a). Most models then track each class individually, often introducing 
one or more equations per class. Consequently, the number of classes in the 
representation is often a trade-off between the accuracy of the target distribution 
representation and the model’s computational complexity. 

Another problem is that each specific model can determine the number and com-
position of distributed parameters. However, at the level of the modelling system, 
it is necessary to preserve the ability to combine different models within a single 
flowsheet. And to not limit the scope of the modelling system, the number and 
composition of distributed parameters cannot be restricted and must be flexibly 
configurable. This significantly complicates the solid-state flowsheet simulation 
system since maintaining the consistency of distributed parameters when moving 
from unit to unit partially becomes the task of the modelling framework (Skorych 
et al., 2020a). 

The challenges of solid modelling become even more profound when processes 
involve multiple phases, introducing solid-liquid or solid-gas interfaces. In these 
cases, additional interfacial phenomena, such as wetting, adhesion, and capillary 
effects, must be considered, which are challenging to predict and model 
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accurately. Overall, solid modelling requires extensive data on material proper-
ties, which can be difficult to obtain and measure with precision. Furthermore, 
the computational demands for these simulations are often high due to the com-
plex, nonlinear models involved, making large-scale simulations or real-time dy-
namic models quite challenging to achieve. 

1.3 Dynamic simulation 
Regarding the flowsheet simulation, a distinction is usually made between 
steady-state and dynamic modelling. This classification applies both to the pro-
cess simulation and to the basic models representing individual plant operations. 
The steady-state one assumes that all process variables, such as flow rates, 
temperatures and compositions, remain fixed during the simulation (Luyben, 
1990). Such a model provides a snapshot of the process at equilibrium or given 
operating conditions. One of the basic principles here is that material that enters 
or is created in a process leaves it instantly, i.e. there is no accumulation of ma-
terial within the process (Dimian et al., 2014a). Steady-state models tend to be 
simpler and more computationally efficient. However, they cannot capture tran-
sient behaviours such as start-up, shutdown or responses to disturbances, which 
limits their applicability in scenarios where process conditions change signifi-
cantly over time. 

In contrast, dynamic flowsheet modelling accounts for the time evolution of pro-
cess variables (Dimian et al., 2014b) in response to the changes in input and 
current state of the system. These changes can have various sources, such as 
influences of control systems, operators, wear of critical components, alterations 
in raw material properties, and many more (Asbjörnsson et al., 2022). Thus, dy-
namic modelling makes it possible to describe not only the final state of a process 
but also how this state was reached (Luyben, 1990). This approach is essential 
for understanding transient behaviour, analysing system stability, and developing 
advanced optimisation and control strategies (Marquardt, 1996; Asbjörnsson, 
2015; Dosta et al., 2020; Asbjörnsson et al., 2022).  

Although dynamic flowsheet modelling offers advantages in capturing the behav-
iour of complex systems where changes over time are critical, it is inherently 
more complex and typically much more challenging to implement (Barton and 
Pantelides, 1994). Dynamic models require advanced numerical methods 
(Ponton, 1983; Pantelides and Barton, 1993; Borchardt and Michael, 1996; Dosta 
et al., 2010) and significant computational resources to solve accurately, espe-
cially for processes with many interconnected unit operations. In addition, fitting 
and validating dynamic models requires detailed input data that are often difficult 
to obtain experimentally (Montañés et al., 2017; Asprion et al., 2022). The bal-
ance between model accuracy and computational feasibility is also a significant 
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challenge (Laganier, 1996), as highly detailed models can be computationally 
disadvantageous, while overly simplified ones risk missing critical dynamics. 

Many unit operations in solids process engineering, such as conveyors, bunkers 
or reactors, substantially impact the transient behaviour of the overall plant, mak-
ing their dynamic modelling critical for applying flowsheet simulations (Gleiss et 
al., 2017; Metta et al., 2019; Skorych et al., 2020a). However, not all unit opera-
tions exhibit significant transient behaviour. Some operations, such as screens 
or specific mills with small holdup masses, can be effectively treated as steady-
state even in dynamic modelling environments (Marquardt, 1991; Dosta et al., 
2020), simplifying the model complexity without significant loss of accuracy. In 
practice, steady-state and dynamic modelling often complement each other 
(Dosta et al., 2010), exploiting the simplicity of the former and accounting for 
critical dynamics with the latter. 

Overall, dynamic flowsheet modelling of solids is essential for developing robust, 
flexible, and efficient processes in various industries. However, the growing de-
mand for dynamic models and the need to implement them in flowsheet simula-
tion systems have been discussed for several decades (Marquardt, 1996; 
Asprion et al., 2022). Despite this, the task still remains challenging due to high 
computational and algorithmic demands. 

1.4 State of the art 
The development of the flowsheeting tools from simple steady-state models to 
dynamic ones, as well as from the consideration of fluid phases to granular sol-
ids, can be traced by the comprehensive review publications (Hlaváček, 1977; 
Motard et al., 1975; Rosen, 1980; Perkins et al., 1982; Marquardt, 1991, 1996; 
Moe and Hertzberg, 1994; Werther et al., 2004, 2011; Hartge et al., 2006; Mer-
chan et al., 2016; Dosta et al., 2020). Nowadays, flowsheet simulation is a well-
established methodology with a long history in process engineering, particularly 
in the chemical industry, which deals with fluid materials (Biegler et al., 1997; 
Luyben, 2002; Towler and Sinnott, 2013; Dimian et al., 2014c). There are numer-
ous reviews in the literature of the available process simulators and related ap-
proaches used for specific applications, such as chemical (Ponce-Ortega and 
Hernández-Pérez, 2019) and petrochemical (Libing et al., 2021) processes, food 
processing (Ureta and Salvadori, 2023), biopharmaceutical production (Malinov 
et al., 2024), or biomass gasification (Inayat et al., 2020). 

Currently, there are many commercial and open-source software packages avail-
able for flowsheet modelling, including but not limited to: 
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 Apros (Fortum and VTT Technical Research Centre of Finland Ltd., 2024) 
is a dynamic process simulation software for nuclear and thermal power 
plant applications (Alobaid et al., 2015; Szógrádi et al., 2020).  

 Aspen Plus (AspenTech, 2024a) is commonly used in the chemical, oil, 
gas, and related industries (Guan et al., 2012; Le et al., 2020; Moure 
Abelenda et al., 2023) and has limited support for steady-state solid 
phase operations (Al Malah, 2016a; Hu et al., 2017). 

 Aspen Plus Dynamics (AspenTech, 2024b) is an extension of the Aspen 
Plus designed for modelling dynamic processes, widely utilised in the 
chemical and petrochemical industries for simulating fluid processes 
(Luyben, 2015; Al Malah, 2016b; Taqvi et al., 2016; Sarath Yadav et al., 
2022). 

 AVEVA PRO/II Simulation (AVEVA Group Limited, 2024a) and AVEVA 
Dynamic Simulation (AVEVA Group Limited, 2024b) are steady-state and 
dynamic simulators for process design improvement, plant optimisation, 
operational analysis, and operator training in chemical, petrochemical, re-
fining, pharmaceutical, and polymer industries (Farina et al., 2016; Talero 
and Kansha, 2022). 

 ChemCAD (Chemstations, 2024) is process simulation software used in 
the chemical, fuel, pharmaceutical, and food industries (Otte et al., 2016; 
Petrescu et al., 2024). Has limited support for the solid phase. 

 CHEMPRO (EPCON Software, 2024) is a chemical process engineering 
suite for simulating and optimising liquid and gas processes (Nelson et 
al., 2018). 

 COCO Simulator (AmsterCHEM, 2024) is a free, non-commercial, 
steady-state flowsheet modelling environment for chemical processes 
(Zalazar-Garcia et al., 2022; Alqaheem and Alobaid, 2024). 

 DESIGN II (WinSim Inc., 2024) is a process simulation software for 
steady-state modelling of chemical and hydrocarbon processes (Wang et 
al., 2003; Giardinella et al., 2022). 

 DWSIM (DWSIM, 2024) is an open-source steady-state and dynamic pro-
cess simulation tool for the design, thermodynamic modelling, and opti-
misation of chemical processes (Buitrago et al., 2017; Sreemahadevan 
et al., 2024). 

 Fives ProSim (Fives ProSim S.A.S., 2024) is a family of tools for steady-
state and dynamic process simulation, optimisation and thermodynamic 
calculations of chemical processes in fluids (Floquet et al., 2009; Rama-
lingam et al., 2012). 

 gPROMS FormulatedProducts (Siemens, 2024a) is part of an equation-
oriented general-purpose modelling environment gPROMS (Siemens, 
2024b), specially designed to investigate and optimise solids processes 
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with a focus on the pharmaceutical industry (Barton and Pantelides, 1994; 
Boukouvala et al., 2012; Pinto et al., 2014; Metta et al., 2019; Paolello et 
al., 2023). Does not support extended solid material description with in-
terdependent distributed parameters. 

 Honeywell UniSim Design Suite (Honeywell International Inc., 2024) is 
designed as a tool for steady-state and dynamic modelling, process de-
sign, optimisation, decision support and operator training in chemical and 
petrochemical industries (Oravec et al., 2017; Viecco et al., 2023).  

 HSC Sim (Metso, 2024) is a spreadsheet-based process simulation tool 
for chemical, thermodynamic, metallurgical, and mineral-processing cal-
culations in steady-state and dynamic modes without detailed represen-
tation of the solid phase (Hamuyuni et al., 2021; Larssen et al., 2024). 

 Integrated Extraction Simulator (Orica Limited, 2024) is a cloud-based 
tool specially developed for steady-state modelling and simulation in the 
minerals industry (Rocha et al., 2022; Mavhungu et al., 2024). 

 JKSimMet (JKTech Pty Ltd., 2020) is a software for the steady-state sim-
ulation, design, and analysis of comminution and classification circuits in 
mineral processing operations (Zhang, 2016; Faramarzi et al., 2018).  

 METSIM (METSIM International, LLC, 2024) is a steady-state and dy-
namic process simulation system for modelling and optimising chemical 
and metallurgical processes (Yahya et al., 2020; Y. Wang et al., 2021). 

 OpenModelica (OpenModelica, 2024) is an equation-oriented general-
purpose simulator that, among other things, allows process simulation 
(Nayak et al., 2019; Anjum et al., 2020).  

 ProMoT (Kröner et al., 1990; Tränkle et al., 2000) is an object-oriented 
and equation-based process modelling tool mainly applied to chemical 
engineering problems (Mangold et al., 2004; Waschler et al., 2006). 

 SuperPro Designer (Intelligen, Inc., 2024) concentrates on process opti-
misation and scheduling in pharmaceutical, special chemical, and food 
processing industries. Despite having a limited set of solids-involving unit 
operations, it lacks depicting distributed properties of granular materials 
(Petrides et al., 2014; Harrison et al., 2015; Rakicka-Pustułka et al., 
2020).  

 Symmetry (SLB, 2024) is a process simulation software for modelling flu-
ids in the chemical, oil, and gas industries (Azhari et al., 2023; Othman et 
al., 2024). 

 Also, various developments based on general-purpose tools like Excel, 
MATLAB or MATLAB-Simulink are often used for flowsheet simulations 
(Ali and Idriss, 2010; Gonzalez-Bustamante et al., 2007; Asbjörnsson et 
al., 2013; Muthukrishnan and Al Matroushi, 2018; De Carvalho et al., 
2024). 
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Thus, despite this variety, it is easy to see that the application scope of most 
flowsheeting software is limited to a particular industry. Mostly, it is the chemical, 
gas, and oil industries, where only liquids and gases are considered. Those few 
simulation packages that can deal with solids are either also tailored to a specific 
application (mainly mining), have a limited set of unit operations, or have a sim-
plified consideration of the solid phase without distributed parameters of the gran-
ular material.  

New technologies based on advanced metaheuristic techniques, big-data analy-
sis and artificial intelligence have rapidly developed in recent years. They are 
also gradually making their way into the process modelling industry, opening up 
new opportunities and offering fundamentally new solutions to old problems. 
McBride and Sundmacher (2019) gave a good overview of surrogate modelling 
techniques in chemical process engineering. Data-driven metamodels (Palmer 
and Realff, 2002), surrogate models (Nentwich and Engell, 2016; Triantafyllou et 
al., 2024), and deep learning methods (Agarwal et al., 2021; Zapf and Wallek, 
2022; Alauddin et al., 2023) have demonstrated their potential in computational 
performance improvement, process and design optimisation, fault detection and 
classification, model generalisation, and predictive modelling. The application of 
artificial intelligence in particle technology generally (Thon et al., 2024) and the 
integration of metaheuristic algorithms (Ponce-Ortega and Hernández-Pérez, 
2019) have shown promising results in improving the accuracy and efficiency of 
solving flowsheet modelling tasks. Coupling flowsheet simulation with different 
advanced methods, such as Monte Carlo stochastic techniques (Kotalczyk and 
Kruis, 2018), discrete element method modelling (Sen et al., 2013), or artificial 
neural networks (Dosta and Chan, 2022), demonstrated great potential for in-
creasing the accuracy and expanding the scope of applicability of process simu-
lations. Data-driven and machine-learning methods have been proposed to iden-
tify and troubleshoot convergence issues in highly interconnected systems (Ludl 
et al., 2022; Qu et al., 2024).  

However, despite all these advancements, there is a lack of generally applicable 
flowsheet simulation tools capable of comprehensively considering the peculiar-
ities of bulk materials and modelling transient processes involving them. It was 
this observation that prompted the German Research Foundation (DFG) to 
launch the research priority program SPP1679 “Dynamic Simulation of Intercon-
nected Solids Processes” (TUHH, 2021) in 2013. The main goal was to consoli-
date knowledge in the area of flowsheet modelling of solids in the form of new 
methods, numerical tools, and dynamic process models of various processing 
equipment. All the new developments should have been integrated into a novel 
open-source software Dyssol (Skorych, 2024), presented in this work. The 
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