Contents

Part I Basic Stochastic Optimization Methods				
1	Decision/Control Under Stochastic Uncertainty			
	1.1	Introd	duction.	3
	1.2		ministic Substitute Problems: Basic Formulation	
			Minimum or Bounded Expected Costs.	
		1.2.2	Minimum or Bounded Maximum Costs (Worst Case)	8
2	Det	termin	nistic Substitute Problems in Optimal Decision	
			ochastic Uncertainty.	9
	2.1	Optin	num Design Problems with Random Parameters	9
		2.1.1	Deterministic Substitute Problems in Optimal Design .	13
		2.1.2	Deterministic Substitute Problems in Quality	
			Engineering	. 16
	2.2	Basic	Properties of Substitute Problems	
	2.3	Appro	oximations of Deterministic Substitute Problems in	
		Optin	nal Design	20
		2.3.1	Approximation of the Loss Function	20
		2.3.2	Regression Techniques, RSM	22
		2.3.3	Taylor Expansion Methods	25
	2.4	Appli	cations to Problems in Quality Engineering	28
	2.5	Appro	oximation of Probabilities - Probability Inequalities	. 29
		2.5.1	Bonferroni-Type Inequalities	30
		2.5.2	Tschebyscheff-Type Inequalities	31
		2.5.3	FORM (First Order Reliability Methods)	. 36
	2.6	Const	ruction of State Functions in Structural Analysis and	
		Design	n	
		2.6.1	Plastic Analysis and Optimal Plastic Design	38
		2.6.2	Optimal Elastic Design	41

Pa	rt II	Differentiation Methods	
3	Dif 3.1	ferentiation Methods for Probability and Risk Functions Introduction	
	3.2	Transformation Method: Differentiation by Using an Integral	
		Transformation	48
		3.2.1 Representation of the Derivatives by Surface Integrals	
	3.3	The Differentiation of Structural Reliabilities.	
	3.4	Extensions	
		3.4.1 More General Response (State) Functions	
	3.5	Computation of Probabilities and its Derivatives by	
		Asymptotic Expansions of Integral of Laplace Type.	63
		3.5.1 Computation of Structural Reliabilities and its	
		Sensitivities.	63
		3.5.2 Numerical Computation of Derivatives of the	
		Probability Functions Arising in Chance Constrained	
		Programming	67
	3.6	Integral Representations of the Probability Function $P(x)$	
		and its Derivatives	73
	3.7	Orthogonal Function Series Expansions I: Expansions in	
		Hermite Functions, Case $m = 1$.	76
		3.7.1 Integrals over the Basis Functions and the Coefficients	
		of the Orthogonal Series.	80
		3.7.2 Estimation/Approximation of $P(x)$ and its Derivatives .	83
		3.7.3 The Integrated Square Error (ISE) of Deterministic	
		Approximations	89
3.8 Orthogonal Function Series Expansions II: Exp		Orthogonal Function Series Expansions II: Expansions in	
		Hermite Functions, Case m > 1.	90
	3.9	Orthogonal Function Series Expansions III: Expansions in	
		Trigonometric, Legendre and Laguerre Series	
		3.9.1 Expansions in Trigonometric and Legendre Series	
		3.9.2 Expansions in Laguerre Series.	93
าล	rt III	Deterministic Descent Directions	-
		·	—
ļ		erministic Descent Directions and Efficient Points	
	4.1	Convex Approximation	
		4.1.1 Approximative Convex Optimization Problem	101
	4.2	Computation of Descent Directions in Case of Normal	46-
		Distributions.	
		4.2.1 Descent Directions of Convex Programs.	
		4.2.2 Solution of the Auxiliary Programs.	
	43	Efficient Solutions (Points)	115

		 4.3.1 Necessary Optimality Conditions Without Gradients 4.3.2 Existence of Feasible Descent Directions in Non-Efficient Solutions of (4.9a,b) 	
	4.4	Descent Directions in Case of Elliptically Contoured	119
	4.4	- · · · · ·	119
	4.5	Construction of Descent Directions by Using Quadratic	119
	4.5	Approximations of the Loss Function	122
		Approximations of the Loss Function	122
Pa	rt IV	Semi-Stochastic Approximation Methods	
5		M—Based Stochastic Gradient Procedures	
	5.1	Introduction	129
	5.2	Gradient Estimation Using the Response Surface	
		Methodology (RSM)	
		5.2.1 The Two Phases of RSM.	
		5.2.2 The Mean Square Error of the Gradient Estimator .	
	5.3	Estimation of the Mean Square (Mean Functional) Error.	
		5.3.1 The Argument Case.	
		5.3.2 The Criteria! Case.	
	5.4	Convergence Behavior of Hybrid Stochastic Approximation	
		Methods.	
		5.4.1 Asymptotically Correct Response Surface Model.	
		5.4.2 Biased Response Surface Model.	150
	5-5	Convergence Rates of Hybrid Stochastic Approximation	1.50
		Procedures.	
		5.5.1 Fixed Rate of Stochastic and Deterministic Steps	
		5.5.2 Lower Bounds for the Mean Square Error.	
		5.5.3 Decreasing Rate of Stochastic Steps	172
6		chastic Approximation Methods with Changing Error iances	
		Introduction.	
	6.2		
	6.3	1 3	
	0.3	General Assumptions and Notations.	
		6.3.1 Interpretation of the Assumptions6.3.2 Notations and Abbreviations in this Chapter	
	6.4		
	0.4	Preliminary Results 6.4.1 Estimation of the Quadratic Error	
		6.4.2 Consideration of the Weighted Error Sequence	
		6.4.3 Further Preliminary Results	
	6.5	General Convergence Results.	
	0.5	6.5.1 Convergence with Probability One.	
		6.5.2 Convergence in the Mean.	
		6.5.3 Convergence in Distribution	
		ole convergence in Distribution	-/-

	6.6	Realisation of Search Directions Y_n	204
		6.6.1 Estimation of <i>G</i> *	208
		6.6.2 Update of the Jacobian	209
		6.6.3 Estimation of Error Variances.	
	6.7	Realization of Adaptive Step Sizes	219
		6.7.1 Optimal Matrix Step Sizes.	
		6.7.2 Adaptive Scalar Step Size	
	6.8	A Special Class of Adaptive Scalar Step Sizes.	
		6.8.1 Convergence Properties.	
		6.8.2 Examples for the Function $Q_n(r)$	
		6.8.3 Optimal Sequence (w_n)	
		6.8.4 Sequence (K_n) .	
		Technical Applications	
<u> </u>	11 V	Technical Applications	
7	An	proximation of the Probability of Failure/Survival in	
-		stic Structural Analysis and Optimal Plastic Design	. 253
	7.1	• •	
	7.2		
	7.3	Approximation of p_s , P_f by Linearization of the Transformed	
		Limit State Function	257
		7.3.1 The Origin Lies in the Transformed Safe Domain	
		7.3.2 The Origin Lies in the Transformed Failure Domain	
	7.4	Computation of the /3-Point z^*	
	7.5	Trusses	
		7.5.1 Special Case.	
	7.6	Reliability-Based Design Optimization (RBDO)	
		7.6.1 Necessary Optimality Conditions for the /?-Point	
		7.6.2 Duality Relations.	
<u></u>		· A	
Pa	rt VI	Appendix	
A	Seg	uences, Series and Products	275
		Mean Value Theorems for Deterministic Sequences.	
		Iterative Solution of a Lyapunov Matrix Equation	
В	Con	vergence Theorems for Stochastic Sequences	287
	B.I	A Convergence Result of Robbins-Siegmund	
	•	B.I.I Consequences	
	B.2	Convergence in the Mean	
	B.3	-	
		Sequences.	292
	B.4		
	~		/5

		Contents	XIII	
C	Tools from Matrix Calculus		295	
	C.I Miscellaneous		295	
	C.2 The v. Mises-Procedure in Case of Errors.		. 296	
Re	ferences		301	
Ind	lex		309	

.