

Table of Contents

- Imprint
- Introduction
- 1. Fundamentals of Cycling Training
 - 1. 1. Physiological Aspects
 - 1. 1. 1. Energy Systems in Cycling
 - 1. 1. 2. Muscle Groups and Their Function
 - 1. 1. 3. Metabolic Processes During Exercise
 - 1. 1. 4. Heart Rate Zones in Training
 - 1. 2. Training Methods
 - 1. 2. 1. Developing Basic Endurance
 - 1. 2. 2. Structuring Interval Training
 - 1. 2. 3. Designing Recovery Phases
 - 1. 2. 4. Periodization throughout the year
 - 1. 3. Performance Diagnostics
 - 1. 3. 1. Understanding Power Measurement
 - 1. 3. 2. Analyzing Performance Curves
 - 1. 3. 3. Measuring Training Progress
- 2. Strength Training for Cyclists
 - 2. 1. Core Training
 - 2. 1. 1. Building Core Stability
 - 2. 1. 2. Coordinative Elements
 - 2. 2. Strength Endurance

- 2. 2. 1. Strengthening Leg Muscles
- 2. 2. 2. Developing Upper Body Stability
- 2. 3. Compensatory Training
 - 2. 3. 1. Muscular Balance
 - 2. 3. 2. Regenerative Exercises

3. Technical Training

- 3. 1. Pedaling Technique
 - 3. 1. 1. Optimizing Pedal Stroke
 - 3. 1. 2. Training Cadence
- 3. 2. Riding Technique
 - 3. 2. 1. Mastering cornering
 - 3. 2. 2. Uphill Technique
 - 3. 2. 3. Drafting
- 3. 3. Equipment Optimization
 - 3. 3. 1. Adjusting Sitting Position
 - 3. 3. 2. Improving Aerodynamics
 - 3. 3. 3. Biomechanical Principles

4. Nutrition and Recovery

- 4. 1. Competition Nutrition
 - 4. 1. 1. Carbohydrate Supply
 - 4. 1. 2. Meeting protein requirements
 - 4. 1. 3. Fluid Balance
 - 4. 1. 4. Nutritional Supplements

- 4. 2. Recovery Strategies
 - 4. 2. 1. Active Recovery
 - 4. 2. 2. Sleep Optimization
 - 4. 2. 3. Mental Relaxation
- 4. 3. Training Periodization
 - 4. 3. 1. Planning Macrocycles
 - 4. 3. 2. Managing Load Phases
 - 4. 3. 3. Performance peak timing
- Sources
- Image Sources

Artemis Saage

Cycling Training: Professional Bike Training and Racing Techniques

**A Systematic Guide to Performance
Enhancement Through Physiological Training,
Power Measurement, and Advanced Cycling
Skills**

198 Sources

17 Photos / Graphics

23 Illustrations

Imprint

Saage Media GmbH
c/o SpinLab – The HHL Accelerator
Spinnereistraße 7
04179 Leipzig, Germany
E-Mail: contact@SaageMedia.com
Web: SaageMedia.com
Commercial Register: Local Court Leipzig, HRB 42755 (Handelsregister: Amtsgericht Leipzig, HRB 42755)
Managing Director: Rico Saage (Geschäftsführer)
VAT ID Number: DE369527893 (USt-IdNr.)

Publisher: Saage Media GmbH
Publication: 12.2024
Cover Design: Saage Media GmbH
ISBN Softcover: 978-3-384-46202-2
ISBN Ebook: 978-3-384-46203-9

Legal / Notices

All rights reserved. No part of this book may be reproduced, stored, or transmitted without written permission from the publisher.

The external links and source references listed in this book were checked at the time of publication. The author has no influence on the current and future designs and contents of the linked pages. The provider of the linked website alone is liable for illegal, incorrect or incomplete contents as well as for damages arising from the use or non-use of the information, not the person who refers to the respective publication via links. All external sources used are listed in the bibliography. Despite careful content control, we assume no liability for the contents of external sources. The operators of the quoted sources are solely responsible for their content. Images and sources from third parties are marked as such. The reproduction, processing, distribution and any kind of exploitation outside the limits of copyright require the written consent of the respective author or creator.

The references and quotations contained in this book have been carefully researched and reproduced in essence. The interpretation and presentation of the cited content reflects the author's understanding and does not necessarily align with the intention or opinion of the original authors. For paraphrased quotations, the core statements of the original sources have been incorporated into the context of this work to the best of knowledge and belief, but may deviate from the original wording and nuances of meaning due to translation and simplification. All sources used are fully listed in the bibliography and can be consulted there in their original form. The responsibility for the interpretation and contextual integration of the cited content lies with the author of this book. For scientific inquiries and detailed information, it is recommended to consult the original sources. The author has endeavored to present complex scientific matters in a generally comprehensible manner. Simplifications and generalizations cannot be excluded in this process. No guarantee can be given for the technical accuracy and completeness of the simplified presentations. The paraphrased reproduction of quotations and scientific findings is done to the best of knowledge and belief in compliance with citation rights according to § 51 of the Copyright Act. When simplifying and transferring and, where applicable, translating scientific content into generally comprehensible language, nuances of meaning and technical details may be lost. For academic purposes and when using as a scientific reference, it is explicitly recommended to refer to the original sources. The simplified presentation serves exclusively for popular science information.

The training methods, exercises, and recommendations presented in this book are based on current sports science findings and practical experiences. However, we cannot guarantee the effectiveness of the described training methods or the accuracy of all information provided. Before starting a new training program, especially if there are existing health issues or pre-existing conditions, you should consult a doctor or qualified trainer. The execution of the described exercises is at your own risk. We cannot accept liability for any injuries or health damages that may arise from the application of the training content. The training recommendations in this book do not replace professional training supervision or medical advice. Particularly in competitive sports and preparation for competitions, we recommend collaborating with qualified trainers and sports physicians. All brand names, product designations, and company logos used are the property of their respective owners. The mention of brands and products is solely for the sake of better understanding and information. The sources of the scientific findings and studies on which the training content is based are listed in the appendix. Due to the continuous development in sports science, some findings may already be updated by the time of reading.

This book was created using artificial intelligence and other tools. Among other things, tools were used for research and generating decorative illustrations. Despite checks, errors cannot be completely ruled out. We would like to emphasize that the use of AI serves as a supporting tool to provide our readers with a high-quality and inspiring reading experience.

This book has been translated from German. Deviations from the original or translation errors cannot be completely ruled out. All sources linked in the book are available in English. We assume no liability for any content inaccuracies or misunderstandings that may have arisen through translation.

Dear readers,

I sincerely thank you for choosing this book. With your choice, you have not only given me your trust but also a part of your valuable time. I truly appreciate that.

Optimal power development and core stability are the key factors that distinguish ambitious cyclists from recreational athletes. Many cyclists focus solely on training in the saddle, neglecting important aspects such as targeted strength training and core stability. This can not only hinder performance development but also lead to overuse injuries. This practical book provides scientifically grounded training methods for systematic performance enhancement—from correct pedal technique to optimal periodization of strength training. You will learn how to increase your wattage through efficient strength training and sustainably improve your core stability. With detailed exercise descriptions, training plans, and practical tips for performance diagnostics, this manual offers a structured guide for measurable progress in cycling. Optimize your training today with proven methods from sports science and training practice—for more power on the bike and injury-free training.

I now wish you an inspiring and insightful reading experience. If you have any suggestions, criticism, or questions, I welcome your feedback. Only through active exchange with you, the readers, can future editions and works become even better. Stay curious!

Artemis Saage
Saage Media GmbH

- support@saagemedia.com
- Spinnereistraße 7 - c/o SpinLab – The HHL Accelerator, 04179 Leipzig, Germany

Introduction

To provide you with the best possible reading experience, we would like to familiarize you with the key features of this book. The chapters are arranged in a logical sequence, allowing you to read the book from beginning to end. At the same time, each chapter and subchapter has been designed as a standalone unit, so you can also selectively read specific sections that are of particular interest to you. Each chapter is based on careful research and includes comprehensive references throughout. All sources are directly linked, allowing you to delve deeper into the subject matter if interested. Images integrated into the text also include appropriate source citations and links. A complete overview of all sources and image credits can be found in the linked appendix. To effectively convey the most important information, each chapter concludes with a concise summary. Technical terms are underlined in the text and explained in a linked glossary placed directly below. For quick access to additional online content, you can scan the QR codes with your smartphone.

Additional bonus materials on our website

We provide the following exclusive materials on our website:

- Bonus content and additional chapters
- A compact overall summary
- A PDF file with all references
- Further reading recommendations

The website is currently under construction.

SaageBooks.com/cycling_training-bonus-NE2HD1

1. Fundamentals of Cycling Training

Systematic training in cycling is based on complex physiological foundations and requires a profound understanding of various training principles. How can one find the optimal balance between load and recovery? What role do the different energy systems of the body play in performance development? The demands in modern cycling are diverse - ranging from short, explosive sprints to multi-hour endurance efforts. A scientifically grounded training approach takes into account both the specific muscle groups and the metabolic processes during exertion. The precise control and monitoring of training through modern measurement technology allows for targeted training stimuli and objective documentation of progress. Understanding the fundamentals of cycling training is the key to systematic and sustainable performance development, regardless of whether the goal is participation in competitions or the improvement of personal fitness.

1. 1. Physiological Aspects

he physiological aspects of cycling raise fascinating questions: How do the various energy systems interact during different intensities of exertion? What role do specific muscle groups play in performance development? And how can training be optimized through a deeper understanding of metabolic processes and heart rate zones? The answers to these questions are complex and multifaceted. They range from the molecular level of energy provision to practical training management in competition. It is becoming increasingly clear that effective cycling training requires much more than just hard work—it is based on the interplay of various physiological systems that must be specifically developed and controlled. The following sections will illuminate these connections in detail and provide concrete approaches for athletes to optimize their training based on physiological insights. A deeper understanding of these fundamentals allows for more precise control of one's training, leading to improved performance.

„The mitochondrial density increases, blood flow to the muscles improves through enhanced capillarization, and the ability for fat oxidation rises through regular training in Zone 2.“

1. 1. 1. Energy Systems in Cycling

 In cycling, the various energy systems of the body play a central role in performance. The efficiency of these systems significantly determines success or failure in competition [s1]. It is important to understand that not only the maximum oxygen uptake (VO₂max) is crucial, but especially the ability to optimally utilize the existing fitness [s2]. Energy provision in cycling occurs through three essential systems: the aerobic system, the anaerobic-lactic system, and the anaerobic-alactic system. During longer efforts in the low-intensity range, typically occurring in Zone 2, the aerobic metabolism predominates. Here, energy is primarily derived from fat oxidation [s3]. A practical example: During a four-hour base ride in Zone 2, athletes should consciously remain in this low-intensity range to optimize fat burning and conserve valuable carbohydrate stores. The physiological adaptations from regular training in Zone 2 are remarkable: the mitochondrial density increases, blood flow to the muscles improves through enhanced capillarization, and the ability for fat oxidation rises [s3]. This enables cyclists to rely on fats as an energy source for longer periods even at higher intensities. An experienced athlete, for instance, can efficiently metabolize fats at 75% of their maximum output, while an untrained individual primarily burns carbohydrates at this intensity. Carbohydrate utilization plays a particularly important role at higher intensities. Studies show a strong linear relationship between training load and carbohydrate consumption [s4]. In practice, this means that during intense sessions or competitions, carbohydrate intake should be adjusted accordingly. A general rule is: the higher the intensity, the more carbohydrates are needed. The influence of hormonal factors on energy metabolism is also interesting, especially in female athletes. Estrogen and progesterone affect energy provision during different phases of the menstrual cycle [s5]. In the mid-luteal phase, endurance performance may be enhanced due to a favorable hormonal balance. Female athletes can take advantage of this by scheduling their most intense training sessions during this phase. Knowledge of energy systems is also crucial for sprint training. Although sprints primarily challenge the anaerobic system, research shows that aerobic fitness has a significant impact on the ability to repeat multiple sprints [s6]. A practical training tip: sprinters should incorporate regular moderate endurance sessions alongside their specific speed training. Optimal training design considers all energy systems through a polarized approach:

the majority of training occurs in the low-intensity zones, supplemented by targeted high-intensity sessions [s7]. A typical training plan might look like this: 80% of training in Zones 1 and 2, 15% in Zone 3, and 5% in the high-intensity Zones 4-6. The energy systems adapt to specific demands through targeted training [s8]. These adaptations affect not only the musculature but the entire cardiovascular system. A well-trained cyclist, for example, can ride at the same absolute power output with a lower heart rate than an untrained individual, which is attributed to improved movement economy [s1].

Glossary

Capillarization

Describes the number and density of the smallest blood vessels in muscle tissue. Good capillarization allows for better oxygen and nutrient supply to the muscles.

Luteal Phase

Phase of the female menstrual cycle after ovulation, lasting about 14 days. During this time, the body is particularly well-equipped to utilize fats as an energy source.

Mitochondrial Density

Number of cellular powerhouses per muscle cell. The higher the density, the more energy can be produced simultaneously.

1. 1. 2. Muscle Groups and Their Function

When cycling, various muscle groups work together in a complex interplay, with each group assuming specific functions during the movement cycle [s9]. The primary work is performed by the muscles of the lower extremities, which collaborate in a precisely coordinated activation pattern. The thigh muscles, particularly the quadriceps with its four heads, are the primary driving force in cycling. The individual muscles exhibit different activation patterns during the various phases of the pedal cycle [s9]. The rectus femoris, as the only two-joint muscle of the quadriceps, plays a special role: it is involved not only in knee extension but also supports hip flexion. This is evident in two distinct activation phases during the pedal stroke [s9]. For cyclists, this means they should pay particular attention to the balanced development of all quadriceps heads in their strength training. The hamstring muscles (posterior thigh muscles) become particularly active during the transition phase from extension to flexion [s9]. This muscle group is essential for a smooth pedal stroke and helps to overcome the dead point in the pedal cycle. In practice, athletes should incorporate specific exercises to strengthen the hamstrings into their training program, such as Nordic hamstring curls or Romanian deadlifts. The calf muscles, particularly the gastrocnemius medialis, respond particularly sensitively to saddle height [s10]. An increase in saddle height from 95% to 100% of the trochanter height has been observed to result in significantly higher muscle activation. This underscores the importance of a correct seating position for optimal muscle activation. Interestingly, there are significant differences in muscle architecture between sprinters and long-distance riders [s11]. Sprinters exhibit greater muscle thickness in the thigh, while in long-distance riders, the fiber angle plays a more important role in performance. These insights should be considered in training planning: sprinters should incorporate more hypertrophy-oriented training, while long-distance riders should focus on developing muscle quality. With increasing load, the activation patterns of the muscles change significantly [s12]. The biceps femoris and the tibialis anterior show earlier activations and delayed deactivations, leading to longer activity phases. Practically, this means that athletes should structure their training progressively to optimize these adaptations. The concept of muscle synergies plays an important role in cycling [s13] [s14]. Different muscle groups work together in functional units to produce efficient movements. Therefore, effective training should

not only isolate individual muscles but also include complex movement patterns that activate multiple muscle groups simultaneously. Neuromuscular fatigue manifests both centrally and peripherally [s15]. Endurance athletes exhibit more efficient muscle activation than strength athletes, as evidenced by higher median frequencies of EMG signals. For training, this means that alongside pure muscle strength, neuromuscular coordination must also be developed, for example, through specific technique exercises on the bike.

Glossary

Gastrocnemius medialis

Inner part of the two-headed calf muscle, important for plantarflexion (standing on tiptoes) and knee flexion

Quadriceps

Four-headed muscle at the front of the thigh responsible for knee extension

Rectus femoris

Straight muscle of the thigh, the only one of the four quadriceps muscles that crosses both the knee and hip joints

Tibialis anterior

Front shin muscle responsible for lifting the foot and supporting the upward movement of the pedal while cycling

Trochanter height

Distance from the ground to the greater trochanter of the femur, an important reference point for saddle adjustment

1. 1. 3. Metabolic Processes During Exercise

During intense exertion in cycling, the body undergoes complex metabolic physiological adaptations that must be precisely regulated to maintain performance. Skeletal muscle plays a central role, enabling movement and significantly participating in metabolic regulation [s16]. At moderate exertion, the body preferentially utilizes fats as an energy source. The regulation of fat metabolism occurs through several control points both within and outside muscle cells. Interestingly, free fatty acids are not transported into muscle cells by simple diffusion, as long assumed, but rather through specialized protein transport systems [s17]. A practical tip for athletes: To optimize fat burning, longer sessions should be performed in the moderate intensity range, ideally in the morning before breakfast when glycogen stores are not yet fully replenished. As exercise intensity increases, energy demand rises drastically, leading to enhanced activation of the sympathetic nervous system [s16]. This results in a cascade of adaptive responses: Muscle contraction is controlled by the release of intracellular calcium from the sarcoplasmic reticulum, facilitating the interaction between myosin and actin [s16]. For competitive athletes, this means that targeted supplementation with sodium bicarbonate can enhance buffering capacity and thereby improve performance during high-intensity exertion [s18]. After intense training sessions, the so-called EPOC effect (excess post-exercise oxygen consumption) occurs [s19]. This increased afterburn effect consists of a rapid and a prolonged component, providing the opportunity to positively influence metabolism even after training. A practical approach: High-intensity intervals at the end of a training session can maximize the EPOC effect. Mitochondrial adaptation shows interesting seasonal fluctuations. Studies indicate that the content of mitochondrial proteins is higher after the preparatory phase than after the competition phase [s20]. This suggests that the capacity for mitochondrial biogenesis may be depleted at the end of an intense competition season. Training recommendation: After the competition season, a sufficient recovery phase should be planned to rebuild mitochondrial capacity. Nutrition plays a crucial role in optimizing metabolic processes. In particular, the intake of whey protein and leucine after training can enhance muscle protein synthesis and positively influence immune function [s21]. A specific nutrition tip: Within 30 minutes after intense training, 20-25g of high-quality protein should be consumed along with rapidly available carbohydrates. During high-intensity exertion, there is an increased

production of lactate. Supplementation with sodium bicarbonate can promote the efflux of H⁺ from muscle cells, thereby improving contractility and glycolytic rate [s18]. This is particularly relevant for time trials or intense hill sprints. Practical application: Intake should occur about 60-90 minutes before competition to achieve optimal blood values. Metabolic adaptations during exertion are also dependent on training periodization. The expression of certain proteins such as tenascin-C and myogenin significantly increases after the second preparatory phase and correlates with training volume and intensity [s20]. For training planning, this means that the most intense training blocks should be placed in the preparatory phase when metabolic adaptability is highest.

skeletal muscle [i1]

Glossary

Actin

A filamentous protein in muscle cells that enables muscle shortening through interaction with myosin.

EPOC

Refers to the increased oxygen consumption after physical activity, which can last up to 24 hours and contributes to additional calorie expenditure.

Myogenin

A transcription factor that regulates the development and repair of muscle tissue.

Myosin

A motor protein in muscle cells that, together with actin, forms the fundamental functional unit for muscle contractions.

Sarcoplasmic Reticulum

A specialized membrane system in muscle cells that serves as a calcium reservoir and regulates muscle contraction.

Tenascin-C

A protein of the extracellular matrix that plays an important role in the adaptation of muscle tissue to stress.

1. 1. 4. Heart Rate Zones in Training

he management of training through defined heart rate zones is a scientifically grounded method to set training stimuli purposefully and achieve physiological adaptations [s22]. Heart rate responds very sensitively to exercise intensities, allowing for precise control of training. Modern training concepts typically distinguish between five to seven heart rate zones, based on the individual heart rate reserve (HRR) [s22]. The foundational zones R0 (53-62% HRR) and R1 (62-71% HRR) are particularly suitable for long endurance sessions and the development of the aerobic base. For instance, an athlete should consciously remain in these zones during a four-hour foundational ride to optimize fat burning. The moderate intensity zone R2 (74-86% HRR) is the range where both aerobic and muscular adaptations occur [s23]. This zone is excellent for structured intervals lasting 8-15 minutes. A practical example would be a workout consisting of 3x12 minutes in zone R2, separated by 3 minutes of active recovery in zone R0. Particularly interesting is the discovery of the heart rate variability threshold (HRVT) at a DFA a1 value of 0.75, which correlates with the aerobic threshold [s24]. This insight allows for even more precise training control, especially in specialized training forms such as eccentric cycling. The high-intensity zones R3 (86-99% HRR) and R3+ (100% HRR) target the development of maximal oxygen uptake [s22]. A conservative approach is recommended for intervals, as the aerobic system requires time to activate [s23]. An effective interval protocol might look like this: 6x3 minutes in zone R3 with a negative split strategy, where the last repetition is the strongest. For climbing, studies show specific heart rate patterns: during steep ascents (HIMO), an average of 61% of maximum heart rate is reached, while moderate inclines (SEMO) typically reach 58%, and flat terrain (FLAT) averages 51% [s25]. These findings should be incorporated into training planning by designing specific hill intervals according to these intensities. The highest training zone (Z7) is above 200% of the functional threshold (FTP) and is used for neuromuscular power development [s26]. This zone is employed during very short, explosive efforts, such as sprints or standing starts. A typical sprint workout could include 6-8 repetitions of 10-15 seconds at maximum intensity. Analyzing the distribution of training intensity is crucial for optimizing training effects [s27]. The concept of polarized training distribution has proven effective, where approximately 80% of training is completed in the low zones

(R0/R1), 15% in the moderate zone (R2), and 5% in the high zones (R3/R3+). Modern heart rate monitors enable precise training control and progress tracking [s23]. However, attention should not only be paid to the functional threshold but also to other performance indicators that align with specific training goals. Systematic tracking of heart rate data over extended periods allows for individual adjustments and maximizes training effectiveness.

Glossary

Functional Threshold

The highest power output that a cyclist can maintain for approximately 60 minutes.

Heart Rate Reserve

The difference between maximum and resting heart rate, which serves as the basis for calculating individual training zones.

Heart Rate Variability Threshold

A physiological turning point at which the regularity of heart rate intervals changes significantly.