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Kurzfassung 1

Kurzfassung

Jens Mannewitz:

Untersuchungen zum Oltransport in halbhermetischen Hubkolbenverdichtern fiir CO,-
Anwendungen

Eine Vielzahl von Kaltemittelverdichtern flr Kalte- und Klimaanlagen sowie Warmepumpen
sind 6lgeschmierte Verdichter, welche nach dem Verdrangungsprinzip arbeiten. Wahrend das
Kaltemittel durch den Verdichter stromt, wird ein Teil des Ols vom Kaltemittel mitgerissen und
zusammen mit dem Kaltemittel in die Kalteanlage transportiert. Die Menge des aus dem
Verdichter ausgeworfenen Ols ist abhangig von den Betriebsbedingungen sowie der
konstruktiven Gestaltung innerhalb des Verdichters und liegt meist im Bereich von wenigen
Massenprozenten. Im Hinblick auf die Investitionskosten, die Betriebssicherheit und die
Effizienz der Kalteanlage sollte die Olwurfrate eines Verdichters so gering wie méglich sein.

Fir die Optimierung bzw. Reduzierung der Olwurfrate eines halbhermetischen Hubkolben-
verdichters fir CO2-Anwendungen ist ein detailliertes Verstandnis dariber notwendig, wie das
Ol innerhalb des Verdichters transportiert wird. Um dieses Verstandnis aufzubauen, wurden
zunéchst betriebsbedingte Einfliisse auf den Olwurf des Verdichters untersucht. Anschlieend
wurde die Strédmung innerhalb des Verdichters analysiert und daraus die wirkenden
Oltransport-Mechanismen abgeleitet. Dafiir wurde der Verdichter in relevante Subsysteme
unterteilt und die einzelnen Oltransport-Mechanismen gréftenteils experimentell untersucht.

Fur die experimentellen Untersuchungen bei verschiedenen Betriebsbedingungen wurde ein
Priifstand zur Messung der Olwurfrate aufgebaut. Des Weiteren wurden der Messaufbau und
die konstruktive Gestaltung innerhalb des Verdichters stlickweise modifiziert. Dadurch war es
moglich, die Subsysteme weitestgehend unabhangig voneinander zu untersuchen und das
Potenzial der einzelnen Oltransport-Mechanismen am gesamten Olwurf des Verdichters zu
bestimmen.

Abhéngig vom Potenzial der Oltransport-Mechanismen wurden mégliche Optimierungs-
ansatze flir die einzelnen Subsysteme abgeleitet. Es hat sich gezeigt, dass diese
Optimierungsansatze aufgrund von Interaktionen zwischen den Subsystemen stets in
Kombination betrachtet werden miissen, um eine gesamtheitliche Reduzierung der Olwurfrate
des Verdichters zu erreichen.

Die aus den Untersuchungen erlangten Erkenntnisse wurden innerhalb der Firma BITZER bei
der Uberarbeitung von zwei Baureihen halbhermetischer Hubkolbenverdichter fiir trans-
kritische CO2-Anwendungen berlicksichtig und ein Teil der Optimierungsansatze umgesetzt.
Dadurch konnte die Olwurfrate der Baureihen um bis zu 88 bzw. 95% reduziert werden. Dies
verdeutlicht zusétzlich die Ubertragbarkeit der Erkenntnisse auf weitere Verdichter mit
ahnlicher konstruktiver Gestaltung.
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1 Einleitung

11 Motivation und Zielstellung der Arbeit

Weltweit werden nach Schatzung des ,International Institutes of Refrigeration“ 5 Milliarden
Kalte- und Klimaanlagen sowie Warmepumpen betrieben. Dazu gehdren ca. 120 Millionen
Kalteanlagen fir die gewerbliche Kuhlung. Insgesamt sind ca. 20% des weltweiten
Gesamtstromverbrauchs auf Kalte- und Klimaanlagen sowie Warmepumpen zuriickzufihren
(vgl. Dupont et al. 2019, S. 4-5). Dies verdeutlicht, dass energieeffiziente Kalteanlagen einen
wesentlichen Beitrag zur weltweiten Energieeinsparung leisten kdnnen.

Die meisten der Kalte- und Klimaanlagen sowie Warmepumpen sind Kaltdampfkompressions-
analgen mit Verdrangerverdichtern. Kaltemittelverdichter, welche nach dem Verdrangungs-
prinzip arbeiten, sind zumeist 6lgeschmiert. Das Kaltemaschinendl hat vor allem die Aufgabe,
in Relativbewegung stehende Verdichterkomponenten zu schmieren, Warme abzufiihren und
bei der Abdichtung der Verdichtungsrdume zu unterstiitzen. Da das Kaltemittel durch den
Verdichter strémt, kommt es innerhalb des Verdichters zwangsléufig in Kontakt mit dem Ol.
Dabei wird ein Teil des Ols vom Kaéltemittel mitgerissen und aus dem Verdichter in die
Kalteanlage ausgeworfen.

In der Folge wird das Ol mit dem Kéltemittel durch die Kélteanlage transportiert. Die Menge
O, die dabei in der Kélteanlage zuriickgehalten wird, ist von der Olumlaufrate abhéngig. Eine
zu hohe Olumlaufrate kann dazu fiihren, dass ein zu groRer Anteil des Ols aus dem Verdichter
in die Kalteanlage verschoben wird und sich somit eine unzureichende Olfiillmenge innerhalb
des Verdichters einstellt. Dies kann Schaden am Verdichter verursachen und schlieRlich zum
Ausfall desselben fiihren. Des Weiteren erhoht eine hohe Olumlaufrate den Druckverlust, z.B.
in den Rohrleitungen und den Warmeiibertragern. Hohe Olumlaufraten reduzieren zusatzlich
die Warmeubergangskoeffizienten in den Warmelbertragern. Auch wenn dafir aus der
verfligbaren Literatur keine scharfe Grenze abgeleitet werden kann, ist festzuhalten, dass eine
hohe Olumlaufrate einen negativen Einfluss auf die Effizienz der Kalteanlage hat.

Um die negativen Effekte einer hohen Olumlaufrate zu minimieren, werden haufig Olabschei-
der in Kalteanlagen eingesetzt, um das flissige Ol vom gasférmigen Kéltemittel zu trennen.
Diese sind zumeist direkt nach dem Verdichter in der Hochdruckleitung montiert, kdnnen aber
auch innerhalb des Verdichters integriert sein. Bei externen Olabscheidern wird das
abgeschiedene Ol entweder zunéchst in einen Olsammler geleitet oder direkt zum Verdichter
zuriickgefiihrt. Dabei werden haufig Olspiegelregulatoren an den Verdichtern montiert, welche
den Olfiillstand im Verdichter (iberwachen und regulieren. Vor allem bei Verbundschaltungen
von mehreren, parallelen Verdichtern sind derartige Olmanagement-Systeme von Vorteil, da
es hier zu einem ungleichmaRigen Riicktransport des Ols mit dem Sauggas in die einzelnen
Verdichter kommen kann. Olmanagement-Systeme erhdhen jedoch die Kosten einer
Kélteanlage. Zusétzlich ist der Olmassenstrom begrenzt, der (iber einen Olspiegelregulator
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dem Verdichter zugefiinrt werden kann. Dadurch kann eine zu hohe Olwurfrate des
Verdichters zu Stérungen des Olmanagement-Systems und somit der Kélteanlage fiihren.
Dieser Effekt ist aus der Praxis vor allem bei Verdichtern mit groRem Hubvolumenstrom
bekannt.

Aus den vorangegangenen Anmerkungen kann geschlussfolgert werden, dass die Olwurfrate
eines Verdichters stets so niedrig wie mdglich sein sollte. Um dies erreichen bzw. die
Olwurfrate eines Verdichters reduzieren zu koénnen, ist es notwendig, die einzelnen
Oltransport-Mechanismen innerhalb des Verdichters zu verstehen und deren Potenziale an
der Olwurfrate zu ermitteln. Hinsichtlich halbhermetischer Hubkolbenverdichter besteht hierbei
eine Wissensliucke in der verfugbaren Literatur. Stattdessen werden teilweise schwer-
begriindbare Zusammenhange dargestellt, was zeigt, dass die Prozesse nicht vollends
verstanden sind.

Ziel dieser Arbeit ist es, dieses Verstandnis fur halbhermetische Hubkolbenverdichter flir CO»-
Anwendungen aufzubauen, um daraus Optimierungsansétze abzuleiten und die Olwurfrate zu
reduzieren. Dafur werden zunachst Grundlagen zu den Arbeitsfluiden und Verdichtern sowie
zum Olhaushalt, der Olwurfrate und deren experimentellen Ermittlung beschrieben.
AnschlieBend wird ein Versuchsverdichter in relevante Subsysteme aufgeteilt und die
einzelnen Oltransport-Mechanismen theoretisch und experimentell analysiert. Dafiir werden
entsprechende Methoden und Werkzeuge vorgestellt. Abhangig vom jeweiligen Potenzial an
der Olwurfrate werden geeignete Optimierungsansétze diskutiert und untersucht.
AbschlieBend werden die einzelnen Oltransport-Mechanismen und Optimierungsansatze fiir
den Versuchsverdichter verknipft und daraus abgeleitete Optimierungsbeispiele dargestellt.

1.2 Abgrenzung der Wissensliicke anhand der verfiigbaren
Literatur

Einer der wesentlichsten Kriterien von Kéltemaschinendlen ist deren Eignung fur die jeweilige
Kalteanwendung. Diese wird vor allem durch die physikalischen Eigenschaften der Ole im
Zusammenhang mit dem verwendeten Kaltemittel bestimmt (vgl. Abschnitt 2.2.2, S. 7-9).
Dementsprechend sind die Untersuchungen verschiedener Kaltemittel-Ol-Kombinationen
héufig Gegenstand in der Literatur. Einen breiten Uberblick verschiedener Kombinationen und
deren physikalischen Eigenschaften gibt Bock (Bock, et al., 2010). Zusatzlich werden darin die
notwendigen Prifverfahren und die entsprechenden Normen beschrieben. Aufgrund
umwelttechnischer Anforderungen wurden in den letzten Jahren vermehrt Kaltemittel verboten
oder deren Verwendung eingeschrankt. Dafir wurden dann Ersatzstoffe entwickelt und in
erweitertem Umfang auch naturlich vorkommende Fluide (u.a. COz2) eingesetzt (vgl. Abschnitt
2.2.1, S. 6-7). Daraus resultierend mussten hierfir geeignete Kaltemaschinendle gefunden
und untersucht werden. Bspw. wurden im Rahmen eines Forschungsvorhabens des
Forschungsrats Kaltetechnik e.V. (FKT 57/99, 2003a) potentielle Kaltemaschinendle fiir das
Kaltemittel CO- hinsichtlich ihrer physikalischen Eigenschaften untersucht. Auch Anderungen
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hinsichtlich der Anwendungen bzw. der Anwendungsgrenzen bedingen die Prifung der
Eignung von Kaltemaschinendlen. Hierzu lassen sich ebenfalls Informationen in der
verfligbaren Literatur finden. Zusétzlich zu den typischen, physikalischen Eigenschaften, wie
z.B. die Viskositat, werden auch weitere Eigenschaften der Ole untersucht. In FKT 75/00 (FKT
75/00, 2004) oder Gopfert (Gopfert, et al., 2016) werden z.B. die experimentelle Bestimmung
der Oberflachenspannung von Kaltemaschinendlen in Kaltemittelatmospharen beschrieben
und Messergebnisse dargestellt. Wenn auch nur auszugweise dargestellt, wird jedoch deutlich,
dass die verfigbare Literatur ein breites Spektrum hinsichtlich der physikalischen
Eigenschaften von Kaltemaschinendlen bietet.

Ebenfalls umfangreich untersucht wird das Transportverhalten des Kaltemaschinendls in der
Kalteanlage und der Einfluss des Ols auf deren Effizienz. FKT 92/02 (FKT 92/02, 2003b) gibt
bspw. einen umfangreichen Literaturiiberblick zum Transportverhalten des Ols in vertikalen
Saugleitungen verschiedener Kaltemittel-Ol-Kombinationen. In FKT 92/02/01 (FKT 92/02/01,
2007) wurde der Oltransport in Steigleitungen fiir das Kéltemittel R404A mit zwei
verschiedenen Olen untersucht. Darin wird zum einen auf die minimale Strémungs-
geschwindigkeit des Kaltemittels eingegangen, die fiir einen sicheren Oltransport notwendig
ist, und zum anderen die Strdmungsgeschwindigkeit des Ols bestimmt, um daraus die
Mindestlaufzeit einer Kalteanlage fiir eine ausreichende Olriickfiihrung abzuschatzen. Auch
Untersuchungen zur Olriickhaltung in Kélteanlagen sind Gegenstand in der verfiigbaren
Literatur. Lee (Lee, 2003) analysierte die Olriickhaltung in einer CO,-Klimaanalge. Es werden
Versuche und deren Ergebnisse sowie die Modellierung der Olriickhaltung und Design-
vorschlage fir die Minimierung der Olriickhaltung fiir verschiedene Anlagenkomponenten
behandelt. Cremaschi (Cremaschi, 2004) erweiterte diese Untersuchung auf verschiedene
Kaltemittel-Ol-Kombinationen. Prinzipiell konnte jeweils eine steigende Olriickhaltung bzw.
Olmenge in den Anlagenkomponenten bei zunehmender Olumlaufrate beobachtet werden.

Bezlglich des Einflusses des Kaltemaschinendls auf die Effizienz einer Kalteanlage
kristallisieren sich vor allem der Druckverlust und der Warmetiibergang heraus. In Dang (Dang,
et al., 2007) bspw. wurde der Einfluss des Ols auf den Warmeiibergangskoeffizienten und den
Druckverlust beim Kihlen von tiberkritischem CO; in Rohren mit einem Innendurchmesser von
1 bis 6 mm untersucht. Dabei konnte mit zunehmender Olumlaufrate ein sinkender
Warmeubergangskoeffizient und ein steigender Druckverlust beobachtet werden. In Hwang
(Hwang, et al., 2004) wurde der Einfluss des Ols auf die Leistung einer CO,-Kélteanlage
untersucht. Es konnte gezeigt werden, dass mit zunehmender Olumlaufrate sowohl die
Kalteleistung als auch die Leistungszahl der Kalteanlage sinkt und der Druckverlust in den
Warmeubertragern, vor allem im Gaskihler, steigt. Auch in FKT 82/01 (FKT 82/01, 2008)
wurde ein sinkender Warmeiibergangskoeffizient bei steigender Olumlaufrate beobachtet.

Ein weiteres Thema, welches haufig in der verfliigbaren Literatur behandelt wird, ist die
Messung der Olwurf- bzw. Olumlaufrate. Dazu beschreiben verschiedene Standards und
Veroffentlichungen die méglichen Messmethoden der Olwurfrate (vgl. Abschnitt 4.1, S. 20).
Zusétzlich werden in verschiedenen Literaturstellen EinflussgréRen der Olwurfrate untersucht
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und Messergebnisse vorgestellt. In Yoon (Yoon, et al., 2011) wird z.B. die Olwurfrate eines
Scrollverdichters untersucht (vgl. Abschnitt 4.3, S. 23). Zusatzlich wird ein Literaturliberblick
zu Messungen verschiedener Verdichter angegeben. Es kann allerdings festgehalten werden,
dass fiir halbhermetische Hubkolbenverdichter mit dem Kaltemittel CO2 nur sehr wenig Daten
zur Olwurfrate in der Literatur gefunden werden konnten. In Wujek (Wujek, et al., 2014) werden
zwar Messergebnisse zur Olwurfrate vorgestellt, allerdings konzentrierte sich diese
Untersuchung auf die Variation der Kaltemaschinendle, wodurch nur vier verschiedene
Betriebspunkte getestet wurden.

Des Weiteren sind die Effekte des Ols bezogen auf den Verdichter selbst als Untersuchungs-
gegenstand zu nennen. In Nunez (Nunez, et al., 2008) wird bspw. ein tribologischer Vergleich
zweier Ole unter CO,-Atmosphare vorgestellt. In Kim (Kim, et al., 2003) wurde z.B. das
Schmiersystem eines Rollkolbenverdichters analysiert. Eine Untersuchung des Einflusses
verschiedener Ole auf die Effizienz eines halbhermetischen Hubkolbenverdichters wird in
Woujek (Wujek, et al., 2014) vorgestellt. Darin wurde unter anderem auch abgeleitet, dass eine
zunehmende Olwurfrate die Effizienz des Verdichters reduzieren kann.

Weiterhin werden in der verfiigbaren Literatur Untersuchungen vorgestellt, die den Oltransport
innerhalb des Verdichters und den daraus resultierenden Olwurf analysieren. In Min (Min, et
al., 2000) wurden verschiedene OItransport-Mechanismen eines Rollkolbenverdichters
theoretisch und experimentell untersucht. Zusatzlich werden konstruktive Konzepte zur
Reduzierung der Olwurfrate vorgestellt und deren Wirksamkeit diskutiert. Auch Strémungs-
simulationen werden verwendet, um den C")Itransport bzw. den Olwurf zu analysieren. In
Yokoyama (Yokoyama, et al., 2012) wurde bspw. eine CFD-Simulation zur Verbesserung der
Olabscheidung in einem Rollkolbenverdichter durchgefiihrt. In der Folge konnte die Olwurfrate
des Verdichters deutlich reduziert werden. Des Weiteren ist die experimentelle Visualisierung
der Stréomung ein wichtiges Werkzeug zur Analyse des Oltransports innerhalb eines
Verdichters. In Chikano (Chikano, et al., 2012) wird bspw. die Visualisierung der Strémung
innerhalb eines Scrollverdichters mittels Radiographie diskutiert. In Toyama (Toyama, et al.,
2006) wurde das Gehause eines Scrollverdichters mit Schaugldsern ausgestattet, um den
Oltransport zu visualisieren. Mithilfe einer Hochgeschwindigkeitskamera und anschlieRenden
Auswertungen konnten sowohl die Groenverteilung als auch die Strdmungsgeschwindigkeit
der Oltropfen bestimmt werden. In Xu (Xu, et al., 2018) wurden die Oltropfen in der
Druckkammer eines Scrollverdichters untersucht. Daflir wurden ein transparenter Prototyp zur
Visualisierung der Stromung gefertigt und mithilfe der Ergebnisse CFD-Simulationen
durchgefiihrt. Daraus konnten die Generierung der Oltropfen an den Druckventilen, die
GroRenverteilung und der Oltransport abgeleitet werden. Derartige Untersuchungen konnten
allerdings nicht fir halbhermetische Hubkolbenverdichter gefunden werden.

Auch durch eine intensive Patentrecherche zu halbhermetischen Hubkolbenverdichtern lassen
sich die Oltransport-Mechanismen innerhalb des Verdichters nur bedingt ableiten. Zwar
kénnen daraus teilweise Aussagen Uber die relevanten Zonen und die wirkenden
Mechanismen geschlussfolgert werden, jedoch nicht im notwendigen, wissenschaftlich
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befriedigenden Umfang. Die einzelnen Vorgadnge und deren Potenziale hinsichtlich der
Olwurfrate sind dementsprechend nur wenig in der verfiigbaren Literatur beschrieben. Vor
allem fur halbhermetische Hubkolbenverdichter in Kombination mit dem Kaltemittel CO-
besteht demnach eine Wissensliicke, die durch diese Arbeit geschlossen werden soll.
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2 Einflihrung und Grundlagen

21 Olwurf und Olumlauf

Wie einleitend beschrieben, wird ein geringer Anteil des Ols, welches zur Schmierung von
Kaltemittelverdichtern eingesetzt wird, von dem durch den Verdichter stromenden Kaltemittel
mitgerissen und in die Kélteanlage transportiert. Fiir diesen Vorgang und die Menge OI, welche
aus dem Verdichter ausgetragen bzw. durch die Kélteanlage transportiert wird, werden in
verschiedenen Normen und Verdffentlichungen unterschiedliche Begriffe und Definitionen
verwendet. Um eine klare Abgrenzung der Begriffe zu schaffen, sollen diese nachfolgend fir
diese Arbeit definiert werden.

Der Begriff Olumlauf beschreibt den Vorgang des Oltransports durch die Kalteanlage. Die
Olumlaufrate (OCR, engl.: oil circulation ratio) charakterisiert dabei den umlaufende
Olmassenstrom im Verhéltnis zur Summe aus Ol- und Kéltemittelmassenstrom. Da es in
Kalteanlagen ortlich zur teilweisen Ansammlung des umlaufenden Ols kommen kann, z.B.
durch externe Olabscheider oder einen unzureichenden Oltransport, kann die Olumlaufrate in
verschiedenen Bereichen der Kalteanlage variieren. Daher ist es mit Blick auf den Verdichter
sinnvoll, eine weitere GréRe zu definieren. Dafiir soll der Begriff Olwurf dienen, welcher den
Vorgang des Austragens von Ol aus dem Verdichter charakterisiert. Die Olwurfrate (ODR,
engl.: oil discharge ratio) beschreibt wiederum den Olwurf quantitativ und ist als Verhaltnis des
ausgetragenen Olmassenstroms zur Summe aus Ol- und Kéltemittelmassenstrom definiert
(vgl. Mannewitz, et al., 2018, S. 1-2).

ODR = — 0L 1009 2.1)
My, + Mgy

2.2 Arbeitsfluide in Kaltdampfmaschinen

2.21 Kaltemittel

Fir den Betrieb einer Kalte-, Klima- oder Warmepumpenanlage wird ein Arbeitsstoff fur den
Warmetransport bendtigt. Dieser Arbeitsstoff wird in der Kaltetechnik als Kaltemittel
bezeichnet. Prinzipiell haben sich verschiedene Kaltemittel in der Historie der Kaltetechnik
etabliert, allerdings fihren umwelttechnische Aspekte seit Anfang der 90er-Jahre zu Verboten
diverser Kaltemittel und der Entwicklung neuer Ersatzstoffe. Im ersten Schritt wurde die
Nutzung der Kaltemittel, die zum Ozonabbau beitragen, unterbunden. Daraufhin haben sich
chlorfreie HFKW-Kaltemittel mit einem ODP = 0 (Ozonabbaupotenzial, engl.: ozone depletion
potential) durchgesetzt, wie z.B. R134a, R404A und R410A. In den letzten Jahren wurden
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hinsichtlich des Treibhauspotenzials (GWP, engl.: global warming potential) weitere
umwelttechnische Anforderungen an die Kaltemittel gestellt. Die Einschréankungen bzw.
Verbote diverser Kéltemittel sind bspw. in der EU F-Gase Verordnung (Verordnung (EU) Nr.
517/2014, 2014) geregelt. Neben Ersatzstoffen mit moglichst niedrigem GWP werden
vermehrt natlrlich vorkommende Kaltemittel eingesetzt, wie z.B. NHs;, CO; und
Kohlenwasserstoffe (vgl. BITZER, 2020b, S. 3).

Kohlenstoffdioxid (CO2, R744) ist bereits seit den Anfangen der Kéltetechnik als Kéltemittel
bekannt. Es hat einen OPD von 0 und einen GWP von 1, ist chemisch inaktiv und weder
brennbar noch im klassischen Sinne toxisch. Aufgrund der erstickenden Wirkung bei héheren
Konzentrationen gelten allerdings geringere Grenzwerte fir die Konzentration in Luft als bei
HFKW-Kaltemitteln. Weiterhin vorteilhaft ist die vergleichsweise hohe volumetrische
Kalteleistung, welche zu niedrigeren Volumenstrémen und somit kleineren Strémungs-
querschnitten flihrt. Da CO; zusatzlich kostenguinstig verfugbar ist und nicht recycelt werden
muss, bietet es sich sehr gut als Alternative zu HFKW-Ké&ltemitteln an. Nachteilig sind
allerdings die vergleichsweise hohen Betriebsdriicke (bis zu Gber 100 bar) und die niedrige
kritische Temperatur von 31°C. Diese bedingt teilweise eine transkritische Prozessfiihrung,
welche im Vergleich zu herkémmlichen Kaltdampfprozessen mit subkritischer Prozessfiihrung
meist zu einer niedrigeren Effizienz der Kalteanlage fuhrt (vgl. BITZER, 2020b, S. 33).
Nichtsdestotrotz konnte in den letzten Jahren in der Kaltetechnik eine stetig steigende Anzahl
von Kalteanlagen mit CO; als Kaltemittel beobachtet werden.

Beim Einsatz 6lgeschmierter Kaltemittelverdichter kommt es innerhalb des Verdichters und
der Kalteanlage zu Interaktionen zwischen dem Kaltemittel und dem Kaltemaschinendl. Dabei
mussen verschiedene Bedingungen beachtet werden, welche im folgenden Kapitel
beschrieben sind. Fir die jeweiligen Kaltemittel stehen verschiedene Kaltemaschinendle zur
Verfligung, wobei die Kombinationen in Abhangigkeit der Betriebsbedingungen sorgfaltig
ausgewahlt werden mussen.

Zusatzliche Informationen zu den einzelnen Kaltemitteln, deren Verwendungsmaglichkeiten
und der derzeitigen Situation hinsichtlich umwelttechnischer Anforderungen kénnen z.B. im
BITZER Kaltemittel-Report 21 (BITZER, 2020b) gefunden werden.

2.2.2 Kaltemaschinendle

In 6lgeschmierten Verdichtern sind die Hauptaufgaben des Schmierstoffs die Schmierung von
Lagerstellen bzw. Verdichterkomponenten, die in Relativbewegung zueinanderstehen, die
Warmeabfuhr an diesen Stellen und die Unterstltzung der Abdichtung der Verdichtungsraume.
Nach dem Verdrangungsprinzip arbeitende Kaltemittelverdichter fiir Kaltdampfmaschinen sind
liblicherweise 6lgeschmiert, wobei nahezu immer zumindest ein geringer Anteil des Ols mit
dem Kaltemittel im Ké&ltemittelkreislauf umlauft. Um einen ausreichenden Oltransport zuriick
zum Verdichter gewahrleisten und somit Verdichterschaden verhindern zu kénnen, werden
meist Kaltemaschinendle eingesetzt, die mit dem Kaltemittel I6slich und mischbar sind (vgl.
BITZER, 2020b, S. 41). Daher werden Kaltemaschinendle stets in Abhangigkeit des
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angewendeten Kaltemittels ausgewahlt. Zusatzlich ist aufgrund der groRen Temperatur-
spreizung in Kalteanlagen eine ausreichende KaltflieReigenschaft notwendig, um den
Oltransport zu garantieren. Die Viskositat des Ols stellt daher immer einen Kompromiss aus
der FlieRfahigkeit bei tiefen Temperaturen und der Schmierfahigkeit bei hdheren
Temperaturen im Verdichter dar. Fur eine hinreichende Schmierung innerhalb des Verdichters
haben sich Viskosititswerte der Ol-Kaltemittelmischung im Bereich von 5 bis 15 mm?/s
bewahrt. Weitere grundlegende Anforderungen an das Kéltemaschinendl sind neben guten
Schmiereigenschaften eine hohe chemische sowie thermische Stabilitit und eine hohe
Alterungsbestandigkeit (vgl. Bock, et al., 2010, S. 5).

Zur Charakterisierung von Kaltemaschinendlen missen verschiedene physikalische
Kennwerte angegeben und vom Hersteller ermittelt werden. Dazu gehéren z.B. die
Mischbarkeit mit dem jeweiligen fliissigen Kaltemittel und die Viskositit des Ol-Kaltemittel-
Gemisches. Diese Kennwerte, deren Mindestanforderungen und die jeweiligen Prufverfahren
sind standardisiert und z.B. in der DIN 51503-1:2011-01 angegeben. Da die meisten
Kennwerte in einem weiten Bereich benétigt werden, um die Verwendungsmaoglichkeit des
Kaltemaschinendls im angedachten Einsatzbereich prifen zu kénnen, sind umfangreiche
Messungen durch den Hersteller notwendig. Die Mischbarkeit wird Ublicherweise in einem
Temperatur-Konzentration-Diagramm dargestellt, in dem die Bereiche der Mischung und der
Phasentrennung (sogenannte Mischungslicke) ersichtlich sind. Da die Gemischviskositat von
Druck und Temperatur abhangig ist, wird diese in einem kombinierten Druck-Viskositat-
Temperatur-Diagramm (sog. Daniel Plots) dargestellt. Dabei wird der Massenanteil des Ols in
einem ersten Druck-Temperatur-Diagramm und in einem zweiten Viskositat-Temperatur-
Diagramm abgebildet, um die Viskositdat abhangig von Druck und Temperatur grafisch
ermitteln zu kdnnen (vgl. Bock, et al., 2010, S. 7-30). Zusétzlich kdnnen der Massenanteil und
die wesentlichen Stoffdaten als Funktionen von Druck und Temperatur approximiert werden,
um eine Berechnung der Daten zu ermdglichen.

Je nach verwendetem Kaltemittel haben sich verschiedene Grunddltypen etabliert. Im
Wesentlichen werden Mineraldle (MO) und synthetische Kaltemaschinendle auf Basis von
Alkylbenzolen (AB), Polyolester (POE) oder Polyvinylether (PVE) sowie Polyalphaolefine
(PAO) und Polyalkylenglykole (PAG) verwendet (vgl. Bock, et al., 2010, S. 31-43). Zusatzlich
werden die Grundéle teilweise von den Olherstellern aufwendig additiviert, wodurch die
Eigenschaften der Ole leicht unterschiedlich ausfallen kénnen. Die zusétzlichen Additive und
molekularen Variationen sind meist ein gut gehiitetes Geheimnis der einzelnen Olhersteller.
Typischerweise werden flr transkritische CO2-Anwendungen in halbhermetischen Hubkolben-
verdichtern PAG- oder POE-Kaltemaschinendle verwendet. Diese Ole sind teilweise bzw. gut
mit CO2 mischbar und weisen eine hohe thermische Stabilitit sowie zuverlassige
Schmierungseigenschaften auf, was einen stabilen Betrieb des Verdichters und somit der
Kalteanlage sichert (vgl. Bock, et al., 2010, S. 93).



	Leere Seite



