Contents

Preface XI

1	Hall-Current Ion Sources 1
1.1	Introduction 1
1.2	Closed Drift Ion Sources 2
1.3	End-Hall Ion Sources 5
1.4	Electric Discharge and Ion Beam Volt-Ampere Characteristics 19
1.5	Operating Parameters Characterizing Ion Source 24
	References 26
2	Ion Source and Vacuum Chamber. Influence of Various Effects
	on Ion Beam Parameters 29
2.1	Introduction 29
2.2	Mass Entrainment 32
2.3	Charge-Exchange Influence on Ion Beam Flow 34
2.4	Doubly Ionized Particles and Their Role 36
2.5	Influence of Vacuum Chamber Pumping Rate 40
2.6	Dielectric Depositions on an Anode During Operation
	with Reactive Gases 41
2.7	Estimation of Returned Sputtered Particles to Ion Source 43
2.8	Influence of Ion Source Heating on its Operation 47
2.9	Negative Ions and their Role 48
2.10	Conclusion 50
	References 50
3	Oscillations and Instabilities in Hall-Current Ion Sources 53
3.1	Introduction 53
3.2	Oscillations and Instabilities 56
3.3	Types of Oscillations 56
3.3.1	Ionization Oscillations 56
3.3.2	Flight Oscillations 58
3.3.3	Contour Oscillations 58

۷ı	Contents	
	3.3.4	Hybrid Azimuthal Oscillations 60
	3.3.5	Oscillations Due to High Pressure 61
	3.3.6	Oscillations Due to Ion Beam Underneutralization 61
	3.3.7	Oscillations Due to Incorrect Operation 62
	3.3.8	Oscillations Due to Presence of Water Vapors 62
	3.4	Conclusions and What to Do About Oscillations 63
		References 64
	4	Optimum Operation of Hall-Current Ion Sources 67
	4.1	Introduction 67
	4.2	Regime of Nonself-Sustained Discharge and Optimum Operation
		Conditions of End-Hall Ion Source 70
	4.2.1	Discharge Volt–Ampere Characteristics 70
	4.3	Operation of End-Hall Ion Source with Excessive
		Electron Emission 71
	4.4	Ion Beam Energy of End-Hall Ion Source 73
	4.5	End-Hall Ion Source Optimum Magnetic Field for Ion Beam Current 76
	4.6	Ion Beam Energy Distribution as a Function of Angle
		With Various Emission Currents 81
	4.7	Conclusion 82
		References 83
	5	Cathode Neutralizers for Ion Sources 85
	5.1	Introduction 85
	5.2	Ion Beam and its Practical Neutralization 87
	5.3	Hot Filament Electron Source and Thermoelectron Emission 93
	5.3.1	Richardson-Dushman Formula for Thermoelectron
		Emission Current Density 93
	5.3.2	Recent Improvements in HF Design 101
	5.4	Hollow Cathodes 105
	5.4.1	Introduction 105
	5.4.2	Hollow Cathode Physics 109
	5.4.3	Hollow Cathodes for Industrial Ion Sources 115
	5.4.4	HC Modes of Operation 121
	5.4.5	Hollow Cathode Tip and Keeper 123
	5.4.6	General Conclusions about Hollow Cathodes 125
	5.4.7	Other Cathodes for Ion Sources 126
	5.4.7.1	Plasma Bridge 126
	5.4.7.2	Neutralizer with Closed Electron Drift 128
	5.4.7.3	Radio-Frequency Neutralizers 129
	5.4.7.4	Cold Cathodes 134
	5.4.7.5	Neutralization with Alternating Current 135
	5.4.7.6	Plasma Bridge Based on Magnetron Discharge Principles 136
	5.4.7.7	Ion Beam Neutralization with Magnetron Electrons 139

5.4.7.8	Ion Beam Neutralization with Electron Gun 140
5.4.7.9	Microwave Discharge Neutralizer 141
5.4.8	Cathode Erosion Rates 141
5.4.9	Important Features of Cathode Neutralizers 142
5.5	Conclusions about Cathode Neutralizers 142
	Appendix 5.A: Web Addresses 144
	References 144
6	Industrial Gridless Broad-Beam Ion Source Producers, Problems
	and the Need for Their Standardization 149
6.1	World Producers of Ion Sources 149
6.1.1	Theoretical Consideration for Closed Electron
	Drift Design 154
6.2	Specific Designs of End-Hall-Current Ion Sources for Thin Film
	Technology 159
6.3	Nontraditional Broad Beam Ion Sources 168
6.4	Linear Ion Sources 178
6.5	Hall-Current Ion Sources Basic Operation Parameter
	Problems 183
6.6	The Need for Standardization of Ion Sources 190
6.7	Conclusions 194
	Appendix 6.A: Web Addresses 194
	References 195
7	Operation of Industrial Ion Sources with Reactive Gases 197
7.1	Introduction 197
7.2	Low- and High-Temperature Oxidation 198
7.3	Ion Source Operation with Dielectric and Insulating Depositions
	on an Anode 199
7.4	End-Hall with Grooved Anode and Baffle 203
7.5	End-Hall With Hidden Anode Area for Continuing Discharge
	Operation 205
7.6	Practical Operation of Hall-Current Ion Sources with
	Reactive Gases 206
	References 208
8	Ion Beam and Radiation Impact on Substrate Heating 209
8.1	Introduction 209
8.2	Target-Substrate Heating By Radiation and Ion Beam 211
8.3	Experimental Measurements of Ion Beam and Radiation Impact
	on a Target-Substrate 218
8.4	Conclusion 222
	Appendix A.8: Web Addresses 222
	References 222

VIII	Contents	
	9	Ion Beam Energy and Current 223
	9.1	Introduction 223
	9.2	Ion Beam Energy Distribution 225
	9.3	Retarding Potential Probes 228
		References 240
	10	Plasma Optical Systems 241
	10.1	Introduction 241
	10.2	Plasma Optics Evolution 242
	10.3	Electrostatic Fields in Plasma 243
	10.4	Plasma Optical Systems with Equipotential Magnetic Field Lines 244
	10.5	Plasma Lenses 245
	10.6	Practical Applications of Plasma Optical Systems in Technology 248
	10.6.1	Ion Beam Focusing and Defocusing with Plasma Lens 248
	10.6.2	Ion Beam Soldering with Focused or Partially Focused
		Ion Beam 249
		References 254
	11	Ion and Plasma Sources for Science and Technology 255
	11.1	Introduction 255
	11.2	Vacuum Pump 255
	11.3	Commutating Properties of Gas Discharge in Magnetic Field 256
	11.3.1	Plasma Switch 257
	11.4	Hollow Cathode as Vacuum Valve 258
	11.5	Ion Source for Levitation 260
	11.6	Hydrogen Motion through Metal Membrane for MPD
		Plasma Source 261
	11.7	Plasmaoptical Mass Separator 262
	11.8	Plasma Stealth and Other Effects in Modern Airdynamics 263
	11.9	Conclusion 266
		References 266
	12	Ion Assist, and Its Different Applications 269
	12.1	Introduction 269
	12.2	Ion Beam Sputtering 270
	12.3	Ion Assisted Deposition 272
	12.4	Biased Target Deposition 278
	12.5	Ion Assisted Magnetron Deposition with Magnetron Electrons
		for Ion Beam Neutralization 280
	12.5.1	Ion Afflux and Ion Assist 281
	12.6	Ion Assisted Magnetron Discharge for Enhancement of Cathode Sputtering 283
	12.6.1	Magnetron Discharge with Ion Beam Assist 283

12./	Conclusion 283					
	References 285					
13	Magnetron with Non-equipotential Cathode 287					
13.1	Introduction 287					
13.2	Short History of Magnetron Development 288					
13.3	Magnetron with Segments at Different Potentials 292					
13.4	The Phenomenology of a Magnetron Discharge with NEC 304					
13.5	Conclusion 306					
	References 307					
	Index 309					