Contents

Preface IX

1	Temperature	for	Living	Things	1
---	-------------	-----	--------	--------	---

- 1.1 Temperature of Individuals 2
- 1.2 Responses to Temperature Variation at the Cellular Level 11
- 1.3 Significance of Intracellular Thermometry 13 References 14

2 Fluorescent Molecular Thermometers 17

- 2.1 The Basics of Fluorescence 18
- 2.2 Responses of Fluorescent Molecular Thermometers 19
- 2.3 Small Organic Molecules Involving Intersystem Crossing 21
- 2.4 Small Organic Molecules with a Rotating Substituent Group 25
- 2.5 Reactive Small Organic Molecules 36
- 2.6 Viscosity-Sensitive Small Organic Molecules 38
- 2.7 Other Small Organic Molecules 39
- 2.8 Organometallic Complexes 41
- 2.9 Excimers and Exciplexes 49
- 2.10 Host-guest Interactions 54
- 2.11 Synthetic Polymers 57
- 2.12 Nucleic Acids (DNA and RNA) 76
- 2.13 Peptides 79
- 2.14 Fluorescent Proteins 79
- 2.15 Non-covalent Systems Based on Thermo-responsive Self-assembly and an Environment-sensitive Fluorophore 81
- 2.16 Inorganic Nanomaterials 84
- 2.17 Hybrid Nanomaterials 95

References 97

3	Intra	acellular Thermometry with Fluorescent Molecular Thermometers	109
	3.1	Early Attempts for Cellular Thermometry 109	
	3.2 Introduction of Fluorescent Molecular Thermometers into a Living		
		Cell 112	

- 3.3 Cytotoxicity Assessment 121
- 3.4 Practice of Intracellular Thermometry with Fluorescent Molecular
 Thermometers 126
- 3.5 Intracellular Thermometry with Organelle-targeted Fluorescent Molecular Thermometers 146
- 3.6 Intracellular Thermometry of Brown Adipocytes 156
- 3.7 Application of Intracellular Thermometry in Various Biological Fields 163 References 175

4 Cellular Thermometry Based on Non-fluorometric Principles 183

- 4.1 Infrared Thermometry 185
- 4.2 Photoacoustic Thermometry 186
- 4.3 Raman Thermometry 188
- 4.4 Use of Transmission Spectroscopy 191
- 4.5 Thermocouple 193
- 4.6 Resonant Thermal Sensor 197
- 4.7 Bimaterial Microcantilever 199
- 4.8 Thermistor 200

References 202

5 Reliability Issue in Intracellular Thermometry 205

- 5.1 Sensitivity and Temperature Resolution 205
- 5.2 Functional Independency of Fluorescent Molecular Thermometers 208
- 5.3 Preparation of a Calibration Curve of Fluorescent Molecular Thermometers 212
- 5.4 Objection to Endogenous Thermogenesis 215
- 5.5 Possible Artifacts in Near-infrared Luminescent Thermometry and Proposal for Reliable Thermometry 233

References 236

6 Applications of Intracellular Thermometry 241

- 6.1 Creation of New Biological Concepts 241
- 6.2 In vivo Temperature Measurements 242
- 6.3 Thermal Medicine at a Single-cell Level 250
- 6.4 Utilization of Nanoheater/Fluorescent Thermometer Hybrids in Biotechnology 258
- 6.5 Accurate Measurements of Absolute Intracellular Temperature 262
- 6.6 Simultaneous Monitoring of Intracellular Temperature and the Concentration of a Chemical Species Related to a Temperature Variation Inside a Living Cell 263
- 6.7 Intracellular Thermometry of Plant Cells 266

References 268

Appendix 1	Review and Feature Articles on Fluorescent Molecular						
	Thermometers and Intracellular Thermometry in General 273						
Appendix 2	Comprehensive Collection of Fluorescent Polymeric						
	Thermometers Based on the Combination of a Thermo-						
	responsive Polymer and an Environment-sensitive						
	Fluorophore 275						
Appendix 3	Comprehensive Collection of Fluorescent Nanogel						
	Thermometers Based on the Combination of a						
	Thermo-responsive Polymer and an Environment-sensitive						
	Fluorophore 295						
Appendix 4	Comprehensive Collection of Non-covalent Fluorescent						
	Temperature Sensing Systems Based on the Combination of a						
	Thermo-responsive Polymer and an Environment-sensitive						
	Fluorescent Compound 301						
Appendix 5	Comprehensive Collection of Fluorescent Polymeric Logic						
	Gates Based on the Combination of a Thermo-responsive						
	Polymer and an Environment-sensitive Fluorophore 307						
Appendix 6	Solid Inorganic Nanostructures Showing Temperature-						
• •	dependent Emission Properties 321						
Appendix 7	Tips for Intracellular Thermometry with Fluorescent Polymeric						
• •	Thermometers Developed in the Author's Laboratory 323						

Index 325