
KAPITEL 1

Grundlagen von GPT-4 und ChatGPT
Die Möglichkeit, auf künstliche Intelligenz zurückzugreifen, lag für Entwicklerin-
nen und Entwickler nie näher. Large Language Models (LLMs) wie GPT-4 oder
GPT-3.5 Turbo haben mit ChatGPT gezeigt, was sie können. Jetzt finden wir uns
in einem Sturm des Fortschritts wieder, dessen Geschwindigkeit in der Welt der
Software so noch nie vorgekommen ist. OpenAI hat diese technologischen Inno-
vationen direkt einsetzbar gemacht – welche transformativen Anwendungen
werden Sie daraus bauen, nachdem die Tools dazu nun zur Verfügung stehen?

Die Möglichkeiten dieser KI-Modelle gehen über Chatbots weit hinaus. Dank der
LLMs können Sie in der Entwicklung nun auf die Fähigkeiten der Verarbeitung
natürlicher Sprache (Natural Language Processing, NLP) zurückgreifen, um An-
wendungen zu schaffen, die die Bedürfnisse der User auf eine Weise verstehen,
die bisher wie Science-Fiction klang. Durch die neuen bildlichen Fähigkeiten von
GPT-4 ist es zudem nun möglich, Software zu bauen, die Text anhand von Bil-
dern interpretieren und generieren kann. Von innovativen Kundensupportsyste-
men, die lernen und sich anpassen, bis hin zu personalisierten Lernwerkzeugen,
die den jeweiligen Lernstil der Schüler und Studentinnen verstehen, eröffnen
Sprachmodelle von GPT eine ganze neue Welt von Möglichkeiten.

Aber was sind GPT-Modelle? Ziel dieses Kapitels ist es, sich deren Grundlagen,
Ursprünge und zentralen Fähigkeiten anzuschauen. Wenn Sie die Grundlagen
dieser KI-Modelle verstehen, sind Sie beim Bauen der nächsten Generation von
LLM-gestützten Anwendungen schon einen ganzen Schritt weiter.

Einführung in Large Language Models

Dieser Abschnitt erklärt die grundlegenden Bausteine, die die Entwicklung von
GPT-Modellen beeinflusst haben. Wir versuchen, Sprachmodelle und NLP, die
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Rolle von Transformer-Architekturen und die Tokenisierungs- und Vorhersa-
geprozesse in diesen Modellen umfassend zu erklären. Die Reise ist bei der Ver-
arbeitung von Texten aber noch nicht zu Ende. Mit GPT-4 Vision werden die
Möglichkeiten von LLMs über den Umgang mit Texten hinaus auf multimodale
Eingaben erweitert. GPT-4 ist damit nicht nur in der Textinterpretation gut,
sondern auch beim Auswerten von Bildern.

Die Grundlagen von Sprachmodellen und NLP

Als LLMs sind GPT-Modelle die neueste Art von Modellen im Feld der Verar-
beitung natürlicher Sprache, die wiederum eine Untermenge des maschinellen
Lernens (Machine Learning, ML) und der künstlichen Intelligenz (Artificial In-
telligence, AI) ist. Bevor wir uns genauer mit den GPT-Modellen befassen, ist es
wichtig, sich NLP (Natural Language Processing) und die zugehörigen Bereiche
anzuschauen.

Es gibt unterschiedliche Definitionen von AI, aber eine davon – mehr oder we-
niger der Konsens in diesem Gebiet – sagt, dass AI das Entwickeln von Compu-
tersystemen ist, die Aufgaben erledigen können, für die im Allgemeinen
menschliche Intelligenz erforderlich ist. Diese Definition vereint viele Algorith-
men unter dem Dach der KI. Denken Sie beispielsweise an das Vorhersagen von
Verkehrsmengen in GPS-Anwendungen oder die regelbasierten Systeme, die in
strategischen Videospielen zum Einsatz kommen. In diesen Beispielen scheint
der Rechner von außen betrachtet Intelligenz zu erfordern, um die Aufgaben er-
ledigen zu können.

ML ist eine Untermenge von AI. In ML müssen wir nicht versuchen, die Ent-
scheidungsregeln des AI-Systems direkt zu implementieren. Stattdessen versu-
chen wir, Algorithmen zu entwickeln, die dem System erlauben, selbstständig
aus Beispielen zu lernen. Seit den 1950er-Jahren – als die ML-Forschung be-
gann – wurden in der wissenschaftlichen Literatur viele ML-Algorithmen vor-
geschlagen.

Darunter haben sich insbesondere die Deep-Learning-Algorithmen einen Namen
gemacht. Deep Learning ist ein Zweig des ML, der sich auf Algorithmen konzen-
triert, die durch die Struktur des Gehirns inspiriert wurden. Diese Algorithmen
werden künstliche neuronale Netze (Artificial Neural Networks) genannt. Sie
können sehr große Datenmengen verarbeiten und funktionieren erstaunlich gut
bei Aufgaben wie der Bild- oder der Spracherkennung und bei NLP.
16 | Kapitel 1: Grundlagen von GPT-4 und ChatGPT



Die GPT-Modelle basieren auf einem bestimmten Typ von Deep-Learning-Al-
gorithmen, den sogenannten Transformern, die in dem Artikel »Attention Is All
You Need« von Vaswani et al. von Google im Jahr 2017 eingeführt wurden
(https://oreil.ly/jVZW1). Transformer sind vergleichbar mit Lesemaschinen. Sie
nutzen einen Attention-Mechanismus, um die unterschiedlichen Teile des
Texts zu priorisieren, um so ein tieferes Verständnis des Kontexts zu erhalten
und kohärente Antworten zu erzeugen. So können sie die Bedeutung von Wör-
tern in Sätzen erfassen, was die Performance beim Übersetzen natürlicher Spra-
chen, dem Beantworten von Fragen (Question Answering, QA) und dem Erzeu-
gen von Text verbessert. Abbildung 1-1 verdeutlicht diese zentralen Konzepte
und ihre Rolle beim Verbessern der Fähigkeiten von Transformer-Modellen für
die diversen Sprachaufgaben.

NLP ist ein Unterbereich von AI, der sich darauf fokussiert, mit Computern na-
türliche, menschliche Sprache zu verarbeiten, zu interpretieren und zu generie-
ren. Moderne NLP-Lösungen basieren auf ML-Algorithmen. Das Ziel von NLP
ist, Computer Texte aus natürlicher Sprache verarbeiten zu lassen. Dieses Ziel
umfasst ein breites Aufgabenspektrum:

Textklassifikation
Eingabetext wird in vordefinierte Gruppen kategorisiert. Dazu gehören bei-
spielsweise die Sentimentanalyse und die Themenklassifizierung. Firmen
können mit der Sentimentanalyse die Meinung von Kundinnen und Kun-
den zu ihren Angeboten ermitteln. Das Filtern von E-Mails ist ein Beispiel
für die Themenklassifizierung, bei der eine E-Mail in Kategorien wie »Pri-
vat«, »Soziale Netze«, »Werbung« und »Spam« unterteilt werden kann.

Automatisches Übersetzen
Text aus einer Sprache wird automatisch in eine andere übersetzt. Dazu
kann auch das Übersetzen von Code aus einer Programmiersprache in eine
andere gehören, zum Beispiel von Python nach C++.

Question Answering – Beantworten von Fragen
Das Beantworten von Fragen basiert auf einem gegebenen Text. So kann
beispielsweise ein Onlinekundenserviceportal ein NLP-Modell nutzen, um
FAQs über ein Produkt zu beantworten, oder Lernsoftware verwendet
NLP, um Antworten auf die Fragen von Studenten oder Schülerinnen zum
aktuellen Thema zu geben.

Textgenerierung
Es wird ein kohärenter und relevanter Ausgabetext generiert, der auf einem
gegebenen Eingabetext – dem Prompt – basiert.
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Abbildung 1-1: Technologien von KI bis zu Transformern

Wie schon erwähnt, sind LLMs ML-Modelle, die versuchen, unter anderem
Aufgaben im Bereich der Textgenerierung zu lösen. Sie ermöglichen Compu-
tern, menschliche Sprache zu verarbeiten, zu interpretieren und zu generieren,
was zu einer effektiveren Kommunikation zwischen Mensch und Maschine
führt. Dazu analysieren LLMs riesige Textmengen beziehungsweise trainieren
damit und erlernen dabei Muster und Beziehungen zwischen Wörtern in Sätzen.
Für diesen Lernprozess können diverse Datenquellen zum Einsatz kommen. Es
können Texte aus Wikipedia, Reddit, aus Archiven mit Tausenden von Büchern
oder sogar das Archiv des Internets selbst genutzt werden. Erhält ein LLM einen
Eingabetext, kann es Vorhersagen über die Wörter machen, die am wahrschein-
lichsten folgen werden, und damit sinnvolle Antworten liefern. Das LLM besitzt
sehr viele interne Parameter, und beim Lernen sucht der Algorithmus, der das
LLM aufbaut, nach den optimalen Parametern, mit denen das Modell die best-
möglichen Vorhersagen zu den nächsten Wörtern treffen kann. Die modernen
Sprachmodelle, wie zum Beispiel die aktuellen von GPT, sind so groß und wur-
den mit so vielen Texten trainiert, dass sie nun direkt die meisten NLP-Aufga-
ben ausführen können, wie zum Beispiel die Textklassifikation, maschinelles
Übersetzen oder das Beantworten von Fragen (Question Answering, QA).

Deep Learning
Fähigkeit, mithilfe künstlicher neuronaler
NetzeMuster aus Daten zu extrahieren

Künstliche Intelligenz
Jede Technik, mit der ein Computer menschliches

Verhalten simulieren kann

Maschinelles Lernen
Fähigkeit, ohne explizite Programmierung zu lernen

Transformer
GPT-Modelle

basieren darauf
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OpenAI hat unterschiedliche Sprachmodelle vorgestellt. Aktuell sind
die neuesten und leistungsfähigsten die der GPT-4-Serie. Neben der
Möglichkeit der Textverarbeitung steht GPT-4 Vision für eine deutli-
che Weiterentwicklung als multimodales Modell, mit dem nicht nur
Text, sondern auch Bilder als Eingabe möglich sind. LLMs können
Bilder mithilfe einer spezialisierten Transformer-Architektur namens
Vision Transformer (ViT) verarbeiten. Das ganz aktuelle Modell GPT-
4o geht sogar noch weiter – es kann Text, Bilder und Audio verarbei-
ten und generieren.

Der Beginn der Entwicklung von LLMs reicht bis in die 1990er-Jahre zurück.
Sie begann mit einfachen Sprachmodellen wie N-Grammen, die versucht ha-
ben, abhängig vom vorherigen Wort das nächste Wort in einem Satz vorherzu-
sagen. N-Gramm-Modelle haben dazu die Häufigkeit genutzt. Das vorherge-
sagte nächste Wort ist das am häufigsten vorkommende Wort, das im zum
Training verwendeten N-Gramm-Modell auf das vorherige Wort folgt. Dieser
Ansatz war zwar ein guter Ausgangspunkt, aber da sich die N-Gramm-Modelle
im Verstehen des Kontexts und der Grammatik ziemlich schwertaten, waren
die erzeugten Texte inkonsistent.

Um die Leistungsfähigkeit von N-Gramm-Modellen zu verbessern, kamen aus-
gefeiltere Lernalgorithmen zum Einsatz, unter anderem rekurrente neuronale
Netze (Recurrent Neural Networks, RNNs) und Long-Short-Term-Memory-
Netzwerke (LSTM). Diese Modelle konnten längere Sequenzen lernen und den
Kontext besser als N-Gramme analysieren, aber sie brauchten immer noch Hil-
fe beim effizienten Verarbeiten großer Datenmengen. Diese Art von rekurren-
ten Modellen war lange Zeit die effizienteste und daher diejenige, die zum Bei-
spiel bei der automatischen maschinellen Übersetzung zum Einsatz kam.

Die Transformer-Architektur und ihre Rolle in LLMs
Die Transformer-Architektur hat NLP revolutioniert, vor allem weil Transfor-
mer eine der kritischsten Einschränkungen früherer NLP-Modelle (wie RNNs)
effektiv aufgehoben haben – den Kampf erster Modelle mit langen Eingabetext-
sequenzen und das Bewahren des Kontexts über diese langen Sequenzen. Mit
anderen Worten: RNNs haben dazu tendiert, in längeren Sequenzen den Kon-
text zu vergessen (das berüchtigte »katastrophale Vergessen«), Transformer
hingegen haben die Möglichkeit, diesen Kontext effektiv beizubehalten und zu
codieren.
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Die zentrale Säule dieser Revolution ist der Attention-Mechanismus – eine einfa-
che, aber sehr leistungsfähige Idee. Statt alle Wörter in einer Textsequenz als
gleich wichtig zu betrachten, zollt das Modell bei jedem seiner Schritte vor allem
den relevantesten Begriffen Aufmerksamkeit. Dieser Mechanismus ermöglicht
direkte Verbindungen zwischen entfernten Elementen im Text. So kann bei-
spielsweise das letzte Wort ohne Beschränkungen mit dem ersten Wort verbun-
den werden, was eine signifikante Einschränkung älterer Modelle wie RNNs
war. Cross-Attention und Self-Attention sind zwei Architekturblöcke, die auf
diesem Attention-Mechanismus basieren, und sie kommen oft in LLMs zum
Einsatz. Die Transformer-Architektur nutzt diese Blöcke ausgesprochen häufig.

Cross-Attention hilft dem Modell dabei, die Relevanz der unterschiedlichen
Teile des Eingabetexts zu bestimmen, um das nächste Wort im Ausgabetext
exakt vorherzusagen. Sie ist wie ein Scheinwerfer, der Wörter oder Phrasen im
Eingabetext beleuchtet und die relevanten Informationen hervorhebt, die erfor-
derlich sind, um die nächste Wortvorhersage zu treffen, und der die weniger
wichtigen Details ignoriert.

Um das zu verdeutlichen, wollen wir ein Beispiel mit einer einfachen Überset-
zung eines Satzes durchgehen. Stellen Sie sich vor, wir hätten den englischen
Satz »Alice enjoyed the sunny weather in Brussels« als Eingabe, der in den fran-
zösischen Satz »Alice a profité du temps ensoleillé à Bruxelles« übersetzt wer-
den soll. In diesem Beispiel wollen wir uns darauf fokussieren, das französische
Wort ensoleillé zu generieren, das sunny bedeutet. Für diese Vorhersage würde
die Cross-Attention mehr Gewicht auf die englischen Wörter sunny und we-
ather legen, da beide für die Bedeutung von ensoleillé relevant sind. Durch das
Konzentrieren auf diese beiden Wörter hilft Cross-Attention dem Modell da-
bei, eine genaue Übersetzung für diesen Teil des Satzes zu erzeugen. Abbildung
1-2 illustriert dieses Beispiel.

Abbildung 1-2: Cross-Attention nutzt den Attention-Mechanismus, um sich auf die 
wichtigen Teile des Eingabetexts (des englischen Satzes) zu konzentrie-
ren und das nächste Wort des Ausgabetexts (des französischen Satzes) 
vorherzusagen.

Durch den Attention-Mechanismus
konzentriert sich das Modell mehr

auf diese beidenWörter und
weniger auf die anderen.

Alice a profité du temps

Alice enjoys the sunny weather in Brussels

nächstes vorherzusagendesWort
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Self-Attention bezieht sich auf die Fähigkeit eines Modells, sich auf unter-
schiedliche Teile des Eingabetexts zu fokussieren. Im Kontext von NLP kann
das Modell die Wichtigkeit jedes Worts in einem Satz in Bezug auf die anderen
Wörter bewerten. Dadurch kann es die Beziehungen zwischen den Wörtern
besser verstehen, und das Modell kann aus mehreren Wörtern im Eingabetext
neue Konzepte bauen.

Schauen Sie sich als spezifischeres Beispiel folgenden Satz an: »Alice received
praise from her colleagues.« Nehmen wir an, dass das Modell versucht, in die-
sem Satz die Bedeutung des Worts her zu verstehen. Der Self-Attention-Mecha-
nismus weist den Wörtern unterschiedliche Gewichte zu und hebt dabei die
Wörter hervor, die in diesem Kontext für her relevant sind. Im Beispiel würde
die Self-Attention mehr Gewicht auf die Wörter Alice und colleagues legen. Sie
hilft dem Modell dabei, aus diesen Wörtern neue Konzepte zu bauen. In die-
sem Beispiel wäre eines der Konzepte, das so entstehen könnte, möglicherweise
»Alice’s colleagues« (siehe Abbildung 1-3).

Abbildung 1-3: Self-Attention erlaubt das Entstehen des Konzepts »Alice’s colleagues«.

Anders als die rekurrente Architektur haben Transformer zudem den Vorteil,
leicht parallelisierbar zu sein. Das heißt, die Transformer-Architektur kann
mehrere Teile des Eingabetexts simultan statt sequenziell verarbeiten. Dies er-
möglicht eine schnellere Berechnung und ein schnelleres Training, weil unter-
schiedliche Teile des Modells parallel abgearbeitet werden können, ohne dass
darauf gewartet werden muss, dass vorherige Schritte fertig sind. Bei der rekur-
renten Architektur ist hingegen eine sequenzielle Verarbeitung notwendig. Die

Alice received praise

Self-Attention

from her colleagues

Alice’s
colleagues

Alice received praise from her colleagues

Alice received praise from her colleagues

Nach demDurchlaufen des
Mechanismus können neue und
abstraktere Konzepte entstehen.

Die Tokens, die der Self-Attention-
Mechanismus empfängt.
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Möglichkeit der parallelen Verarbeitung bei Transformer-Modellen passt sehr
gut zur Architektur von Grafikkarten (Graphics Processing Units, GPUs), die
dazu designt sind, viele Berechnungen gleichzeitig durchzuführen. Daher sind
GPUs aufgrund ihrer hochparallelen, leistungsfähigen Berechnungsmöglich-
keiten ideal zum Trainieren und Ausführen der Transformer-Modelle. Dieser
Vorteil erlaubte den Data Scientists, Modelle mit viel größeren Datensätzen zu
trainieren, was den Weg für die Entwicklung von LLMs geebnet hat.

Die Transformer-Architektur ist ein Sequence-to-Sequence-Modell, das ur-
sprünglich für Sequence-to-Sequence-Aufgaben wie das maschinelle Überset-
zen entwickelt wurde. Ein Standard-Transformer besteht aus zwei Hauptkom-
ponenten: einem Encoder und einem Decoder, die beide stark auf Attention-
Mechanismen aufbauen. Die Aufgabe des Encoders ist es, den Eingabetext zu
verarbeiten, wichtige Merkmale zu identifizieren und eine sinnvolle Repräsen-
tation dieses Texts zu generieren – ein Embedding. Der Decoder nutzt dann die-
ses Embedding, um eine Ausgabe zu erzeugen, wie zum Beispiel eine Überset-
zung oder eine Zusammenfassung. Diese Ausgabe interpretiert letztendlich die
codierten Informationen.

Generative vortrainierte Transformer (Generative Pre-Trained Transformers),
im Allgemeinen als GPT bekannt, sind eine Familie von Modellen, die auf der
Transformer-Architektur basieren und dabei spezifisch den Decoder-Teil der
ursprünglichen Architektur nutzen. In der GPT-Architektur ist der Encoder
nicht vorhanden, daher ist auch keine Cross-Attention erforderlich, um die
Embeddings zu integrieren, die von einem Encoder erstellt wurden. GPT baut
nur auf dem Self-Attention-Mechanismus im Decoder auf, um kontextabhängi-
ge Repräsentationen und Vorhersagen zu erzeugen. Andere bekannte Modelle,
wie zum Beispiel BERT (Bidirectional Encoder Representations from Transfor-
mers), basieren auf dem Encoder-Teil, wir werden sie in diesem Buch aber nicht
behandeln. Abbildung 1-4 zeigt die Entwicklung dieser verschiedenen Modelle.

Abbildung 1-4: Die Entwicklung von NLP-Techniken von N-Grammen bis zum 
Entstehen von LLMs

N-Gramme
• das nächsteWort
abhängig von den
vorherigen Begrif-
fen vorhersagen

• Kontext und
grammatikalisches
Verständnis nur
eingeschränkt

RNNs und LSTMs
• verbessertes
Sequenzlernen

• Probleme beim
Verarbeiten großer
Datenmengen

Transformer
• Beziehungen
zwischenWörtern
effizient erkennen

• Training auf viel
größeren Daten-
sätzenmöglich

LLMs
• GPT (Generative
Pretrained
Transformer)
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Die Tokenisierungs- und Vorhersageschritte in GPT-Modellen 
entmystifizieren
LLMs erhalten  als Eingabe einen Prompt und generieren als Reaktion darauf
einen Text. Dieser Prozess wird als Textvervollständigung bezeichnet. Der
Prompt könnte beispielsweise lauten: »The weather is nice today, so I decided
to«. Das Modell könnte dann vielleicht »go for a walk« ausgeben. Möglicher-
weise fragen Sie sich, wie das LLM-Modell diesen Ausgabetext aus dem Einga-
be-Prompt erzeugt. Wie Sie sehen werden, ist das vor allem eine Frage der
Wahrscheinlichkeiten.

Wird ein Prompt an ein LLM geschickt, teilt dieses die Eingabe zunächst in
kleinere Elemente auf – in sogenannte Tokens. Diese Tokens stehen für einzel-
ne Wörter, Wortteile oder Leer- und Satzzeichen. Der obige Prompt könnte
beispielsweise unterteilt werden in ["The", "wea", "ther", "is", "nice",
"today", ",", "so", "I", "de", "ci", "ded", "to"]. Jedes Sprachmodell
bringt seinen eigenen Tokenizer mit. Der Tokenizer von GPT-3.5 und GPT-4
steht online auf der OpenAI-Plattform (https://oreil.ly/hbKT7) zu Testzwecken
zur Verfügung.

Als Faustregel kann man bei Tokens annehmen, dass 100 Tokens un-
gefähr 75 Wörtern in einem englischen Text entsprechen. Bei ande-
ren Sprachen mag das anders aussehen, und die Anzahl an Tokens
kann für die gleiche Zahl an Wörtern größer sein.

Dank des Attention-Prinzips und der Transformer-Architektur verarbeitet das
LLM diese Tokens und kann die Beziehung zwischen ihnen sowie die Gesamt-
bedeutung des Prompts interpretieren. Die Transformer-Architektur erlaubt
einem Modell, die entscheidenden Informationen und den Kontext im Text ef-
fizient zu erfassen.

Um einen neuen Satz zu erstellen, sagt das LLM die Tokens voraus, die basie-
rend auf dem vom User angegebenen Eingabekontext des Prompts am wahr-
scheinlichsten folgen werden. OpenAI bietet viele Versionen von GPT-4 an.
Zuerst hatten Sie nur die Wahl zwischen einem Eingabekontextfenster mit ma-
ximal 8.192 oder 32.768 Tokens. Anfang 2024 wurden die neuesten Modelle
GPT-4 Turbo und GPT-4o von OpenAI veröffentlicht, die ein größeres Einga-
bekontextfenster von 128.000 Tokens aufweisen – das entspricht fast 300 Sei-
ten englischen Texts. Anders als die vorherigen rekurrenten Modelle, die Pro-
bleme mit langen Eingabesequenzen hatten, kann das moderne LLM durch die
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Transformer-Architektur und den Attention-Mechanismus den Kontext im
Ganzen berücksichtigen. Abhängig von diesem Kontext weist das Modell je-
dem potenziell folgenden Token einen Wahrscheinlichkeitswert zu. Das Token
mit der höchsten Wahrscheinlichkeit wird dann als Nächstes in der Sequenz
gewählt. In unserem Beispiel könnte auf »The weather is nice today, so I deci-
ded to« als nächstes bestes Token »go« folgen.

Wie Sie im nächsten Kapitel sehen werden, ist es mithilfe eines Tem-
peratur-Parameters möglich, nicht einfach das nächste Token mit der
höchsten Wahrscheinlichkeit zu nutzen, sondern es dem Modell zu
erlauben, das nächste Token aus einer Reihe von Tokens mit der
höchsten Wahrscheinlichkeit auszuwählen. Das sorgt für mehr Vari-
abilität und Kreativität in der Antwort des Modells.

Dieser Prozess wird anschließend wiederholt, aber nun wird der Kontext zu
»The weather is nice today, so I decided to go« – also mit dem zuvor vorherge-
sagten Token »go« am Ende des ursprünglichen Prompts. Das zweite Token,
das das Modell möglicherweise vorhersagt, könnte »for« sein. Dieser Prozess
wird so lange wiederholt, bis ein vollständiger Satz geformt ist: »The weather is
nice today, so I decided to go for a walk«. Der Prozess baut auf der Fähigkeit
des LLM auf, das wahrscheinlichste nächste Wort aus den riesigen Textdaten
gelernt zu haben. Abbildung 1-5 zeigt diesen Prozess.

Abbildung 1-5: Der Vervollständigungsprozess läuft iterativ ab – Token für Token.

Die Schritte 4 und 5
wiederholen, bis ein
vollständiger Satz
gebildet wurde.

Beispiel:
»The weather is nice

today, so I decided to go
for a walk.«

4. Abhängig vomKontext das nächste Token vorhersagen
• MöglichenWörternWahrscheinlichkeitswerte zuweisen
• Beispiel: {"go": 0.7, "stay": 0.2, "wri": 0.1}

3. Tokensmit Transformer-Architektur verarbeiten
• Beziehungen zwischen Tokens verstehen
• Gesamtbedeutung des Prompts verstehen

1. Prompt erhalten
Beispiel: »The weather is nice today, so I decided to«

2. Eingabe in Tokens aufteilen
Beispiel: ["The", "wea", "ther", "is", "nice", "today", ",",
"so", "I", "de", "ci", "ded", "to"]

5. Basierend auf diesenWahrscheinlichkeitswerten ein
Wort auswählen
Beispiel: »go«
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Einbinden von Vision in ein LLM
Mit GPT-4 Vision wird die GPT-4-Serie um multimodale Fertigkeiten ergänzt,
sodass sie jetzt auch mit mehr als nur mit Text umgehen kann. Die spezifischen
Mechanismen sorgen dafür, dass dieses Feature proprietär bleibt und nicht so
einfach eingesehen werden kann. Es lassen sich aber Schlüsse aus Open-
Source-LLMs ziehen, die visuelle Daten integrieren, sodass wir zumindest ein
grundlegendes Verständnis der potenziellen Methoden erlangen können, mit
denen GPT-4 um solch eine multimodale Funktionalität erweitert wird. In die-
sem Abschnitt sollen die Prozesse vorgestellt werden, die sich in diesen Open-
Source-Gegenstücken beobachten lassen, damit Sie eine Idee davon bekom-
men, wie die Bild-Text-Integration in GPT-4 möglicherweise umgesetzt ist.

Convolutional Neural Networks (CNNs) waren lange Zeit State-of-the-Art bei
Aufgaben zur Bildverarbeitung. Sie sind sehr gut beim Klassifizieren von Bildern
und Erkennen von Objekten. Das erreichen sie, indem sie Filterschichten nut-
zen, die über ein Eingabebild geschoben werden. Diese Filter können die räum-
lichen Beziehungen zwischen den Pixeln des Bilds aufdecken, und sie helfen den
CNNs dabei, Muster zu erkennen – von einfachen Kanten in den ersten Schich-
ten bis hin zu komplexen Formen und Objekten in den tieferen Schichten.

Aber ähnlich wie die Einführung der Transformer-Architekturen im Jahr 2017
NLP revolutionierte und RNNs ablöste, wurden im Jahr 2020 neue Modelle für
die Bildverarbeitung vorgeschlagen, die auf Transformer-Architekturen basie-
ren. Seitdem wird die seit Langem bestehende Dominanz von CNNs in der
Bildverarbeitung infrage gestellt. Im Jahr 2021 zeigte ein Artikel in Google mit
dem Titel »An Image Is Worth 16x16 Words: Transformers for Image Recogni-
tion at Scale« von Dosovitskiy et al. (https://oreil.ly/ijPSk), dass ein reines Trans-
former-Modell namens Vision Transformer (ViT) für viele Bildklassifikations-
aufgaben eine bessere Leistung liefern kann.

Sie fragen sich vielleicht, wie der Transformer die Bilddaten verarbeitet. Aus
der Ferne betrachtet, ist das Vorgehen dem bei Text ziemlich ähnlich. Wird ein
Text-Prompt an ein LLM geschickt, teilt es den Text erst in kleinere Zeichenab-
schnitte auf – die Tokens – und verarbeitet diese dann, um das nächste Token
vorherzusagen. Bei Bildern teilt der ViT das Bild erst in kleine, gleich große Ka-
cheln. In Abbildung 1-6 sehen Sie ein Beispiel dafür.

Diese Bildkacheln werden dann mit den Text-Tokens in einer einheitlichen
Eingabesequenz zusammengeführt. Ohne nun allzu sehr in die technischen De-
tails zu gehen: Wenn ein LLM Textdaten verarbeitet, wird jedes Token zu-
nächst in einen hochdimensionalen Vektor umgewandelt. Diese Mapping-
Einführung in Large Language Models | 25
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Funktion zwischen den Tokens und den hochdimensionalen Vektoren wird
während des Lernprozesses des LLM berechnet. Eine Mapping-Funktion zwi-
schen den Kacheln und dem gleichen hochdimensionalen Raum wird ebenfalls
während des Lernprozesses ermittelt. So finden sich danach sowohl die Tokens
wie auch die Kacheln im gleichen hochdimensionalen Raum. Die kombinierte
Sequenz aus Text und Bild kann dann von der Transformer-Architektur verar-
beitet werden, um das nächste Token vorherzusagen. Durch die Kombination
aus Bildkacheln und Text-Tokens im gleichen hochdimensionalen Darstel-
lungsraum kann das Modell Self-Attention-Mechanismen für beide Modalitä-
ten nutzen und Antworten erzeugen, die Text- und Bildinformationen berück-
sichtigen. Bei der Python-Entwicklung kann die Fähigkeit, Bilder zu verarbei-
ten, die Interaktion der User mit Ihrer KI-Anwendung deutlich besser machen,
zum Beispiel über intuitivere Chatbots oder Lerntools, die Inhalte aus Bildern
verstehen und erläutern können.

Abbildung 1-6: Ein Bild wird in gleich große Kacheln unterteilt, bevor es an den Trans-
former übergeben wird.

Eine kurze Geschichte des GPT: von GPT-1 bis GPT-4
In diesem Abschnitt werden wir die Entwicklung der GPT-Modelle von OpenAI
von GPT-1 bis GPT-4 betrachten.

GPT-1
Mitte 2018 – nur ein Jahr nach der Erfindung der Transformer-Architektur – hat
OpenAI den Artikel »Improving Language Understanding by Generative Pre-Trai-
ning« (https://oreil.ly/Yakwa) von Radford et al. veröffentlicht, in dem die Firma
den Generative Pre-Trained Transformer vorstellt – auch bekannt als GPT-1.
26 | Kapitel 1: Grundlagen von GPT-4 und ChatGPT
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