KAPITEL 3

Funktionen

Im vorherigen Kapitel haben wir verschiedene Python-eigene Funktionen wie
int und float benutzt. Aufferdem kamen einige vom math-Modul bereitgestell-
te Funktionen wie sqrt und pow zum Einsatz. In diesem Kapitel lernen Sie, Thre
eigenen Funktionen zu erstellen und auszufithren. Dariiber hinaus werden wir
sehen, wie sich Funktionen gegenseitig aufrufen kénnen. Als Beispiele verwen-
den wir Texte von Monty-Python-Songs, um Thnen ein wichtiges Leistungs-
merkmal von Python zu zeigen — die Moglichkeit, eigene Funktionen zu schrei-
ben, ist das Fundament der Programmierung.

In diesem Kapitel stellen wir auflerdem eine neue Anweisung vor: die for-
Schleife, mit der Berechnungen wiederholt werden konnen.

Neue Funktionen definieren

Eine Funktionsdefinition legt den Namen einer Funktion und die Reihenfolge
der Anweisungen fest, die beim Aufruf der Funktion ausgefiithrt werden sollen.
Hier ein Beispiel:
def print lyrics():
print("I'm a lumberjack, and I'm okay.")
print("I sleep all night and I work all day.")

def ist ein Schliisselwort, das anzeigt, dass es sich hier um eine Funktionsdefi-
nition handelt. Der Name der Funktion lautet print_lyrics (»Songtext ausge-
ben«). Fur Funktionen gelten die gleichen Namensregeln wie fir Variablen-
namen.

Die leeren runden Klammern hinter dem Namen bedeuten, dass diese Funk-
tion keine Argumente ibernimmt.

Die erste Zeile der Funktion wird Header (Kopfteil) genannt — der Rest wird als
Body (Funktionskorper) bezeichnet. Der Header muss mit einem Doppelpunkt
abgeschlossen und der Body muss eingeriickt werden. Per Konvention wird um
vier Leerzeichen eingeriickt. Der Funktionskorper besteht aus zwei print-An-
weisungen. Grundsitzlich kann der Body einer Funktion eine beliebige Anzahl
von Anweisungen unterschiedlicher Art enthalten.

Die Definition einer Funktion erzeugt ein Funktionsobjekt, das Sie wie folgt an-
zeigen konnen:

print lyrics
<function _main_ .print lyrics()>

Das bedeutet, dass print_lyrics eine Funktion (engl. Function) ist, die keine
Argumente tibernimmt (runde Klammern ohne Inhalt nach dem Funktionsna-
men). __main__ gibt den Namen des Moduls an, das print_lyrics enthilt.

Nachdem wir eine Funktion definiert haben, koénnen wir sie auf die gleiche
Weise aufrufen wie die eingebauten Funktionen:

print lyrics()

I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

Liuft die Funktion, werden die Anweisungen im Body ausgefiihrt, wodurch die
ersten zwei Zeilen des Lumberjack-Songs ausgegeben werden.

Parameter

Sie wissen bereits, dass fiir einige Funktionen Argumente angegeben werden
miissen. Beim Aufruf von abs iibergeben Sie beispielsweise eine Zahl als Argu-
ment. Manche Funktionen kénnen auch mehr als ein Argument tibernehmen.
math.pow bendétigt zum Beispiel zwei Argumente: die Basis und den Exponen-
ten.

Hier die Definition einer Funktion, die ein Argument iibernimmt:

def print twice(string):
print(string)
print(string)

52 | Kapitel3: Funktionen

Der Variablenname innerhalb der runden Klammern wird Parameter genannt.
Beim Aufruf der Funktion wird der Wert des Arguments diesem Parameter zu-
gewiesen. So konnen wir print_twice (»zweimal ausgeben«) etwa so aufrufen:

print twice('Dennis Moore, ')

Dennis Moore,
Dennis Moore,

Die Ausfiithrung dieser Funktion hat die gleichen Auswirkungen wie die Zuwei-
sung des Arguments an eine Variable und die Ausfithrung des Bodys der Funk-
tion, wie hier gezeigt:

string = 'Dennis Moore,
print(string)
print(string)

Dennis Moore,
Dennis Moore,

Auch Variablen konnen als Argument verwendet werden:

line = 'Dennis Moore,
print_twice(line)

Dennis Moore,
Dennis Moore,

In diesem Beispiel wird der Wert von 1ine dem Parameter string zugewiesen.

Funktionen aufrufen

Sobald eine Funktion definiert ist, kann sie innerhalb einer anderen Funktion
eingesetzt werden. Um das zu demonstrieren, schreiben wir Funktionen, die
den Text von »The Spam Song« (https://www.songfacts.com/lyrics/monty-python/
the-spam-song) ausgeben:

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,

(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Funktionen aufrufen | 53

https://www.songfacts.com/facts/monty-python/the-spam-song

Wir beginnen mit der folgenden Funktion, die zwei Parameter iibernimmt:

def repeat(word, n):
print(word * n)

Mit dieser Funktion konnen wir die erste Zeile des Songs ausgeben, wie hier ge-
zeigt:

spam = 'Spam, '

repeat(spam, 4)

Spam, Spam, Spam, Spam,

Um die ersten zwei Zeilen auszugeben, definieren wir eine neue Funktion, die
repeat (»wiederholen«) verwendet:

def first two lines():
repeat(spam, 4)
repeat(spam, 4)

Diese kénnen wir dann wie folgt aufrufen:

first two_lines()

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,

Um die letzten drei Zeilen auszugeben, kénnen wir eine weitere Funktion defi-
nieren, die ebenfalls repeat verwendet:

def last three lines():
repeat(spam, 2)
print('(Lovely Spam, Wonderful Spam!)")
repeat(spam, 2)

last_three lines()

Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Zum Schluss kombinieren wir die Einzelteile zu einer Funktion, die die gesamte
Strophe ausgibt:

def print_verse():
first two lines()
last_three lines()

54 | Kapitel3: Funktionen

print_verse()

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Bei der Ausfithrung von print_verse (»Strophe ausgeben«) wird die Funktion
first two lines (»erste zwei Zeilen«) aufgerufen, die wiederum repeat auf-
ruft, die ihrerseits print aufruft. Das sind ganz schén viele Funktionen.

Natiirlich hitten wir die gleiche Sache auch mit weniger Funktionen erledigen
konnen. In diesem Beispiel ging es aber darum, zu zeigen, wie Funktionen zu-
sammenarbeiten konnen.

Wiederholung

Wenn Sie mehr als eine Zeile ausgeben wollen, konnen Sie auch eine for-An-
weisung verwenden. Hier ein einfaches Beispiel:

for i in range(2):
print(i)

Die erste Zeile der Funktion ist ein Header, der mit einem Doppelpunkt abge-
schlossen wird.

Die folgende Zeile beginnt mit dem Schliisselwort for, einer neuen Variablen na-
mens i und einem weiteren Schliisselwort namens in. Es verwendet die range-
Funktion, um eine Folge von zwei Werten zu erzeugen: 0 und 1. Wenn wir in
Python zihlen, beginnen wir in der Regel bei 0.

Bei der Ausfithrung der for-Anweisung wird der erste von range erzeugte Wert
der Variablen i zugewiesen. Danach wird die print-Funktion im Body der
Schleife aufgerufen, wodurch 0 ausgegeben wird.

Am Ende des Bodys angekommen, springt Python wieder zuriick zum Header,
um den Code erneut auszufithren, was auch der Grund dafiir ist, dass diese An-
weisung als Schleife bezeichnet wird. Im zweiten Durchlauf wird i der nidchste

Wiederholung | 55

Wert von range zugewiesen und ausgegeben. Weil dies der letzte von range er-
zeugte Wert ist, wird die Schleife danach beendet.

Hier sehen Sie, wie wir eine for-Schleife verwenden kénnen, um zwei Strophen
des Songs auszugeben:

for i in range(2):
print("Verse", i)
print verse()
print()

Verse 0

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Verse 1

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Eine for-Schleife kann auch innerhalb einer Funktion eingesetzt werden. Die
Funktion print_n_verses tibernimmt beispielsweise einen ganzzahligen Para-
meter namens n und gibt daraufhin die angegebene Anzahl von Strophen aus:

def print n verses(n):
for i in range(n):
print_verse()

print()

In diesem Beispiel benutzen wir i nicht im Body der Schleife. Trotzdem muss
der Header der Schleife einen Variablennamen enthalten.

Variablen und Parameter sind lokal

Wenn Sie innerhalb einer Funktion eine Variable anlegen, ist sie lokal. Das
heilt, sie existiert nur innerhalb der Funktion. Die folgende Funktion tiber-
nimmt beispielsweise zwei Argumente, verkettet sie und gibt das Ergebnis
zweimal aus:

56 | Kapitel3: Funktionen

def cat twice(part1, part2):
cat = partl + part2
print_twice(cat)

Hier ein Beispiel fiir die Verwendung der Funktion:

line1l = 'Always look on the
line2 = 'bright side of life.'
cat_twice(line1, line2)

Always look on the bright side of life.
Always look on the bright side of life.

Bei der Ausfithrung von cat_twice (»zweimal verketten«) wird eine lokale Va-
riable namens cat angelegt, die bei Beendigung der Funktion wieder geloscht
wird. Versuchen wir, sie danach auszugeben, erhalten wir einen NameError:

print(cat)
NameError: name 'cat' is not defined

AuRerhalb der Funktion ist cat nicht definiert.

Auch Parameter sind lokal. So gibt es auflerhalb von cat_twice nichts, worauf
sich die Namen part1 und part2 beziehen.

Stack-Diagramme

Um mitzuverfolgen, welche Variablen wo verwendet werden konnen, kann es
manchmal helfen, ein Stack-Diagramm zu zeichnen. Wie Zustandsdiagramme
(siche den Abschnitt »Zustandsdiagramme« auf Seite 38) zeigen Stack-Dia-
gramme sowohl den Wert jeder Variablen als auch die Funktion, zu der sie ge-
horen.

Dabei wird jede Funktion durch einen Frame (»Rahmen«) dargestellt. Das ist
ein Kasten, der aufSen mit dem Funktionsnamen markiert wird und die Para-
meter und lokalen Variablen enthilt.

Hier sehen Sie das Stack-Diagramm fiir das vorherige Beispiel:

Stack-Diagramme | 57

__main__ linel —— 'Always look on the'

line2 —— 'bright side of life."

cat_twice partl —— 'Always look on the '
part2 —— 'bright side of life.’

cat —— 'Always look on the bright side of life.’

print_twice s —— 'Always look on the bright side of life.'

print 7 —— 'Always look on the bright side of life."'

Die Frames werden so angeordnet, dass erkennbar wird, welche Funktion eine
andere aufruft. Lesen wir das Diagramm von unten nach oben, sehen wir, dass
print von print twice aufgerufen wurde, das seinerseits von cat_twice aufge-
rufen wurde, das wiederum von __main__ aufgerufen wurde. Dabeiist __main_
_ein spezieller Name fiir den obersten Frame. Erstellen Sie eine Variable aufler-
halb einer Funktion, gehort sie standardmiflig zu __main_ .

Das Fragezeichen (?) im Frame fiir print gibt an, dass wir den Namen des Pa-
rameters nicht kennen. Wenn Sie neugierig sind, fragen Sie einen virtuellen As-
sistenten: »Wie heiflen die Parameter von Pythons print-Funktion?«

Tracebacks

Tritt zur Laufzeit ein Fehler in einer Funktion auf, gibt Python, dem Stack fol-
gend, die Namen der ausgefithrten Funktion, der von ihr aufgerufenen Funk-
tion und so weiter aus.

Um Thnen ein Beispiel zu geben, definiere ich hier eine fehlerhafte Version von
print_twice. Sie versucht, cat auszugeben, das aber eine lokale Variable in
einer anderen Funktion ist:

def print twice(string):
print(cat) # NameError
print(cat)

58 | Kapitel3: Funktionen

Hier sehen Sie, was passiert, wenn wir jetzt versuchen, cat_twice auszufithren:

cat_twice(line1, line2)

Traceback (most recent call last):
File <string>:2

Cell In[21], line 3 in cat_twice
print twice(cat)

Cell In[26], line 2 in print_twice
print(cat) # NameError

NameError: name 'cat' is not defined

Die Fehlermeldung enthilt einen Traceback (engl. fur »Riickverfolgung«).
Dieser gibt an, welche Funktion gerade lief, als der Fehler auftrat, die Funk-
tion, die sie aufgerufen hat, und so weiter. In diesem Beispiel sieht man, dass
cat_twice die Funktion print twice aufgerufen hat und dass der Fehler in
print twice auftrat.

Die Reihenfolge der Funktionen im Traceback entspricht der Reihenfolge im
Stack-Diagramm. Die ausgefiihrte Funktion befindet sich am unteren Ende.

Warum Funktionen?

Eventuell ist Thnen nicht klar, warum es sich lohnt, ein Programm in Funktio-
nen aufzuteilen. Hierfiir gibt es mehrere Griinde:

Die Erstellung einer neuen Funktion gibt Thnen die Moglichkeit, eine
Gruppe von Anweisungen mit einem Namen zu versehen, wodurch sie
leichter lesbar und einfacher zu debuggen sind.

Funktionen koénnen ein Programm verkleinern, weil Code nicht wiederholt
werden muss. Spitere Anderungen miissen nur an einem Ort vorgenommen
werden.

Durch die Unterteilung eines langen Programms in Funktionen kénnen Sie
die Einzelteile nacheinander debuggen und sie dann zu einem funktionieren-
den Ganzen zusammenfiigen.

Gut entworfene Funktionen kénnen oft in mehreren Programmen genutzt
werden. Ist eine Funktion einmal geschrieben und von Fehlern befreit, kann
sie immer wieder eingesetzt werden.

Warum Funktionen? | 59

Debugging

Das Debugging, also das Aufspiiren und Beseitigen von Programmierfehlern,
kann ziemlich frustrierend, aber auch herausfordernd und interessant sein.
Manchmal macht es sogar SpaRR. Und es ist eine der wichtigsten Fihigkeiten,
die Sie erlernen sollten.

Auf gewisse Weise hat das Debugging etwas von Detektivarbeit. Sie bekommen
Hinweise und missen daraus die Ereignisse ableiten, die zu den Ergebnissen
gefithrt haben, die Sie sehen.

Debugging ist aulferdem eine experimentelle wissenschaftliche Arbeit. Sobald
Sie eine Idee davon haben, was falsch gelaufen ist, passen Sie Thr Programm an
und versuchen es noch einmal. War Thre Hypothese korrekt, kénnen Sie das
Ergebnis der Anderung vorhersagen und kommen so einem funktionierenden
Programm einen Schritt niher. War Thre Hypothese falsch, miissen Sie sich
eine neue tiberlegen.

Fiir manche Menschen sind Programmierung und Debugging untrennbar ver-
bunden. Man kénnte sagen, Programmierung ist der Prozess, ein Programm nach
und nach zu debuggen, bis es tut, was Sie wollen. Hierbei ist es sinnvoll, mit
einem funktionierenden Programm zu starten. Daran nehmen Sie kleine Ande-
rungen und Anpassungen vor, die Sie in kleinen Schritten debuggen kénnen.

Wenn Sie feststellen, dass Sie viel Zeit mit Debugging verbringen, ist das oft ein
Signal dafiir, dass Sie zu viel Code schreiben, bevor Sie mit dem Testen begin-
nen. Es kann gut sein, dass Sie mit kleineren Schritten schneller vorankommen.

Glossar

Funktionsdefinition
Eine Anweisung, die eine Funktion erstellt.

Header (Kopfteil)
Die erste Zeile einer Funktionsdefinition.

Body (Korper)
Die Folge der Anweisungen innerhalb einer Funktionsdefinition.

Funktionsobjekt
Ein Wert, der von einer Funktionsdefinition erzeugt wird. Der Name der
Funktion ist eine Variable, die auf das Funktionsobjekt verweist.

60 | Kapitel3: Funktionen

Parameter
Ein innerhalb einer Funktion verwendeter Name, der auf den Wert ver-
weist, der als Argument tibergeben wurde.

Schleife
Eine Anweisung, die eine oder mehrere Anweisungen einmal oder mehr-
mals ausfiihrt.

Lokale Variable
Eine innerhalb einer Funktion definierte Variable, auf die nur innerhalb
dieser Funktion zugegriffen werden kann.

Stack-Diagramm
Eine grafische Darstellung eines Stacks (Stapels) von Funktionen, ihrer Va-
riablen und der Werte, auf die sie sich beziehen.

Frame (Rahmen)
Ein Kasten in einem Stack-Diagramm, der fiir einen Funktionsaufruf steht.
Er enthilt die lokalen Variablen und Parameter der Funktion.

Traceback (Riickverfolgung)
Eine Liste der ausgefithrten Funktionen; sie wird ausgegeben, wenn eine
Ausnahme auftritt.

Ubungen

Fragen Sie einen virtuellen Assistenten

Per Konvention werden die Anweisungen in einer Funktion oder for-Schleife
um jeweils vier Leerzeichen eingeriickt. Allerdings ist nicht jeder mit dieser
Konvention einverstanden. Wenn Sie mehr tiber die Geschichte der »grofSen
Diskussion« erfahren méchten, fordern Sie einen virtuellen Assistenten auf:
»Erzihle mir mehr iber Leerzeichen und Tabulatoren in Python.«

Virtuelle Assistenten sind ziemlich gut darin, kleine Funktionen zu schreiben:

1. Weisen Sie Thren Lieblingsassistenten an: »Schreibe eine Funktion namens
repeat, die einen String und einen Integer-Wert {ibernimmt und den String
so oft ausgibt, wie durch den Integer angegeben.«

2. Wenn das Ergebnis eine for-Schleife verwendet, konnen Sie fragen: »Kannst
du das auch ohne eine for-Schleife?«

Ubungen | 61

3. Suchen Sie sich eine beliebige andere Funktion aus diesem Kapitel aus und
weisen Sie den virtuellen Assistenten an, sie zu erstellen. Thre Herausforde-
rung besteht darin, die Funktion genau genug zu beschreiben, um das ge-
wiinschte Ergebnis zu erhalten. Verwenden Sie hierfiir das Vokabular, das
Sie bisher in diesem Buch gelernt haben.

Virtuelle Assistenten sind auch ziemlich gut im Debuggen von Funktionen:

1. Fragen Sie einen virtuellen Assistenten, was mit dieser Version von print
twice nicht stimmt:
def print twice(string):
print(cat)
print(cat)
Und wenn Sie bei einer der folgenden Ubungen nicht weiterkommen, kénnten
Sie ebenfalls einen virtuellen Assistenten um Unterstiitzung bitten.

Ubung 3-1

Schreiben Sie eine Funktion mit dem Namen print _right (»rechtsbiindig aus-
geben«). Sie soll einen String mit dem Namen text als Parameter tibernehmen
und den Text mit gentigend vorangestellten Leerzeichen ausgeben, sodass der
letzte Buchstabe jedes Strings jeweils auf der 40. Spalte des Terminals steht, wie
unten gezeigt. Tipp: Verwenden Sie die len-Funktion, den String-Verkettungs-
operator (+) und den String-Wiederholungsoperator (*).

Hier ein Beispiel, das zeigt, wie so etwas funktionieren kénnte:

print right("Monty")
print_right("Python's")
print right("Flying Circus")

Monty
Python's
Flying Circus

Ubung 3-2

Schreiben Sie eine Funktion namens triangle (»Dreieck«), die einen String
und einen Integer tibernimmt und ein Dreieck mit der angegebenen Hohe
zeichnet, das aus Kopien des Strings besteht. Hier ein Beispiel fiir ein Dreieck
mit fanf Ebenen, das den String 'L' verwendet:

62 | Kapitel3: Funktionen

triangle('L', 5)

L

LL
LLL
LLLL
LLLLL

Ubung 3-3

Schreiben Sie eine Funktion mit dem Namen rectangle (»Rechteck«), die
einen String und zwei Integer als Argumente tibernimmt und ein Rechteck mit
der angegebenen Breite und Hohe zeichnet, das aus Kopien des Strings besteht.
Hier ein Beispiel fiir ein Rechteck der Breite 5 und der Hohe 4 unter Verwen-
dung des Strings "H';

rectangle('H', 5, 4)

HHHHH
HHHHH
HHHHH
HHHHH

Ubung 3-4
Der Song »99 Bottles of Beer« beginnt mit diesen Zeilen:

99 bottles of beer on the wall,
99 bottles of beer.

Take one down, pass it around,
98 bottles of beer on the wall.

Die zweite Strophe folgt dem gleichen Muster. Allerdings beginnt sie mit 98
Flaschen Bier (bottles of beer) und endet mit 97. Der Song geht — fiir eine lange
Zeit — weiter, bis die Zahl der Flaschen 0 (zero) erreicht.

Schreiben Sie eine Funktion mit dem Namen bottle verse, der eine Zahl als
Parameter ibergeben wird und die eine Strophe ausgibt, die mit der angegebe-
nen Zahl von Flaschen beginnt.

Tipp: Es konnte sinnvoll sein, zuerst eine Funktion zu schreiben, die die erste,
zweite oder letzte Zeile ausgeben kann. Diese konnten Sie dann benutzen, um
bottle verse zu erstellen.

Ubungen | 63

Benutzen Sie diesen Funktionsaufruf, um die erste Strophe auszugeben:

bottle verse(99)

99 bottles of beer on the wall
99 bottles of beer

Take one down, pass it around
98 bottles of beer on the wall

Um den gesamten Text auszugeben, kénnen Sie diese for-Schleife verwenden,
die, bei 99 beginnend, bis 1 herunterzihlt. Sie miissen dieses Beispiel nicht voll-
stindig verstehen — spiter werden Sie mehr tiber for-Schleifen und die range-
Funktion lernen.

for n in range(99, 0, -1):
bottle verse(n)
print()

64 | Kapitel3: Funktionen

Inhalt

Vorwort 13
Programmieren als Denkweise 21
Arithmetische Operatoreno iiiiinao... 21
Ausdriicke 23
Arithmetische Funktionen 24
SEIINES .« oo 25
Werte und Typeno 27
Formale und natiirliche Sprachen 29
Debuggingo 30
Glossar . ..o 31
Ubungen i 33

Fragen Sie einen virtuellen Assistenten 33
Variablen und Anweisungen 37
Variablen 37
Zustandsdiagramme 38
Variablennamen 39
Die Import-AnweISUNgttt 40
Ausdriicke und Anweisungen 41
Die print-Funktion 41
ATGUIMENTE ..ottt e e e e 42
Kommentare 44
Debuggingt 45
GloSSAT .t 46

UbUngen 48
Fragen Sie einen virtuellen Assistenten 48
3 Funktionen 51
Neue Funktionen definieren 51
Parameter 52
Funktionen aufrufen 53
Wiederholung 55
Variablen und Parameter sind lokal 56
Stack-Diagrammie 57
Tracebacks 58
Warum Funktionen? 59
Debugging 60
Glossar 60
UbUngen 61
Fragen Sie einen virtuellen Assistenten 61
4 Funktionen und Interfaces 65
Dasjupyturtle-Modul 65
Ein Quadratzeichnen 67
Verkapselung und Verallgemeinerung 68
Niherung eines Kreises 70
Refaktorierung 71
Stack-Diagramm 73
Ein Entwicklungsplan L. 74
DOCStIINGS « ottt 75
Debuggingt 76
Glossar 77
UbUngen 78
Fragen Sie einen virtuellen Assistenten 80
5 Bedingungen und Rekursion 83
Integer-Division und Modulo 83
Boolesche Ausdriicke o L 85

6 | Inhalt

Logische Operatorent 86

H-ANWEISUNGEN . ..o 87
Dieelse-Klausel 87
Verkettete Bedingungen 88
Verschachtelte Bedingungen 89
Rekursion 90
Stack-Diagramme fur rekursive Funktionen 91
Unendliche Rekursion 92
Tastatureingaben 93
Debuggingo 94
Glossar 96
Ubungen 97

Fragen Sie einen virtuellen Assistenten 97
Riickgabewerte 103
Manche Funktionen haben Riickgabewerte 103
...und andere habenkeine 105
Riickgabewerte und Bedingungen 106
Inkrementelle Entwicklung 107
Boolesche Funktionen 111
Rekursion mit Riickgabewerten 112
Sprung ins kalte Wasser 114
Fibonacci 114
Typen iiberpriifen 115
Debugging 117
GloSSAT .t 118
UbUngent 119

Fragen Sie einen virtuellen Assistenten 119
Iteration und Suche 123
Schleifen und Strings 123
Die Wortliste einlesen 125
Variablen aktualisieren 126
Schleifen und Zdhlen 128

Der in-Operatorovu vttt 129

Suche ... 130
DoOCtest . ..ot 131
Glossar . ..o 133
UbUngenooiiii 134
Fragen Sie einen virtuellen Assistenten 134
8 Strings und regulare Ausdriicke 141
Ein Stringisteine Folge 141
String-Slices 143
Strings sind immutabel 144
String-Vergleiche 145
String-Methoden 146
Dateienschreiben 147
Suchenund ersetzen 149
Reguldre Ausdricke 150
String-Ersetzung 153
Debuggingot 155
Glossar 156
UbUngen 157
Fragen Sie einen virtuellen Assistenten 157
9 Listen 161
Eine Listeisteine Folge 161
Listen sind mutabel i i 162
Listen-SHces . ..ot 164
Listenoperationeno.uinuinttntete i 164
Listenmethoden 165
Listen und Stringst 166
Schleifen tiber Listen ausfihren 167
LiSten SOTtIeIeN « . . v vttt et e e e 168
Objekte und Werte 169
AlASINg .. oo 170
Listen als Argumenteot 171
8 | Inhalt

10

n

Eine Wortliste erstellen 172

Debugging 173
Glossar 174
UbUngent 175

Fragen Sie einen virtuellen Assistenten 175
Dictionaries 179
Ein Dictionary ist eine Zuordnung 179
Dictionaries anlegent 181
Derin-Operatorttt 182
Eine Sammlung von Zdhlern oL Ll 184
Schleifen und Dictionaries 185
Listen und Dictionariesuuuitniineinna.. 186
Eine Liste zusammenstellen 187
MeMOS . ..o 189
Debuggingt 191
Glossar 192
UbUungent 193

Fragen Sie einen virtuellen Assistenten 193
Tupel 197
Tupel verhalten sich wie Listen 197
Tupel sind immutabel 199
Tupel-Zuweisungo 201
Tupel als Riickgabewerte 202
Argumente verpacken 203
D o 205
Vergleichen und sortieren 207
Ein Dictionary umkehren 209
Debuggingt 211
Glossar 212
UbUNGEN . ..ot 213

Fragen Sie einen virtuellen Assistenten 213

12 Textanalyse und -erzeugung 217
Einmalige Worter 217
Satzzeichen 219
Worthdufigkeiten 221
Optionale Parameter i, 222
Dictionary-Subtraktion 224
Zufallszahlen 225
Bigramme 228
Markow-Analyse 230
TEXE@IZEUZRIL « o . v vttt e et e e e e 233
Debugging 234
GloSSar 236
UbUNgen 237

Fragen Sie einen virtuellen Assistenten 237

13 Dateien und Datenbanken 241
Dateinamenund Pfade L 241
E-Strings ..o 244
YAML 246
Shelve ... 247
Datenstrukturen speichern 250
Auf dquivalente Dateien testen oo, 252
Verzeichnisse durchlaufen 254
Debuggingo.i 255
GloSSar 256
UbUNgen 258

Fragen Sie einen virtuellen Assistenten 258

14 Klassen und Funktionen 261
Selbst definierte Typencoiiii e, 261
Attribute . ..o 262
Objekte als Riickgabewerte 264
Objekte sind mutabel 264
Objekte kopieren 266

10 | Inhalt

15

16

Reine Funktionen i 267

Prototypund Patch 268
Design-First-Entwicklung 270
Debuggingt 273
GloSSaAr .t 274
Ubungeni i 275

Fragen Sie einen virtuellen Assistenten 275
Klassen und Methoden 279
Methoden definieren 279
Eine andere Methode 281
Statische Methoden 282
Time-Objekte vergleichen 283
Die Methode __str__ 284
Die Methode __init__ i 285
Operatorenberladen 286
Debuggingt 287
GloSSAT . .t 288
UbUNGEN . ..ot 289

Fragen Sie einen virtuellen Assistenten 289
Klassen und Objekte 291
Einen Punkterstellen 291
Eine Linie erstellen 294
Aquivalenz und Identitit i 296
Ein Rechteckerstellen 297
Rechtecke verdndern 299
Tiefes Kopierenot 301
Polymorphie 303
Debuggingt 304
GlOSSAT . .t 305
UbUNGEN . ..ot 305

Fragen Sie einen virtuellen Assistenten 305

17 Vererbung 307
Spielkarten darstellen L 307
Kartenattribute 309
Kartenausgeben 310
Karten vergleichen 311
Kartenstapel 314
Den Kartenstapel ausgeben 315
Hinzufiigen, entfernen, mischen und sortieren 316
Elternund Kinder i 318
Spezialisierung 321
Debugging 322
GloSSar 323
UbUNgen 324

Fragen Sie einen virtuellen Assistenten 324

18 Python-Extras 331
St 331
Zahler ..o 334
defaultdict 336
Bedingungsausdriicke 338
Listenabstraktionen i 339
anyundall 341
Benannte Tupel 342
Schlisselwortargumente verpacken 344
Debugging 346
Glossar 349
UbUNGen 349

Fragen Sie einen virtuellen Assistenten 349

19 Gedanken zum Schluss 353
Index 357

12 | Inhalt

	Inhalt
	Vorwort
	Für wen ist dieses Buch gedacht?
	Ziele dieses Buchs
	Orientierung in diesem Buch
	Was gibt es Neues in der dritten Auflage?
	Erste Schritte
	Ressourcen für Lehrer
	In diesem Buch verwendete Konventionen
	Nutzung der Codebeispiele
	Danksagungen

	Kapitel 1: Programmieren als Denkweise
	Arithmetische Operatoren
	Ausdrücke
	Arithmetische Funktionen
	Strings
	Werte und Typen
	Formale und natürliche Sprachen
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 1-1
	Übung 1-2
	Übung 1-3
	Übung 1-4

	Kapitel 2: Variablen und Anweisungen
	Variablen
	Zustandsdiagramme
	Variablennamen
	Die import-Anweisung
	Ausdrücke und Anweisungen
	Die print-Funktion
	Argumente
	Kommentare
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 2-1
	Übung 2-2

	Kapitel 3: Funktionen
	Neue Funktionen definieren
	Parameter
	Funktionen aufrufen
	Wiederholung
	Variablen und Parameter sind lokal
	Stack-Diagramme
	Tracebacks
	Warum Funktionen?
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 3-1
	Übung 3-2
	Übung 3-3
	Übung 3-4

	Kapitel 4: Funktionen und Interfaces
	Das jupyturtle-Modul
	Ein Quadrat zeichnen
	Verkapselung und Verallgemeinerung
	Näherung eines Kreises
	Refaktorierung
	Stack-Diagramm
	Ein Entwicklungsplan
	Docstrings
	Debugging
	Glossar
	Übungen
	Übung 4-1
	Übung 4-2
	Übung 4-3
	Übung 4-4
	Übung 4-5
	Fragen Sie einen virtuellen Assistenten

	Kapitel 5: Bedingungen und Rekursion
	Integer-Division und Modulo
	Boolesche Ausdrücke
	Logische Operatoren
	if-Anweisungen
	Die else-Klausel
	Verkettete Bedingungen
	Verschachtelte Bedingungen
	Rekursion
	Stack-Diagramme für rekursive Funktionen
	Unendliche Rekursion
	Tastatureingaben
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 5-1
	Übung 5-2
	Übung 5-3
	Übung 5-4
	Übung 5-5

	Kapitel 6: Rückgabewerte
	Manche Funktionen haben Rückgabewerte ...
	… und andere haben keine
	Rückgabewerte und Bedingungen
	Inkrementelle Entwicklung
	Boolesche Funktionen
	Rekursion mit Rückgabewerten
	Sprung ins kalte Wasser
	Fibonacci
	Typen überprüfen
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 6-1
	Übung 6-2
	Übung 6-3
	Übung 6-4

	Kapitel 7: Iteration und Suche
	Schleifen und Strings
	Die Wortliste einlesen
	Variablen aktualisieren
	Schleifen und Zählen
	Der in-Operator
	Suche
	Doctest
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 7-1
	Übung 7-2
	Übung 7-3
	Übung 7-4
	Übung 7-5
	Übung 7-6
	Übung 7-7

	Kapitel 8: Strings und reguläre Ausdrücke
	Ein String ist eine Folge
	String-Slices
	Strings sind immutabel
	String-Vergleiche
	String-Methoden
	Dateien schreiben
	Suchen und ersetzen
	Reguläre Ausdrücke
	String-Ersetzung
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 8-1
	Übung 8-2
	Übung 8-3
	Übung 8-4

	Kapitel 9: Listen
	Eine Liste ist eine Folge
	Listen sind mutabel
	Listen-Slices
	Listenoperationen
	Listenmethoden
	Listen und Strings
	Schleifen über Listen ausführen
	Listen sortieren
	Objekte und Werte
	Aliasing
	Listen als Argumente
	Eine Wortliste erstellen
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 9-1
	Übung 9-2
	Übung 9-3
	Übung 9-4

	Kapitel 10: Dictionaries
	Ein Dictionary ist eine Zuordnung
	Dictionaries anlegen
	Der in-Operator
	Eine Sammlung von Zählern
	Schleifen und Dictionaries
	Listen und Dictionaries
	Eine Liste zusammenstellen
	Memos
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 10-1
	Übung 10-2
	Übung 10-3
	Übung 10-4
	Übung 10-5

	Kapitel 11: Tupel
	Tupel verhalten sich wie Listen
	Tupel sind immutabel
	Tupel-Zuweisung
	Tupel als Rückgabewerte
	Argumente verpacken
	Zip
	Vergleichen und sortieren
	Ein Dictionary umkehren
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 11-1
	Übung 11-2
	Übung 11-3
	Übung 11-4
	Übung 11-5
	Übung 11-6

	Kapitel 12: Textanalyse und -erzeugung
	Einmalige Wörter
	Satzzeichen
	Worthäufigkeiten
	Optionale Parameter
	Dictionary-Subtraktion
	Zufallszahlen
	Bigramme
	Markow-Analyse
	Text erzeugen
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 12-1
	Übung 12-2
	Übung 12-3

	Kapitel 13: Dateien und Datenbanken
	Dateinamen und Pfade
	f-Strings
	YAML
	Shelve
	Datenstrukturen speichern
	Auf äquivalente Dateien testen
	Verzeichnisse durchlaufen
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 13-1
	Übung 13-2
	Übung 13-3

	Kapitel 14: Klassen und Funktionen
	Selbst definierte Typen
	Attribute
	Objekte als Rückgabewerte
	Objekte sind mutabel
	Objekte kopieren
	Reine Funktionen
	Prototyp und Patch
	Design-First-Entwicklung
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 14-1
	Übung 14-2
	Übung 14-3

	Kapitel 15: Klassen und Methoden
	Methoden definieren
	Eine andere Methode
	Statische Methoden
	Time-Objekte vergleichen
	Die Methode __str__
	Die Methode __init__
	Operatoren überladen
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 15-1

	Kapitel 16: Klassen und Objekte
	Einen Punkt erstellen
	Eine Linie erstellen
	Äquivalenz und Identität
	Ein Rechteck erstellen
	Rechtecke verändern
	Tiefes Kopieren
	Polymorphie
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 16-1
	Übung 16-2
	Übung 16-3
	Übung 16-4
	Übung 16-5

	Kapitel 17: Vererbung
	Spielkarten darstellen
	Kartenattribute
	Karten ausgeben
	Karten vergleichen
	Kartenstapel
	Den Kartenstapel ausgeben
	Hinzufügen, entfernen, mischen und sortieren
	Eltern und Kinder
	Spezialisierung
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 17-1
	Übung 17-2
	Übung 17-3
	Übung 17-4
	Übung 17-5
	Übung 17-6
	Übung 17-7

	Kapitel 18: Python-Extras
	Sets
	Zähler
	defaultdict
	Bedingungsausdrücke
	Listenabstraktionen
	any und all
	Benannte Tupel
	Schlüsselwortargumente verpacken
	Debugging
	Glossar
	Übungen
	Fragen Sie einen virtuellen Assistenten
	Übung 18-1
	Übung 18-2
	Übung 18-3
	Übung 18-4
	Übung 18-5
	Übung 18-6

	Kapitel 19: Gedanken zum Schluss
	Index
	Über den Autor
	Über den Übersetzer
	Kolophon

