
KAPITEL 3

Funktionen
Im vorherigen Kapitel haben wir verschiedene Python-eigene Funktionen wie
int und float benutzt. Außerdem kamen einige vom math-Modul bereitgestell-
te Funktionen wie sqrt und pow zum Einsatz. In diesem Kapitel lernen Sie, Ihre
eigenen Funktionen zu erstellen und auszuführen. Darüber hinaus werden wir
sehen, wie sich Funktionen gegenseitig aufrufen können. Als Beispiele verwen-
den wir Texte von Monty-Python-Songs, um Ihnen ein wichtiges Leistungs-
merkmal von Python zu zeigen – die Möglichkeit, eigene Funktionen zu schrei-
ben, ist das Fundament der Programmierung.

In diesem Kapitel stellen wir außerdem eine neue Anweisung vor: die for-
Schleife, mit der Berechnungen wiederholt werden können.

Neue Funktionen definieren
Eine Funktionsdefinition legt den Namen einer Funktion und die Reihenfolge
der Anweisungen fest, die beim Aufruf der Funktion ausgeführt werden sollen.
Hier ein Beispiel:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print("I sleep all night and I work all day.")

def ist ein Schlüsselwort, das anzeigt, dass es sich hier um eine Funktionsdefi-
nition handelt. Der Name der Funktion lautet print_lyrics (»Songtext ausge-
ben«). Für Funktionen gelten die gleichen Namensregeln wie für Variablen-
namen.

Die leeren runden Klammern hinter dem Namen bedeuten, dass diese Funk-
tion keine Argumente übernimmt.
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Die erste Zeile der Funktion wird Header (Kopfteil) genannt – der Rest wird als
Body (Funktionskörper) bezeichnet. Der Header muss mit einem Doppelpunkt
abgeschlossen und der Body muss eingerückt werden. Per Konvention wird um
vier Leerzeichen eingerückt. Der Funktionskörper besteht aus zwei print-An-
weisungen. Grundsätzlich kann der Body einer Funktion eine beliebige Anzahl
von Anweisungen unterschiedlicher Art enthalten.

Die Definition einer Funktion erzeugt ein Funktionsobjekt, das Sie wie folgt an-
zeigen können:

print_lyrics

<function __main__.print_lyrics()>

Das bedeutet, dass print_lyrics eine Funktion (engl. Function) ist, die keine
Argumente übernimmt (runde Klammern ohne Inhalt nach dem Funktionsna-
men). __main__ gibt den Namen des Moduls an, das print_lyrics enthält.

Nachdem wir eine Funktion definiert haben, können wir sie auf die gleiche
Weise aufrufen wie die eingebauten Funktionen:

print_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

Läuft die Funktion, werden die Anweisungen im Body ausgeführt, wodurch die
ersten zwei Zeilen des Lumberjack-Songs ausgegeben werden.

Parameter
Sie wissen bereits, dass für einige Funktionen Argumente angegeben werden
müssen. Beim Aufruf von abs übergeben Sie beispielsweise eine Zahl als Argu-
ment. Manche Funktionen können auch mehr als ein Argument übernehmen.
math.pow benötigt zum Beispiel zwei Argumente: die Basis und den Exponen-
ten.

Hier die Definition einer Funktion, die ein Argument übernimmt:

def print_twice(string):

print(string)

print(string)
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Der Variablenname innerhalb der runden Klammern wird Parameter genannt.
Beim Aufruf der Funktion wird der Wert des Arguments diesem Parameter zu-
gewiesen. So können wir print_twice (»zweimal ausgeben«) etwa so aufrufen:

print_twice('Dennis Moore, ')

Dennis Moore,

Dennis Moore,

Die Ausführung dieser Funktion hat die gleichen Auswirkungen wie die Zuwei-
sung des Arguments an eine Variable und die Ausführung des Bodys der Funk-
tion, wie hier gezeigt:

string = 'Dennis Moore, '

print(string)

print(string)

Dennis Moore,

Dennis Moore,

Auch Variablen können als Argument verwendet werden:

line = 'Dennis Moore, '

print_twice(line)

Dennis Moore,

Dennis Moore,

In diesem Beispiel wird der Wert von line dem Parameter string zugewiesen.

Funktionen aufrufen
Sobald eine Funktion definiert ist, kann sie innerhalb einer anderen Funktion
eingesetzt werden. Um das zu demonstrieren, schreiben wir Funktionen, die
den Text von »The Spam Song« (https://www.songfacts.com/lyrics/monty-python/
the-spam-song) ausgeben:

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,
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Wir beginnen mit der folgenden Funktion, die zwei Parameter übernimmt:

def repeat(word, n):

print(word * n)

Mit dieser Funktion können wir die erste Zeile des Songs ausgeben, wie hier ge-
zeigt:

spam = 'Spam, '

repeat(spam, 4)

Spam, Spam, Spam, Spam,

Um die ersten zwei Zeilen auszugeben, definieren wir eine neue Funktion, die
repeat (»wiederholen«) verwendet:

def first_two_lines():

repeat(spam, 4)

repeat(spam, 4)

Diese können wir dann wie folgt aufrufen:

first_two_lines()

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Um die letzten drei Zeilen auszugeben, können wir eine weitere Funktion defi-
nieren, die ebenfalls repeat verwendet:

def last_three_lines():

repeat(spam, 2)

print('(Lovely Spam, Wonderful Spam!)')

repeat(spam, 2)

last_three_lines()

Spam, Spam,

(Lovely Spam, Wonderful Spam!)

Spam, Spam,

Zum Schluss kombinieren wir die Einzelteile zu einer Funktion, die die gesamte
Strophe ausgibt:

def print_verse():

first_two_lines()

last_three_lines()
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print_verse()

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)

Spam, Spam,

Bei der Ausführung von print_verse (»Strophe ausgeben«) wird die Funktion
first_two_lines (»erste zwei Zeilen«) aufgerufen, die wiederum repeat auf-
ruft, die ihrerseits print aufruft. Das sind ganz schön viele Funktionen.

Natürlich hätten wir die gleiche Sache auch mit weniger Funktionen erledigen
können. In diesem Beispiel ging es aber darum, zu zeigen, wie Funktionen zu-
sammenarbeiten können.

Wiederholung
Wenn Sie mehr als eine Zeile ausgeben wollen, können Sie auch eine for-An-
weisung verwenden. Hier ein einfaches Beispiel:

for i in range(2):

print(i)

0

1

Die erste Zeile der Funktion ist ein Header, der mit einem Doppelpunkt abge-
schlossen wird.

Die folgende Zeile beginnt mit dem Schlüsselwort for, einer neuen Variablen na-
mens i und einem weiteren Schlüsselwort namens in. Es verwendet die range-
Funktion, um eine Folge von zwei Werten zu erzeugen: 0 und 1. Wenn wir in
Python zählen, beginnen wir in der Regel bei 0.

Bei der Ausführung der for-Anweisung wird der erste von range erzeugte Wert
der Variablen i zugewiesen. Danach wird die print-Funktion im Body der
Schleife aufgerufen, wodurch 0 ausgegeben wird.

Am Ende des Bodys angekommen, springt Python wieder zurück zum Header,
um den Code erneut auszuführen, was auch der Grund dafür ist, dass diese An-
weisung als Schleife bezeichnet wird. Im zweiten Durchlauf wird i der nächste
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Wert von range zugewiesen und ausgegeben. Weil dies der letzte von range er-
zeugte Wert ist, wird die Schleife danach beendet.

Hier sehen Sie, wie wir eine for-Schleife verwenden können, um zwei Strophen
des Songs auszugeben:

for i in range(2):

print("Verse", i)

print_verse()

print()

Verse 0

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)

Spam, Spam,

Verse 1

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)

Spam, Spam,

Eine for-Schleife kann auch innerhalb einer Funktion eingesetzt werden. Die
Funktion print_n_verses übernimmt beispielsweise einen ganzzahligen Para-
meter namens n und gibt daraufhin die angegebene Anzahl von Strophen aus:

def print_n_verses(n):

for i in range(n):

print_verse()

print()

In diesem Beispiel benutzen wir i nicht im Body der Schleife. Trotzdem muss
der Header der Schleife einen Variablennamen enthalten.

Variablen und Parameter sind lokal
Wenn Sie innerhalb einer Funktion eine Variable anlegen, ist sie lokal. Das
heißt, sie existiert nur innerhalb der Funktion. Die folgende Funktion über-
nimmt beispielsweise zwei Argumente, verkettet sie und gibt das Ergebnis
zweimal aus:
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def cat_twice(part1, part2):

cat = part1 + part2

print_twice(cat)

Hier ein Beispiel für die Verwendung der Funktion:

line1 = 'Always look on the '

line2 = 'bright side of life.'

cat_twice(line1, line2)

Always look on the bright side of life.

Always look on the bright side of life.

Bei der Ausführung von cat_twice (»zweimal verketten«) wird eine lokale Va-
riable namens cat angelegt, die bei Beendigung der Funktion wieder gelöscht
wird. Versuchen wir, sie danach auszugeben, erhalten wir einen NameError:

print(cat)

NameError: name 'cat' is not defined

Außerhalb der Funktion ist cat nicht definiert.

Auch Parameter sind lokal. So gibt es außerhalb von cat_twice nichts, worauf
sich die Namen part1 und part2 beziehen.

Stack-Diagramme
Um mitzuverfolgen, welche Variablen wo verwendet werden können, kann es
manchmal helfen, ein Stack-Diagramm zu zeichnen. Wie Zustandsdiagramme
(siehe den Abschnitt »Zustandsdiagramme« auf Seite 38) zeigen Stack-Dia-
gramme sowohl den Wert jeder Variablen als auch die Funktion, zu der sie ge-
hören.

Dabei wird jede Funktion durch einen Frame (»Rahmen«) dargestellt. Das ist
ein Kasten, der außen mit dem Funktionsnamen markiert wird und die Para-
meter und lokalen Variablen enthält.

Hier sehen Sie das Stack-Diagramm für das vorherige Beispiel:
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Die Frames werden so angeordnet, dass erkennbar wird, welche Funktion eine
andere aufruft. Lesen wir das Diagramm von unten nach oben, sehen wir, dass
print von print_twice aufgerufen wurde, das seinerseits von cat_twice aufge-
rufen wurde, das wiederum von __main__ aufgerufen wurde. Dabei ist __main_
_ ein spezieller Name für den obersten Frame. Erstellen Sie eine Variable außer-
halb einer Funktion, gehört sie standardmäßig zu __main__.

Das Fragezeichen (?) im Frame für print gibt an, dass wir den Namen des Pa-
rameters nicht kennen. Wenn Sie neugierig sind, fragen Sie einen virtuellen As-
sistenten: »Wie heißen die Parameter von Pythons print-Funktion?«

Tracebacks
Tritt zur Laufzeit ein Fehler in einer Funktion auf, gibt Python, dem Stack fol-
gend, die Namen der ausgeführten Funktion, der von ihr aufgerufenen Funk-
tion und so weiter aus.

Um Ihnen ein Beispiel zu geben, definiere ich hier eine fehlerhafte Version von
print_twice. Sie versucht, cat auszugeben, das aber eine lokale Variable in
einer anderen Funktion ist:

def print_twice(string):

print(cat) # NameError

print(cat)
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Hier sehen Sie, was passiert, wenn wir jetzt versuchen, cat_twice auszuführen:

cat_twice(line1, line2)

Traceback (most recent call last):

File <string>:2

Cell In[21], line 3 in cat_twice

print_twice(cat)

Cell In[26], line 2 in print_twice

print(cat) # NameError

NameError: name 'cat' is not defined

Die Fehlermeldung enthält einen Traceback (engl. für »Rückverfolgung«).
Dieser gibt an, welche Funktion gerade lief, als der Fehler auftrat, die Funk-
tion, die sie aufgerufen hat, und so weiter. In diesem Beispiel sieht man, dass
cat_twice die Funktion print_twice aufgerufen hat und dass der Fehler in
print_twice auftrat.

Die Reihenfolge der Funktionen im Traceback entspricht der Reihenfolge im
Stack-Diagramm. Die ausgeführte Funktion befindet sich am unteren Ende.

Warum Funktionen?
Eventuell ist Ihnen nicht klar, warum es sich lohnt, ein Programm in Funktio-
nen aufzuteilen. Hierfür gibt es mehrere Gründe:

• Die Erstellung einer neuen Funktion gibt Ihnen die Möglichkeit, eine
Gruppe von Anweisungen mit einem Namen zu versehen, wodurch sie
leichter lesbar und einfacher zu debuggen sind.

• Funktionen können ein Programm verkleinern, weil Code nicht wiederholt
werden muss. Spätere Änderungen müssen nur an einem Ort vorgenommen
werden.

• Durch die Unterteilung eines langen Programms in Funktionen können Sie
die Einzelteile nacheinander debuggen und sie dann zu einem funktionieren-
den Ganzen zusammenfügen.

• Gut entworfene Funktionen können oft in mehreren Programmen genutzt
werden. Ist eine Funktion einmal geschrieben und von Fehlern befreit, kann
sie immer wieder eingesetzt werden.
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Debugging
Das Debugging, also das Aufspüren und Beseitigen von Programmierfehlern,
kann ziemlich frustrierend, aber auch herausfordernd und interessant sein.
Manchmal macht es sogar Spaß. Und es ist eine der wichtigsten Fähigkeiten,
die Sie erlernen sollten.

Auf gewisse Weise hat das Debugging etwas von Detektivarbeit. Sie bekommen
Hinweise und müssen daraus die Ereignisse ableiten, die zu den Ergebnissen
geführt haben, die Sie sehen.

Debugging ist außerdem eine experimentelle wissenschaftliche Arbeit. Sobald
Sie eine Idee davon haben, was falsch gelaufen ist, passen Sie Ihr Programm an
und versuchen es noch einmal. War Ihre Hypothese korrekt, können Sie das
Ergebnis der Änderung vorhersagen und kommen so einem funktionierenden
Programm einen Schritt näher. War Ihre Hypothese falsch, müssen Sie sich
eine neue überlegen.

Für manche Menschen sind Programmierung und Debugging untrennbar ver-
bunden. Man könnte sagen, Programmierung ist der Prozess, ein Programm nach
und nach zu debuggen, bis es tut, was Sie wollen. Hierbei ist es sinnvoll, mit
einem funktionierenden Programm zu starten. Daran nehmen Sie kleine Ände-
rungen und Anpassungen vor, die Sie in kleinen Schritten debuggen können.

Wenn Sie feststellen, dass Sie viel Zeit mit Debugging verbringen, ist das oft ein
Signal dafür, dass Sie zu viel Code schreiben, bevor Sie mit dem Testen begin-
nen. Es kann gut sein, dass Sie mit kleineren Schritten schneller vorankommen.

Glossar
Funktionsdefinition 

Eine Anweisung, die eine Funktion erstellt.

Header (Kopfteil) 
Die erste Zeile einer Funktionsdefinition.

Body (Körper) 
Die Folge der Anweisungen innerhalb einer Funktionsdefinition.

Funktionsobjekt 
Ein Wert, der von einer Funktionsdefinition erzeugt wird. Der Name der
Funktion ist eine Variable, die auf das Funktionsobjekt verweist.
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Parameter 
Ein innerhalb einer Funktion verwendeter Name, der auf den Wert ver-
weist, der als Argument übergeben wurde.

Schleife 
Eine Anweisung, die eine oder mehrere Anweisungen einmal oder mehr-
mals ausführt.

Lokale Variable 
Eine innerhalb einer Funktion definierte Variable, auf die nur innerhalb
dieser Funktion zugegriffen werden kann.

Stack-Diagramm 
Eine grafische Darstellung eines Stacks (Stapels) von Funktionen, ihrer Va-
riablen und der Werte, auf die sie sich beziehen.

Frame (Rahmen) 
Ein Kasten in einem Stack-Diagramm, der für einen Funktionsaufruf steht.
Er enthält die lokalen Variablen und Parameter der Funktion.

Traceback (Rückverfolgung) 
Eine Liste der ausgeführten Funktionen; sie wird ausgegeben, wenn eine
Ausnahme auftritt.

Übungen

Fragen Sie einen virtuellen Assistenten
Per Konvention werden die Anweisungen in einer Funktion oder for-Schleife
um jeweils vier Leerzeichen eingerückt. Allerdings ist nicht jeder mit dieser
Konvention einverstanden. Wenn Sie mehr über die Geschichte der »großen
Diskussion« erfahren möchten, fordern Sie einen virtuellen Assistenten auf:
»Erzähle mir mehr über Leerzeichen und Tabulatoren in Python.«

Virtuelle Assistenten sind ziemlich gut darin, kleine Funktionen zu schreiben:

1. Weisen Sie Ihren Lieblingsassistenten an: »Schreibe eine Funktion namens
repeat, die einen String und einen Integer-Wert übernimmt und den String
so oft ausgibt, wie durch den Integer angegeben.«

2. Wenn das Ergebnis eine for-Schleife verwendet, können Sie fragen: »Kannst
du das auch ohne eine for-Schleife?«
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3. Suchen Sie sich eine beliebige andere Funktion aus diesem Kapitel aus und
weisen Sie den virtuellen Assistenten an, sie zu erstellen. Ihre Herausforde-
rung besteht darin, die Funktion genau genug zu beschreiben, um das ge-
wünschte Ergebnis zu erhalten. Verwenden Sie hierfür das Vokabular, das
Sie bisher in diesem Buch gelernt haben.

Virtuelle Assistenten sind auch ziemlich gut im Debuggen von Funktionen:

1. Fragen Sie einen virtuellen Assistenten, was mit dieser Version von print_
twice nicht stimmt:

def print_twice(string):
print(cat)
print(cat)

Und wenn Sie bei einer der folgenden Übungen nicht weiterkommen, könnten
Sie ebenfalls einen virtuellen Assistenten um Unterstützung bitten.

Übung 3-1
Schreiben Sie eine Funktion mit dem Namen print_right (»rechtsbündig aus-
geben«). Sie soll einen String mit dem Namen text als Parameter übernehmen
und den Text mit genügend vorangestellten Leerzeichen ausgeben, sodass der
letzte Buchstabe jedes Strings jeweils auf der 40. Spalte des Terminals steht, wie
unten gezeigt. Tipp: Verwenden Sie die len-Funktion, den String-Verkettungs-
operator (+) und den String-Wiederholungsoperator (*).

Hier ein Beispiel, das zeigt, wie so etwas funktionieren könnte:

print_right("Monty")

print_right("Python's")

print_right("Flying Circus")

Monty

Python's

Flying Circus

Übung 3-2
Schreiben Sie eine Funktion namens triangle (»Dreieck«), die einen String
und einen Integer übernimmt und ein Dreieck mit der angegebenen Höhe
zeichnet, das aus Kopien des Strings besteht. Hier ein Beispiel für ein Dreieck
mit fünf Ebenen, das den String 'L' verwendet:
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triangle('L', 5)

L

LL

LLL

LLLL

LLLLL

Übung 3-3
Schreiben Sie eine Funktion mit dem Namen rectangle (»Rechteck«), die
einen String und zwei Integer als Argumente übernimmt und ein Rechteck mit
der angegebenen Breite und Höhe zeichnet, das aus Kopien des Strings besteht.
Hier ein Beispiel für ein Rechteck der Breite 5 und der Höhe 4 unter Verwen-
dung des Strings 'H';

rectangle('H', 5, 4)

HHHHH

HHHHH

HHHHH

HHHHH

Übung 3-4
Der Song »99 Bottles of Beer« beginnt mit diesen Zeilen:

99 bottles of beer on the wall,
99 bottles of beer.
Take one down, pass it around,
98 bottles of beer on the wall.

Die zweite Strophe folgt dem gleichen Muster. Allerdings beginnt sie mit 98
Flaschen Bier (bottles of beer) und endet mit 97. Der Song geht – für eine lange
Zeit – weiter, bis die Zahl der Flaschen 0 (zero) erreicht.

Schreiben Sie eine Funktion mit dem Namen bottle_verse, der eine Zahl als
Parameter übergeben wird und die eine Strophe ausgibt, die mit der angegebe-
nen Zahl von Flaschen beginnt.

Tipp: Es könnte sinnvoll sein, zuerst eine Funktion zu schreiben, die die erste,
zweite oder letzte Zeile ausgeben kann. Diese könnten Sie dann benutzen, um
bottle_verse zu erstellen.
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Benutzen Sie diesen Funktionsaufruf, um die erste Strophe auszugeben:

bottle_verse(99)

99 bottles of beer on the wall

99 bottles of beer

Take one down, pass it around

98 bottles of beer on the wall

Um den gesamten Text auszugeben, können Sie diese for-Schleife verwenden,
die, bei 99 beginnend, bis 1 herunterzählt. Sie müssen dieses Beispiel nicht voll-
ständig verstehen – später werden Sie mehr über for-Schleifen und die range-
Funktion lernen.

for n in range(99, 0, -1):

bottle_verse(n)

print()
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