Contents

1	Introduction			1	
2	Preliminaries on convex analysis and vector optimization				
	2.1	Convex sets.			
		2.1.1			
		2.1.2			
	2.2	Conve	ex functions		
		2.2.1	Algebraic properties of convex functions	19	
		2.2.2	Topological properties of convex functions		
	2.3	Conju	gate functions and subdifferentiability		
		2.3.1	Conjugate functions		
		2.3.2	Subdifferentiability		
	2.4	Minin	nal and maximal elements of sets		
		2.4.1	Minimality		
		2.4.2	•		
		2.4.3	•		
		2.4.4	Linear scalarization		
	2.5	Vecto	r optimization problems	57	
3	Cor	niugate	e duality in scalar optimization	63	
_			rbation theory and dual problems		
		3.1.1			
		3.1.2	Optimization problems having the composition with a		
			linear continuous mapping in the objective function	66	
		3.1.3	Optimization problems with geometric and cone		
			constraints	68	
	3.2	Regul	arity conditions and strong duality		
	~	3.2.1	Regularity conditions for the general scalar		
			ontimization problem	73	

		3.2.2	Regularity conditions for problems having the composition with a linear continuous mapping in the
			objective function
		3.2.3	Regularity conditions for problems with geometric
	3.3	Ontin	and cone constraints
	ა.ა	_	nality conditions and saddle points
		3.3.1	1 1 1
		3.3.2	Problems having the composition with a linear
		3.3.3	continuous mapping in the objective function
	2.4		Problems with geometric and cone constraints 95
	3.4		composed convex optimization problem
		3.4.1	
	9 5	3.4.2	• ,
	3.5		e strong duality and formulae for conjugate functions
			ubdifferentials
		3.5.1	
		0 . 0	optimization problem
			The composed convex optimization problem111
		3.5.3	
			continuous mapping in the objective function114
		3.5.4	Problems with geometric and cone constraints117
4	Cor	ningata	e vector duality via scalarization
•	4.1		el type vector duality
		4.1.1	Duality with respect to properly efficient solutions 123
		4.1.2	Duality with respect to weakly efficient solutions
	4.2		rained vector optimization: a geometric approach
	7.4	4.2.1	
		4.2.2	
	4.3		rained vector optimization: a linear scalarization approach 139
	4.0	4.3.1	
		4.0.1	problem via linear scalarization
		4.3.2	
		4.3.2	of the general approach144
		4.3.3	The relations between the dual vector problems to
		4.3.3	The relations between the dual vector problems to (PV^C)
		494	Duality with respect to weakly efficient solutions 153
	4.4		r duality via a general scalarization
	4.4		•
		4.4.1	A general duality scheme with respect to a general scalarization
		4.4.0	
		4.4.2	Linear scalarization
		4.4.3	
		4.4.4	Set scalarization
		4.4.5	(Semi)Norm scalarization
	4.5	Linear	vector quanty

		4.5.1	The duals introduced via linear scalarization	. 173			
		4.5.2	Linear vector duality with respect to weakly efficient				
			solutions				
		4.5.3	Nakayama's geometric dual in the linear case	. 178			
5	Conjugate duality for vector optimization problems with						
	fini		ensional image spaces				
	5.1	Anoth	er Fenchel type vector dual problem				
		5.1.1	Duality with respect to properly efficient solutions	. 182			
		5.1.2	Comparisons to (DV^A) and (DV_{BK}^A)	. 192			
		5.1.3	Duality with respect to weakly efficient solutions	. 194			
	5.2	A fam	ily of Fenchel-Lagrange type vector duals	. 198			
		5.2.1	Duality with respect to properly efficient solutions	. 199			
		5.2.2	Duality with respect to weakly efficient solutions	. 209			
		5.2.3	Duality for linearly constrained vector optimization				
		_	problems	. 212			
	5.3		arisons between different duals to (PVF^C)	. 218			
	5.4		vector duality for problems with finite dimensional				
		image	spaces				
		5.4.1	Duality with respect to properly efficient solutions				
		5.4.2	Duality with respect to weakly efficient solutions				
	5.5	Classi	cal linear vector duality in finite dimensional spaces	. 235			
		5.5.1	Duality with respect to efficient solutions	. 235			
		5.5.2	Duality with respect to weakly efficient solutions	. 244			
6	Wolfe and Mond-Weir duality concepts24						
	6.1	Classic	cal scalar Wolfe and Mond-Weir duality	. 249			
		6.1.1	Scalar Wolfe and Mond-Weir duality: nondifferentiable				
			case	. 249			
		6.1.2	Scalar Wolfe and Mond-Weir duality: differentiable case				
		6.1.3	Scalar Wolfe and Mond-Weir duality under generalized				
			convexity hypotheses	. 254			
	6.2	Classic	cal vector Wolfe and Mond-Weir duality				
	3. 2	6.2.1	Vector Wolfe and Mond-Weir duality: nondifferentiable				
			case	. 261			
		6.2.2	Vector Wolfe and Mond-Weir duality: differentiable cas	e 26 4			
		6.2.3	Vector Wolfe and Mond-Weir duality with respect to				
			weakly efficient solutions	. 269			
	6.3	Other	Wolfe and Mond-Weir type duals and special cases	. 275			
		6.3.1	Scalar Wolfe and Mond-Weir duality without				
			regularity conditions	. 276			
		6.3.2	Vector Wolfe and Mond-Weir duality without				
			regularity conditions	. 280			
		6.3.3	Scalar Wolfe and Mond-Weir symmetric duality				
			Vostor Wolfe and Mond Weir symmetric duality				

	6.4	Wolfe	and Mond-Weir fractional duality)(
		6.4.1	Wolfe and Mond-Weir duality in scalar fractional	
			programming	(
		6.4.2	Wolfe and Mond-Weir duality in vector fractional	
		•	programming	4
	6.5		ralized Wolfe and Mond-Weir duality: a perturbation	_
			ach	2
		6.5.1	Wolfe type and Mond-Weir type duals for general	_
		ero	scalar optimization problems	2
		6.5.2	Wolfe type and Mond-Weir type duals for different	
		6.5.3	scalar optimization problems	J
		0.5.5	vector optimization problems	6
			vector optimization problems	U
7	Du	ality fo	or set-valued optimization problems based on	
			njugacy31	1
	7.1		gate duality based on efficient solutions	
		7.1.1	Conjugate maps and the subdifferential of set-valued	
			maps31	1
		7.1.2	The perturbation approach for conjugate duality31	
		7.1.3	A special approach - vector k -conjugacy and duality 33	0
	7.2	The s	et-valued optimization problem with constraints	4
		7.2.1		
		7.2.2		
		7.2.3	·	6
	7.3		et-valued optimization problem having the composition	
		linear continuous mapping in the objective function $\dots 35$	2	
		7.3.1	Fenchel set-valued duality35	2
		7.3.2	Set-valued gap maps for vector variational inequalities . 35	
	7.4	Conju	gate duality based on weakly efficient solutions 36	
		7.4.1	Basic notions, conjugate maps and subdifferentiability . 36	
		7.4.2	The perturbation approach	
	7.5		particular instances of $(PSVG_w)$	
		7.5.1	The set-valued optimization problem with constraints 37	2
		7.5.2	The set-valued optimization problem having the	
			composition with a linear continuous mapping in the	~
			objective map	7
		7.5.3	Set-valued gap maps for set-valued equilibrium problems37	y
R^	foron	COE	38	5
ue	iei.eli			,
			30.	,