Contents

Fo	reword	d (by Malte Henkel)	1	
Pro	eface		xxii	
1	Geometric Definitions of sv			
	1.1	From Newtonian Mechanics to the Schrödinger-		
		Virasoro Algebra	1	
		1.1.1 From Galilei to Schrödinger: Central		
		Extensions and Projective Automorphisms	3	
		1.1.2 From Schrödinger to Schrödinger–Virasoro	7	
		1.1.3 Our Object of Study: The Schrödinger-		
		Virasoro Algebra in One Space Dimension	11	
	1.2	Integration of the Schrödinger-Virasoro Algebra to a Group	12	
2	Basic Algebraic and Geometric Features			
	2.1	On Graduations and Some Deformations		
		of the Lie Algebra sv	18	
	2.2	The Conformal Embedding	20	
	2.3	Relations Between sv and the Poisson Algebra		
		on T^*S^1 and 'no-go' Theorem	23	
	2.4	Conformal and Schrödinger Tensor Invariants		
3	Coa	djoint Representation of the Schrödinger-Virasoro Group	31	
	3.1	Coadjoint Action of sv	32	
	3.2	Coadjoint Orbits of sv	37	
4	Indu	aced Representations and Verma Modules	43	
	4.1	Introduction and Notations	43	
	4.2	Kac Determinant Formula for $Vect(S^1) \ltimes \mathscr{F}_0 \ldots$	46	
	4.3	Kac Determinant Formula for sv	52	

5	Coinduced Representations							
	5.1							
	5.2		Multi-Diagonal Differential Operators					
		and So	me Virasoro-Solvable Lie Algebras	61				
	5.3	Coindu	aced Representations of sv	68				
	5.4		oles of Coinduced Representations	72				
6	Vert	Vertex Representations						
	6.1							
			Coinduced Representations	77				
	6.2		chrödinger–Virasoro Primary Fields					
		and the Superfield Interpretation of $\overline{\mathfrak{sp}}$						
		6.2.1	Definition of the Schrödinger–Virasoro					
			Primary Fields	82				
		6.2.2	A Superfield Interpretation	86				
	6.3		uction by $U(1)$ -Currents or $a\bar{b}$ -Theory	89				
		6.3.1	Definition of the sv-Fields	89				
		6.3.2	Construction of the Generalized Polynomial					
		0.2	Fields $_{\alpha}\Phi_{i,k}$	95				
	6.4	Correla	ators of the Polynomial and Generalized					
			omial Fields	106				
	6.5	Construction of the Massive Fields						
7	Coh	omology	, Extensions and Deformations	125				
•	7.1		Prerequisites About Lie Algebra Cohomology	126				
	7.2	Classifying Deformations of $\mathfrak{sv}(0)$						
	7.3	Computation of $H^2(\mathfrak{sv}_{\varepsilon}(0), \mathbb{R})$						
	7.4	About Deformations of $\mathfrak{sv}_1(0)$.						
	7.5	Coming Back to the Original Schrödinger–Virasoro Algebra 14						
_								
8		tion of sv on Schrödinger and Dirac Operators						
	8.1		tions and Notations	148				
	8.2	Affine Schrödinger Cocycles						
	8.3	Action on Dirac-Lévy-Leblond Operators						
9	Mon	odromy	of Schrödinger Operators	161				
	9.1	Introdu	action	161				
	9.2	Classif	fication of the Schrödinger Operators in $\mathscr{S}_{<2}^{aff}$	167				
		9.2.1	Statement of the Problem and Connection					
			with the Classification of Hill Operators	167				
		9.2.2	Classification of Hill Operators by the Lifted					
			Monodromy	169				
		9.2.3	Kirillov's Classification of Hill Operators					
			by Isotropy Subgroups	172				
		9.2.4	Classification of the SV-Orbits in $\mathscr{S}^{aff}_{\leq 2}$	176				
		925	Connection to U. Niederer's Results	181				

	9.3	Monod	romy of Time-Dependent Schrödinger	
		Operate	ors of Non-resonant Types and Ermakov-Lewis	
		Invariants		
		9.3.1	Ermakov-Lewis Invariants and Schrödinger-	
			Virasoro Invariance	182
		9.3.2	Solution of the Associated Classical Problem	189
		9.3.3	Spectral Decomposition of the Model Operators	191
		9.3.4	Monodromy of Non-resonant Harmonic	
			Oscillators (Elliptic Case)	192
		9.3.5	Monodromy of Harmonic Repulsors	
			(Hyperbolic Type)	193
		9.3.6	Monodromy of Non-resonant Operators	.,,
		,,,,,,	of Unipotent Type	195
	9.4	Symple	ectic Structures and General Solution	1,0
			Schrödinger Equation	196
			·	
10			tures and Schrödinger Operators	207
	10.1		ction	207
	10.2		as of Pseudodifferential Symbols	210
	10.3		hift Transformation and Symmetries of the Free	
			inger Equation	214
	10.4		Tentral Cocycles of $(\Psi D_r)_{\leq 1}$ to the Kac-Moody	
		Algebra	a g	216
		10.4.1	Central Cocycles of $(\Psi D_r)_{\leq 1}$	217
		10.4.2	Introducing the Kac-Moody Type Lie Algebra g	219
	10.5		action of the Embedding I of $(D\Psi D_{\xi})_{\leq 1}$ into \mathfrak{g}	220
	10.6		tion of sv on Schrödinger Operators	
			adjoint Action	221
	10.7	Connec	tion with the Poisson Formalism	226
11	Sune	rsymmet	ric Extensions of the Schrödinger-Virasoro	
••				231
	11.1		Dirac-Lévy-Leblond Equation	233
	11.2		ymmetry in Three Dimensions	
	11.2		persymmetric Schrödinger-Invariance	240
		11.2.1	From $N = 2$ Supersymmetry to the Super-	2.0
		11.2.1	Schrödinger Equation	240
		11.2.2	Dynamic Symmetries of the Super-	210
		11.2.2	Schrödinger Model	245
		11.2.3	Some Physical Applications	248
		11.2.3	Dynamic Symmetries of the (3 2)-	270
		11.4.4	Supersymmetric Model	249
		11.2.5	First Correspondence with Poisson Structures:	277
		11.2.3	The Super-Schrödinger Model	250
			THE SUDEL-SCHRORINGER MICHAEL	4JU

		11.2.6	Second Correspondence with Poisson	
			Structures: The Case of $\mathfrak{osp}(2 4)$,	
			or the (3 2)-Supersymmetric Model	254
	11.3	Extended Super-Schrödinger Transformations		257
		11.3.1	Elementary Examples	258
		11.3.2	General Case	260
		11.3.3	Study of the Case $N = 2$	264
	11.4	Two-Po	oint Functions	267
A	Appe	endix to (Chapter 6	273
В	Appendix to Chapter 11			281
	B.1		ymmetric Two-Point Functions	281
		B.1.1	\$(1)-Covariant Two-Point Functions	281
		B.1.2	\$\tilde{s}^{(2)}\$-Covariant Two-Point Functions	284
		B.1.3	osp(2 2)-Covariant Two-Point Functions	284
		B.1.4	se(3 2)-Covariant Two-Point Functions	288
		B.1.5	osp(2 4)-Covariant Two-Point Functions	289
	B.2	Table o	f Lie Superalgebras	289
Rei	ference	s		293
Ind	lex			299