KAPITEL 1

Grundlagen von GPT-4 und ChatGPT

Die Moglichkeit, auf kiinstliche Intelligenz zurtickzugreifen, lag fir Entwicklerin-
nen und Entwickler nie niher. Large Language Models (LLMs) wie GPT-4 oder
GPT-3.5 Turbo haben mit ChatGPT gezeigt, was sie konnen. Jetzt finden wir uns
in einem Sturm des Fortschritts wieder, dessen Geschwindigkeit in der Welt der
Software so noch nie vorgekommen ist. OpenAl hat diese technologischen Inno-
vationen direkt einsetzbar gemacht — welche transformativen Anwendungen
werden Sie daraus bauen, nachdem die Tools dazu nun zur Verfugung stehen?

Die Moglichkeiten dieser KI-Modelle gehen iiber Chatbots weit hinaus. Dank der
LLMs konnen Sie in der Entwicklung nun auf die Fihigkeiten der Verarbeitung
natiirlicher Sprache (Natural Language Processing, NLP) zuriickgreifen, um An-
wendungen zu schaffen, die die Bediirfnisse der User auf eine Weise verstehen,
die bisher wie Science-Fiction klang. Durch die neuen bildlichen Fahigkeiten von
GPT-4 ist es zudem nun méglich, Software zu bauen, die Text anhand von Bil-
dern interpretieren und generieren kann. Von innovativen Kundensupportsyste-
men, die lernen und sich anpassen, bis hin zu personalisierten Lernwerkzeugen,
die den jeweiligen Lernstil der Schiiler und Studentinnen verstehen, eréffnen
Sprachmodelle von GPT eine ganze neue Welt von Méglichkeiten.

Aber was sind GPT-Modelle? Ziel dieses Kapitels ist es, sich deren Grundlagen,
Urspriinge und zentralen Fihigkeiten anzuschauen. Wenn Sie die Grundlagen
dieser KI-Modelle verstehen, sind Sie beim Bauen der nichsten Generation von
LLM-gestiitzten Anwendungen schon einen ganzen Schritt weiter.

Einfiihrung in Large Language Models

Dieser Abschnitt erklirt die grundlegenden Bausteine, die die Entwicklung von
GPT-Modellen beeinflusst haben. Wir versuchen, Sprachmodelle und NLP, die




Rolle von Transformer-Architekturen und die Tokenisierungs- und Vorhersa-
geprozesse in diesen Modellen umfassend zu erkliren. Die Reise ist bei der Ver-
arbeitung von Texten aber noch nicht zu Ende. Mit GPT-4 Vision werden die
Moglichkeiten von LLMs tiber den Umgang mit Texten hinaus auf multimodale
Eingaben erweitert. GPT-4 ist damit nicht nur in der Textinterpretation gut,
sondern auch beim Auswerten von Bildern.

Die Grundlagen von Sprachmodellen und NLP

Als LLMs sind GPT-Modelle die neueste Art von Modellen im Feld der Verar-
beitung natiirlicher Sprache, die wiederum eine Untermenge des maschinellen
Lernens (Machine Learning, ML) und der kunstlichen Intelligenz (Artificial In-
telligence, Al) ist. Bevor wir uns genauer mit den GPT-Modellen befassen, ist es
wichtig, sich NLP (Natural Language Processing) und die zugehorigen Bereiche
anzuschauen.

Es gibt unterschiedliche Definitionen von Al aber eine davon — mehr oder we-
niger der Konsens in diesem Gebiet — sagt, dass Al das Entwickeln von Compu-
tersystemen ist, die Aufgaben erledigen konnen, fiir die im Allgemeinen
menschliche Intelligenz erforderlich ist. Diese Definition vereint viele Algorith-
men unter dem Dach der KI. Denken Sie beispielsweise an das Vorhersagen von
Verkehrsmengen in GPS-Anwendungen oder die regelbasierten Systeme, die in
strategischen Videospielen zum Einsatz kommen. In diesen Beispielen scheint
der Rechner von aufRen betrachtet Intelligenz zu erfordern, um die Aufgaben er-
ledigen zu kénnen.

ML ist eine Untermenge von Al. In ML miissen wir nicht versuchen, die Ent-
scheidungsregeln des Al-Systems direkt zu implementieren. Stattdessen versu-
chen wir, Algorithmen zu entwickeln, die dem System erlauben, selbststindig
aus Beispielen zu lernen. Seit den 1950er-Jahren — als die ML-Forschung be-
gann — wurden in der wissenschaftlichen Literatur viele ML-Algorithmen vor-
geschlagen.

Darunter haben sich insbesondere die Deep-Learning-Algorithmen einen Namen
gemacht. Deep Learning ist ein Zweig des ML, der sich auf Algorithmen konzen-
triert, die durch die Struktur des Gehirns inspiriert wurden. Diese Algorithmen
werden kiinstliche neuronale Netze (Artificial Neural Networks) genannt. Sie
konnen sehr grofe Datenmengen verarbeiten und funktionieren erstaunlich gut
bei Aufgaben wie der Bild- oder der Spracherkennung und bei NLP.

16 | Kapitel1: Grundlagen von GPT-4 und ChatGPT



Die GPT-Modelle basieren auf einem bestimmten Typ von Deep-Learning-Al-
gorithmen, den sogenannten Transformern, die in dem Artikel »Attention Is All
You Need« von Vaswani et al. von Google im Jahr 2017 eingefiihrt wurden
(https://oreil ly/fVZWT1). Transformer sind vergleichbar mit Lesemaschinen. Sie
nutzen einen Attention-Mechanismus, um die unterschiedlichen Teile des
Texts zu priorisieren, um so ein tieferes Verstindnis des Kontexts zu erhalten
und kohirente Antworten zu erzeugen. So konnen sie die Bedeutung von Wor-
tern in Sitzen erfassen, was die Performance beim Ubersetzen natiirlicher Spra-
chen, dem Beantworten von Fragen (Question Answering, QA) und dem Erzeu-
gen von Text verbessert. Abbildung 1-1 verdeutlicht diese zentralen Konzepte
und ihre Rolle beim Verbessern der Fihigkeiten von Transformer-Modellen fir
die diversen Sprachaufgaben.

NLP ist ein Unterbereich von Al, der sich darauf fokussiert, mit Computern na-
tiirliche, menschliche Sprache zu verarbeiten, zu interpretieren und zu generie-
ren. Moderne NLP-Losungen basieren auf ML-Algorithmen. Das Ziel von NLP
ist, Computer Texte aus natirlicher Sprache verarbeiten zu lassen. Dieses Ziel
umfasst ein breites Aufgabenspektrum:

Textklassifikation
Eingabetext wird in vordefinierte Gruppen kategorisiert. Dazu gehoren bei-
spielsweise die Sentimentanalyse und die Themenklassifizierung. Firmen
konnen mit der Sentimentanalyse die Meinung von Kundinnen und Kun-
den zu ihren Angeboten ermitteln. Das Filtern von E-Mails ist ein Beispiel
fur die Themenklassifizierung, bei der eine E-Mail in Kategorien wie »Pri-
vat«, »Soziale Netze«, »Werbung« und »Spam« unterteilt werden kann.

Automatisches Ubersetzen
Text aus einer Sprache wird automatisch in eine andere iibersetzt. Dazu
kann auch das Ubersetzen von Code aus einer Programmiersprache in eine
andere gehoren, zum Beispiel von Python nach C++.

Question Answering — Beantworten von Fragen
Das Beantworten von Fragen basiert auf einem gegebenen Text. So kann
beispielsweise ein Onlinekundenserviceportal ein NLP-Modell nutzen, um
FAQs iiber ein Produkt zu beantworten, oder Lernsoftware verwendet
NLP, um Antworten auf die Fragen von Studenten oder Schiilerinnen zum
aktuellen Thema zu geben.

Textgenerierung
Es wird ein kohirenter und relevanter Ausgabetext generiert, der auf einem
gegebenen Eingabetext — dem Prompt — basiert.
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Kiinstliche Intelligenz

Jede Technik, mit der ein Computer menschliches
Verhalten simulieren kann

Maschinelles Lernen
Fahigkeit, ohne explizite Programmierung zu lernen

Deep Learning
Fahigkeit, mithilfe kiinstlicher neuronaler
Netze Muster aus Daten zu extrahieren

Transformer

GPT-Modelle
basieren darauf

Abbildung 1-1:  Technologien von KI bis zu Transformern

Wie schon erwihnt, sind LLMs ML-Modelle, die versuchen, unter anderem
Aufgaben im Bereich der Textgenerierung zu losen. Sie ermoglichen Compu-
tern, menschliche Sprache zu verarbeiten, zu interpretieren und zu generieren,
was zu einer effektiveren Kommunikation zwischen Mensch und Maschine
fihrt. Dazu analysieren LLMs riesige Textmengen beziehungsweise trainieren
damit und erlernen dabei Muster und Beziehungen zwischen Wortern in Sitzen.
Fiir diesen Lernprozess konnen diverse Datenquellen zum Einsatz kommen. Es
konnen Texte aus Wikipedia, Reddit, aus Archiven mit Tausenden von Biichern
oder sogar das Archiv des Internets selbst genutzt werden. Erhilt ein LLM einen
Eingabetext, kann es Vorhersagen iiber die Worter machen, die am wahrschein-
lichsten folgen werden, und damit sinnvolle Antworten liefern. Das LLM besitzt
sehr viele interne Parameter, und beim Lernen sucht der Algorithmus, der das
LLM aufbaut, nach den optimalen Parametern, mit denen das Modell die best-
moglichen Vorhersagen zu den nichsten Wortern treffen kann. Die modernen
Sprachmodelle, wie zum Beispiel die aktuellen von GPT, sind so grof und wur-
den mit so vielen Texten trainiert, dass sie nun direkt die meisten NLP-Aufga-
ben ausfithren konnen, wie zum Beispiel die Textklassifikation, maschinelles
Ubersetzen oder das Beantworten von Fragen (Question Answering, QA).
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OpenAl hat unterschiedliche Sprachmodelle vorgestellt. Aktuell sind
die neuesten und leistungsfihigsten die der GPT-4-Serie. Neben der
Moglichkeit der Textverarbeitung steht GPT-4 Vision fiir eine deutli-
che Weiterentwicklung als multimodales Modell, mit dem nicht nur
Text, sondern auch Bilder als Eingabe moglich sind. LLMs kénnen
Bilder mithilfe einer spezialisierten Transformer-Architektur namens
Vision Transformer (ViT) verarbeiten. Das ganz aktuelle Modell GPT-
40 geht sogar noch weiter — es kann Text, Bilder und Audio verarbei-
ten und generieren.

Der Beginn der Entwicklung von LLMs reicht bis in die 1990er-Jahre zuriick.
Sie begann mit einfachen Sprachmodellen wie N-Grammen, die versucht ha-
ben, abhingig vom vorherigen Wort das nichste Wort in einem Satz vorherzu-
sagen. N-Gramm-Modelle haben dazu die Hdiufigkeit genutzt. Das vorherge-
sagte nichste Wort ist das am hiufigsten vorkommende Wort, das im zum
Training verwendeten N-Gramm-Modell auf das vorherige Wort folgt. Dieser
Ansatz war zwar ein guter Ausgangspunkt, aber da sich die N-Gramm-Modelle
im Verstehen des Kontexts und der Grammatik ziemlich schwertaten, waren
die erzeugten Texte inkonsistent.

Um die Leistungsfihigkeit von N-Gramm-Modellen zu verbessern, kamen aus-
gefeiltere Lernalgorithmen zum Einsatz, unter anderem rekurrente neuronale
Netze (Recurrent Neural Networks, RNNs) und Long-Short-Term-Memory-
Netzwerke (LSTM). Diese Modelle konnten lingere Sequenzen lernen und den
Kontext besser als N-Gramme analysieren, aber sie brauchten immer noch Hil-
fe beim effizienten Verarbeiten grofer Datenmengen. Diese Art von rekurren-
ten Modellen war lange Zeit die effizienteste und daher diejenige, die zum Bei-
spiel bei der automatischen maschinellen Ubersetzung zum Einsatz kam.

Die Transformer-Architektur und ihre Rolle in LLMs

Die Transformer-Architektur hat NLP revolutioniert, vor allem weil Transfor-
mer eine der kritischsten Einschrinkungen fritherer NLP-Modelle (wie RNNs)
effektiv aufgehoben haben — den Kampf erster Modelle mit langen Eingabetext-
sequenzen und das Bewahren des Kontexts tiber diese langen Sequenzen. Mit
anderen Worten: RNNs haben dazu tendiert, in lingeren Sequenzen den Kon-
text zu vergessen (das beriichtigte »katastrophale Vergessen«), Transformer
hingegen haben die Moglichkeit, diesen Kontext effektiv beizubehalten und zu
codieren.
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Die zentrale Siule dieser Revolution ist der Attention-Mechanismus — eine einfa-
che, aber sehr leistungsfihige Idee. Statt alle Worter in einer Textsequenz als
gleich wichtig zu betrachten, zollt das Modell bei jedem seiner Schritte vor allem
den relevantesten Begriffen Aufmerksamkeit. Dieser Mechanismus ermoglicht
direkte Verbindungen zwischen entfernten Elementen im Text. So kann bei-
spielsweise das letzte Wort ohne Beschrinkungen mit dem ersten Wort verbun-
den werden, was eine signifikante Einschrinkung ilterer Modelle wie RNNs
war. Cross-Attention und Self-Attention sind zwei Architekturblocke, die auf
diesem Attention-Mechanismus basieren, und sie kommen oft in LLMs zum
Einsatz. Die Transformer-Architektur nutzt diese Blocke ausgesprochen hiufig.

Cross-Attention hilft dem Modell dabei, die Relevanz der unterschiedlichen
Teile des Eingabetexts zu bestimmen, um das nachste Wort im Ausgabetext
exakt vorherzusagen. Sie ist wie ein Scheinwerfer, der Worter oder Phrasen im
Eingabetext beleuchtet und die relevanten Informationen hervorhebrt, die erfor-
derlich sind, um die nichste Wortvorhersage zu treffen, und der die weniger
wichtigen Details ignoriert.

Um das zu verdeutlichen, wollen wir ein Beispiel mit einer einfachen Uberset-
zung eines Satzes durchgehen. Stellen Sie sich vor, wir hitten den englischen
Satz »Alice enjoyed the sunny weather in Brussels« als Eingabe, der in den fran-
zosischen Satz »Alice a profité du temps ensoleillé a Bruxelles« iibersetzt wer-
den soll. In diesem Beispiel wollen wir uns darauf fokussieren, das franzésische
Wort ensoleillé zu generieren, das sunny bedeutet. Fiir diese Vorhersage wiirde
die Cross-Attention mehr Gewicht auf die englischen Worter sunny und we-
ather legen, da beide fiir die Bedeutung von ensoleillé relevant sind. Durch das
Konzentrieren auf diese beiden Worter hilft Cross-Attention dem Modell da-
bei, eine genaue Ubersetzung fiir diesen Teil des Satzes zu erzeugen. Abbildung
1-2 illustriert dieses Beispiel.

[Alice] @ [profité] [temps] :,néchstes vorherzusagendes Wort‘,'

.................

Durch den Attention-Mechanismus
konzentriert sich das Modell mehr
auf diese beiden Worter und
weniger auf die anderen.

sunny [weather] @ [Brussels]

Abbildung 1-2:  Cross-Attention nutzt den Attention-Mechanismus, um sich auf die
wichtigen Teile des Eingabetexts (des englischen Satzes) zu konzentrie-
ren und das ndchste Wort des Ausgabetexts (des franzosischen Satzes)
vorherzusagen.
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Self-Attention bezieht sich auf die Fihigkeit eines Modells, sich auf unter-
schiedliche Teile des Eingabetexts zu fokussieren. Im Kontext von NLP kann
das Modell die Wichtigkeit jedes Worts in einem Satz in Bezug auf die anderen
Worter bewerten. Dadurch kann es die Beziehungen zwischen den Wortern
besser verstehen, und das Modell kann aus mehreren Wortern im Eingabetext
neue Kongzepte bauen.

Schauen Sie sich als spezifischeres Beispiel folgenden Satz an: »Alice received
praise from her colleagues.« Nehmen wir an, dass das Modell versucht, in die-
sem Satz die Bedeutung des Worts her zu verstehen. Der Self-Attention-Mecha-
nismus weist den Wortern unterschiedliche Gewichte zu und hebt dabei die
Worter hervor, die in diesem Kontext fiir her relevant sind. Im Beispiel wiirde
die Self-Attention mehr Gewicht auf die Worter Alice und colleagues legen. Sie
hilft dem Modell dabei, aus diesen Wortern neue Konzepte zu bauen. In die-
sem Beispiel wiire eines der Konzepte, das so entstehen konnte, moglicherweise
»Alice’s colleagues« (siehe Abbildung 1-3).

Nachdem Durchlaufendes = =773 «777% 7777 ST Al ""‘,
Mechanismus kénnen neue und ' ' ' P ice’s )
abstraktere Konzepte entstehen. «_ __ _} «____} \____} \____ G ___}

Self-Attention
[Alice] [received] [praise] [from]

[colleagues]

[received] [ praise ] [from ]

A A A T A T

Die Tokens, die der Self-Attention- . . .
Mechanismus empféngt. [A|ICE] [recelved] [ pralse] [from ] [her] [colleagues]

colleagues

Abbildung 1-3:  Self-Attention erlaubt das Entstehen des Konzepts »Alice’s colleagues«.

Anders als die rekurrente Architektur haben Transformer zudem den Vorteil,
leicht parallelisierbar zu sein. Das heifSt, die Transformer-Architektur kann
mehrere Teile des Eingabetexts simultan statt sequenziell verarbeiten. Dies er-
moglicht eine schnellere Berechnung und ein schnelleres Training, weil unter-
schiedliche Teile des Modells parallel abgearbeitet werden kénnen, ohne dass
darauf gewartet werden muss, dass vorherige Schritte fertig sind. Bei der rekur-
renten Architektur ist hingegen eine sequenzielle Verarbeitung notwendig. Die
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Moglichkeit der parallelen Verarbeitung bei Transformer-Modellen passt sehr
gut zur Architektur von Grafikkarten (Graphics Processing Units, GPUs), die
dazu designt sind, viele Berechnungen gleichzeitig durchzufithren. Daher sind
GPUs aufgrund ihrer hochparallelen, leistungsfihigen Berechnungsmoglich-
keiten ideal zum Trainieren und Ausfithren der Transformer-Modelle. Dieser
Vorteil erlaubte den Data Scientists, Modelle mit viel gréReren Datensitzen zu
trainieren, was den Weg fiir die Entwicklung von LLMs geebnet hat.

Die Transformer-Architektur ist ein Sequence-to-Sequence-Modell, das ur-
spriinglich fiir Sequence-to-Sequence-Aufgaben wie das maschinelle Uberset-
zen entwickelt wurde. Ein Standard-Transformer besteht aus zwei Hauptkom-
ponenten: einem Encoder und einem Decoder, die beide stark auf Attention-
Mechanismen aufbauen. Die Aufgabe des Encoders ist es, den Eingabetext zu
verarbeiten, wichtige Merkmale zu identifizieren und eine sinnvolle Reprisen-
tation dieses Texts zu generieren — ein Embedding. Der Decoder nutzt dann die-
ses Embedding, um eine Ausgabe zu erzeugen, wie zum Beispiel eine Uberset-
zung oder eine Zusammenfassung. Diese Ausgabe interpretiert letztendlich die
codierten Informationen.

Generative vortrainierte Transformer (Generative Pre-Trained Transformers),
im Allgemeinen als GPT bekannt, sind eine Familie von Modellen, die auf der
Transformer-Architekeur basieren und dabei spezifisch den Decoder-Teil der
urspriinglichen Architektur nutzen. In der GPT-Architektur ist der Encoder
nicht vorhanden, daher ist auch keine Cross-Attention erforderlich, um die
Embeddings zu integrieren, die von einem Encoder erstellt wurden. GPT baut
nur auf dem Self-Attention-Mechanismus im Decoder auf, um kontextabhingi-
ge Reprisentationen und Vorhersagen zu erzeugen. Andere bekannte Modelle,
wie zum Beispiel BERT (Bidirectional Encoder Representations from Transfor-
mers), basieren auf dem Encoder-Teil, wir werden sie in diesem Buch aber nicht
behandeln. Abbildung 1-4 zeigt die Entwicklung dieser verschiedenen Modelle.

( N-Gramme ) [ RNNsundLSTMs) [ Transformer | [ LLMs A
» das ndchste Wort - verbessertes » Beziehungen * GPT (Generative
abhangig von den Sequenzlernen zwischen Wortern Pretrained
vorherigen Begrif- « Probleme beim effizient erkennen Transformer)
— fenvorhersagen = verarbeiten groRer [ * Trainingaufviel [ >
» Kontext und Datenmengen groReren Daten-
grammatikalisches satzen moglich
Verstandnis nur
eingeschrankt
\_ J J \C J J

Abbildung 1-4:  Die Entwicklung von NLP-Techniken von N-Grammen bis zum
Entstehen von LLMs
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Die Tokenisierungs- und Vorhersageschritte in GPT-Modellen
entmystifizieren

LLMs erhalten als Eingabe einen Prompt und generieren als Reaktion darauf
einen Text. Dieser Prozess wird als Textvervollstindigung bezeichnet. Der
Prompt konnte beispielsweise lauten: »The weather is nice today, so I decided
to«. Das Modell konnte dann vielleicht »go for a walk« ausgeben. Moglicher-
weise fragen Sie sich, wie das LLM-Modell diesen Ausgabetext aus dem Einga-
be-Prompt erzeugt. Wie Sie sehen werden, ist das vor allem eine Frage der
Wabhrscheinlichkeiten.

Wird ein Prompt an ein LLM geschickt, teilt dieses die Eingabe zunichst in
kleinere Elemente auf — in sogenannte Tokens. Diese Tokens stehen fur einzel-
ne Worter, Wortteile oder Leer- und Satzzeichen. Der obige Prompt konnte

beispielsweise unterteilt werden in ["The", "wea", "ther", "is", "nice",
"today", ",", "so", "I", "de", "ci", "ded", "to"].Jedes Sprachmodell
bringt seinen eigenen Tokenizer mit. Der Tokenizer von GPT-3.5 und GPT-4
steht online auf der OpenAl-Plattform (https://oreil.ly/hbKT7) zu Testzwecken

zur Verfiigung.

Als Faustregel kann man bei Tokens annehmen, dass 100 Tokens un-
gefahr 75 Wortern in einem englischen Text entsprechen. Bei ande-
ren Sprachen mag das anders aussehen, und die Anzahl an Tokens
kann fiir die gleiche Zahl an Wortern groer sein.

Dank des Attention-Prinzips und der Transformer-Architektur verarbeitet das
LLM diese Tokens und kann die Beziehung zwischen ihnen sowie die Gesamt-
bedeutung des Prompts interpretieren. Die Transformer-Architektur erlaubt
einem Modell, die entscheidenden Informationen und den Kontext im Text ef-
fizient zu erfassen.

Um einen neuen Satz zu erstellen, sagt das LLM die Tokens voraus, die basie-
rend auf dem vom User angegebenen Eingabekontext des Prompts am wahr-
scheinlichsten folgen werden. OpenAl bietet viele Versionen von GPT-4 an.
Zuerst hatten Sie nur die Wahl zwischen einem Eingabekontextfenster mit ma-
ximal 8.192 oder 32.768 Tokens. Anfang 2024 wurden die neuesten Modelle
GPT-4 Turbo und GPT-40 von OpenAl veroffentlicht, die ein grofReres Einga-
bekontextfenster von 128.000 Tokens aufweisen — das entspricht fast 300 Sei-
ten englischen Texts. Anders als die vorherigen rekurrenten Modelle, die Pro-
bleme mit langen Eingabesequenzen hatten, kann das moderne LLM durch die
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Transformer-Architektur und den Attention-Mechanismus den Kontext im
Ganzen beriicksichtigen. Abhingig von diesem Kontext weist das Modell je-
dem potenziell folgenden Token einen Wahrscheinlichkeitswert zu. Das Token
mit der hochsten Wahrscheinlichkeit wird dann als Nichstes in der Sequenz
gewihlt. In unserem Beispiel konnte auf »The weather is nice today, so I deci-
ded to« als nichstes bestes Token »go« folgen.

Wie Sie im nichsten Kapitel sehen werden, ist es mithilfe eines Tem-
peratur-Parameters moglich, nicht einfach das niachste Token mit der
hochsten Wahrscheinlichkeit zu nutzen, sondern es dem Modell zu
erlauben, das nichste Token aus einer Reithe von Tokens mit der
hochsten Wahrscheinlichkeit auszuwihlen. Das sorgt fir mehr Vari-
abilitdt und Kreativitit in der Antwort des Modells.

Dieser Prozess wird anschlieRend wiederholt, aber nun wird der Kontext zu
»The weather is nice today, so I decided to go« — also mit dem zuvor vorherge-
sagten Token »go« am Ende des urspriinglichen Prompts. Das zweite Token,
das das Modell moglicherweise vorhersagt, konnte »for« sein. Dieser Prozess
wird so lange wiederholt, bis ein vollstindiger Satz geformt ist: »The weather is
nice today, so I decided to go for a walk«. Der Prozess baut auf der Fihigkeit
des LLM auf, das wahrscheinlichste nichste Wort aus den riesigen Textdaten
gelernt zu haben. Abbildung 1-5 zeigt diesen Prozess.

(1. Prompt erhalten
Beispiel: »The weather is nice today, so | decided to«

\ J

(2. Eingabe in Tokens aufteilen
Beispiel: ["The", "wea", "ther", "is", "nice", "today", "",
| "s0","I","de", "ci", "ded", "t0"]

3. Tokens mit Transformer-Architektur verarbeiten

- Beziehungen zwischen Tokens verstehen
| * Gesamtbedeutung des Prompts verstehen

J

Die Schritte 4 und 5

wiederholen. bis ein [ 4. Abhingig vom Kontext das nichste Token vorhersagen )
vollstandiger Satz « Moglichen Wortern Wahrscheinlichkeitswerte zuweisen
gebildet wurde. _* Beispiel: {"g0™: 0.7, "stay™: 0.2, "wri": 0.1} J
Beispiel: p - - — - - .
»The weather is nice 5. Basierend auf diesen Wahrscheinlichkeitswerten ein
today, so | decided to go Wort auswahlen
for awalk.« Beispiel: »go«

Abbildung 1-5:  Der Vervollstandigungsprozess lauft iterativ ab — Token fiir Token.
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Einbinden von Vision in ein LLM

Mit GPT-4 Vision wird die GPT-4-Serie um multimodale Fertigkeiten erginzt,
sodass sie jetzt auch mit mehr als nur mit Text umgehen kann. Die spezifischen
Mechanismen sorgen dafiir, dass dieses Feature proprietir bleibt und nicht so
einfach eingesehen werden kann. Es lassen sich aber Schliissse aus Open-
Source-LLMs ziehen, die visuelle Daten integrieren, sodass wir zumindest ein
grundlegendes Verstindnis der potenziellen Methoden erlangen kénnen, mit
denen GPT-4 um solch eine multimodale Funktionalitit erweitert wird. In die-
sem Abschnitt sollen die Prozesse vorgestellt werden, die sich in diesen Open-
Source-Gegenstiicken beobachten lassen, damit Sie eine Idee davon bekom-
men, wie die Bild-Text-Integration in GPT-4 moglicherweise umgesetzt ist.

Convolutional Neural Networks (CNNs) waren lange Zeit State-of-the-Art bei
Aufgaben zur Bildverarbeitung. Sie sind sehr gut beim Klassifizieren von Bildern
und Erkennen von Objekten. Das erreichen sie, indem sie Filterschichten nut-
zen, die Uiber ein Eingabebild geschoben werden. Diese Filter konnen die rdum-
lichen Beziehungen zwischen den Pixeln des Bilds aufdecken, und sie helfen den
CNNs dabei, Muster zu erkennen — von einfachen Kanten in den ersten Schich-
ten bis hin zu komplexen Formen und Objekten in den tieferen Schichten.

Aber dhnlich wie die Einfithrung der Transformer-Architekturen im Jahr 2017
NLP revolutionierte und RNNs abloste, wurden im Jahr 2020 neue Modelle fiir
die Bildverarbeitung vorgeschlagen, die auf Transformer-Architekturen basie-
ren. Seitdem wird die seit Langem bestehende Dominanz von CNNs in der
Bildverarbeitung infrage gestellt. Im Jahr 2021 zeigte ein Artikel in Google mit
dem Titel »An Image Is Worth 16x16 Words: Transformers for Image Recogni-
tion at Scale« von Dosovitskiy et al. (https://oreil.ly/ijPSk), dass ein reines Trans-
former-Modell namens Vision Transformer (ViT) fiir viele Bildklassifikations-
aufgaben eine bessere Leistung liefern kann.

Sie fragen sich vielleicht, wie der Transformer die Bilddaten verarbeitet. Aus
der Ferne betrachtet, ist das Vorgehen dem bei Text ziemlich dhnlich. Wird ein
Text-Prompt an ein LLM geschickt, teilt es den Text erst in kleinere Zeichenab-
schnitte auf — die Tokens — und verarbeitet diese dann, um das nichste Token
vorherzusagen. Bei Bildern teilt der ViT das Bild erst in kleine, gleich grofRe Ka-
cheln. In Abbildung 1-6 sehen Sie ein Beispiel dafiir.

Diese Bildkacheln werden dann mit den Text-Tokens in einer einheitlichen
Eingabesequenz zusammengefithrt. Ohne nun allzu sehr in die technischen De-
tails zu gehen: Wenn ein LLM Textdaten verarbeitet, wird jedes Token zu-
nichst in einen hochdimensionalen Vektor umgewandelt. Diese Mapping-
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Funktion zwischen den Tokens und den hochdimensionalen Vektoren wird
wihrend des Lernprozesses des LLM berechnet. Eine Mapping-Funktion zwi-
schen den Kacheln und dem gleichen hochdimensionalen Raum wird ebenfalls
wihrend des Lernprozesses ermittelt. So finden sich danach sowohl die Tokens
wie auch die Kacheln im gleichen hochdimensionalen Raum. Die kombinierte
Sequenz aus Text und Bild kann dann von der Transformer-Architektur verar-
beitet werden, um das nichste Token vorherzusagen. Durch die Kombination
aus Bildkacheln und Text-Tokens im gleichen hochdimensionalen Darstel-
lungsraum kann das Modell Self-Attention-Mechanismen fiir beide Modalita-
ten nutzen und Antworten erzeugen, die Text- und Bildinformationen beriick-
sichtigen. Bei der Python-Entwicklung kann die Fahigkeit, Bilder zu verarbei-
ten, die Interaktion der User mit Threr KI-Anwendung deutlich besser machen,
zum Beispiel Giber intuitivere Chatbots oder Lerntools, die Inhalte aus Bildern
verstehen und erldutern konnen.

Abbildung 1-6: Ein Bild wird in gleich grofse Kacheln unterteilt, bevor es an den Trans-
former iibergeben wird.

Eine kurze Geschichte des GPT: von GPT-1 bis GPT-4

In diesem Abschnitt werden wir die Entwicklung der GPT-Modelle von OpenAl
von GPT-1 bis GPT-4 betrachten.

GPT-1

Mitte 2018 — nur ein Jahr nach der Erfindung der Transformer-Architektur — hat
OpenAl den Artikel »Improving Language Understanding by Generative Pre-Trai-
ning« (https://oreil.ly/Yakwa) von Radford et al. veroffentlicht, in dem die Firma
den Generative Pre-Trained Transformer vorstellt — auch bekannt als GPT-1.
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