
Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 29

�

� �

�

IN DIESEM KAPITEL

erfahren Sie, wie JavaScript entstanden ist und
was es mit dem ECMAScript-Standard auf sich
hat.

..

lernen Sie die wichtigsten Elemente kennen, die
Sie zum Entwickeln benötigen.

..

sehen Sie, wie clientseitiges JavaScript im
Browser funktioniert.

..

machen Sie die ersten Schritte, wenn es um
serverseitiges JavaScript geht.

..

Kapitel 1
Auf den Spuren von JavaScript:
Zwischen Browser-Zauberei
und Server-Magie

JavaScript ist nahezu überall verfügbar, von seiner ursprünglichen Umgebung, dem
Browser, hat sich die Programmiersprache mittlerweile in alle Bereiche des täglichen
Lebens verbreitet. So können Sie als JavaScript-EntwicklerIn nicht nur dynamische
Web-Frontends programmieren, sondern auch die zugehörigen Backends serverseitig

mit JavaScript umsetzen. Die Sprache ist jedoch auch in Umgebungen präsent, von
denen Sie wahrscheinlich im ersten Moment nicht erwarten, dass dort eine unscheinbare
Web-Skriptsprache ausgeführt wird. So finden Sie JavaScript in Autos, Küchengeräten,
Industrieanlagen und sogar im Weltall. Das Integrated Science Instrument Module des
James-Webb-Weltraumteleskops wird beispielsweise mit JavaScript kontrolliert (https://
www.jwst.nasa.gov/resources/ISIMmanuscript.pdf). Auch das Weltraumunternehmen
SpaceX nutzt JavaScript für seine Raumflüge. Interessant ist hier nicht nur, dass die Crew
Dragon per Touchdisplay ins Weltall gesteuert wird, sondern dass deren UI-Elemente auf
einer JavaScript-Bibliothek basieren (https://www.theverge.com/2020/5/30/21275753/
nasa-spacex-astronauts-fly-crew-dragon-touchscreen-controls).

Sie sehen also, es gibt schlechtere Alternativen, wenn es um Programmiersprachen geht, als
JavaScript. Die Sprache ist verhältnismäßig einfach zu lernen, weitverbreitet und hat eine

CO
PYRIG

HTED
 M

ATERIA
L

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 30

�

� �

�

30 TEIL I Die Grundlagen von JavaScript

sehr starke Community, die immer wieder neue bahnbrechende Entwicklungen hervor-
bringt. Außerdem ist JavaScript ein Industriestandard. JavaScript ist der weltweit verbreitete
Name der Programmiersprache ECMAScript, die im Standard ECMA-262 definiert wird.
Diesen finden Sie unter https://www.ecma-international.org/publications-and-
standards/standards/ecma-262/. Für JavaScript gibt es außerdem einen ISO-Standard
mit der Bezeichnung ISO/IEC-16262, der dem ECMA-Standard entspricht. Die JavaScript-
Version aus dem Jahr 2022 würde, wenn Sie die Definition ausdrucken würden, 809 Seiten
in Anspruch nehmen. Dabei handelt es sich nur um den Sprachkern. Erweiterungen wie
die DOM-API sind hier noch nicht mit inbegriffen. Das ECMAScript-Dokument ist auch
nichts, was Sie an einem verregneten Wochenende zum Zeitvertreib lesen sollten, da es
sich beim überwiegenden Teil des Texts um formale Beschreibungen der Sprache handelt.

Doch warum heißt JavaScript nicht auch offiziell JavaScript? Die Antwort auf diese Frage ist
einfach: Die Markenrechte an JavaScript liegen bei Oracle. Solange das Unternehmen den
Namen nicht freigibt, ist es nicht möglich, die Programmiersprache offiziell als JavaScript
zu bezeichnen. Die Standardisierung und Organisation klingt zugegebenermaßen etwas tro-
cken und angestaubt, ist für uns als JavaScript-EntwicklerInnen aber von großer Bedeutung,
da sich die Hersteller von JavaScript-Engines überwiegend an diesen Standard halten und
es so mittlerweile nur noch in geringem Umfang zu Problemen zwischen den einzelnen
Plattformen kommt. Zur Entstehungszeit und in den ersten Jahren von JavaScript sah die
Situation noch ganz anders aus.

Die Geschichte – JavaScript in 10 Tagen
Kein Buch über JavaScript kommt ohne eine kleine Geschichtsstunde aus. Also möchte
ich auch hier keine Ausnahme machen. Ich beschränke mich jedoch auf die interessanten,
relevanten und vielleicht etwas kuriosen Eckpunkte. Das Gerücht, dass die erste Version
von JavaScript in nur 10 Tagen entstanden ist, hält sich hartnäckig. Das würde auch erklä-
ren, warum JavaScript an manchen Stellen so ist, wie es ist. Sie werden sowohl im Verlauf
dieses Buchs als auch bei Ihrer Arbeit mit der Programmiersprache feststellen, dass Java-
Script nicht nur seine Sonnen-, sondern auch die ein oder andere Schattenseite hat. Nets-
cape Communications, das Unternehmen, das den Netscape Navigator, einen der ersten
Browser, entwickelt hat, beauftragte 1995 Brendan Eich damit, eine Skriptsprache zu entwi-
ckeln, mit der mehr Dynamik in das bis dahin recht statische HTML des Browsers gebracht
werden sollte.

Netscape übernahm diese erste Version der Skriptsprache allerdings noch nicht in den
Browser. Einen Prototyp einer Programmiersprache in einen der damals am weitesten
verbreiteten Browser zu integrieren wäre viel zu riskant gewesen, vor allem vor dem
Hintergrund, dass zwischen 1995 und 1998 der sogenannte Browserkrieg zwischen Mi-
crosoft und Netscape um die Vorherrschaft über das Internet tobte. Und so entwickelte
Brendan Eich bis 1996 weiter an JavaScript, das zunächst unter dem Codenamen Mocha
und später unter LiveScript geführt wurde. Version 1.1 wurde mit dem Netscape Navigator
3.0 im August 1996 veröffentlicht. Ebenfalls im August 1996 zog Microsoft mit seinem
Konkurrenzprodukt JScript im Internet Explorer 3 nach.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 31

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 31

Beide Skriptsprachen entwickelten sich über die Zeit auf eine recht ähnliche Art, wobei
mal Netscape, mal Microsoft die Nase vorn hatte. Zum Leidwesen der WebentwicklerInnen
der damaligen Zeit unterschieden sich LiveScript und JScript in einigen Aspekten vonein-
ander, dadurch mussten die EntwicklerInnen die jeweilige Umgebung erkennen und speziell
angepasste Programmlogik ausführen. Die Geburtsstunde der Polyfills.

Polyfill

Ein Polyfill ist ein Stück Code, das ein Feature in einer Umgebung emuliert,
in der es eigentlich nicht existiert. Mit den Grundzügen der Skriptsprachen
der Browser konnten EntwicklerInnen schon zu einem frühen Zeitpunkt
viele Funktionen bereitstellen und die Schnittstellen so weit vereinheitli-
chen, dass eine halbwegs komfortable Entwicklung möglich war.

Bei neuen Sprachfeatures ist es auch heute noch üblich, auf Polyfills
zurückzugreifen, bis alle für die Applikation relevanten Umgebungen das
Feature unterstützen. Eines der populärsten Polyfills, das man in der Regel
gar nicht als solches wahrnimmt, ist TypeScript. Eine Programmiersprache,
die auf den Regeln von JavaScript aufbaut und die fehlende Typsicherheit
zu JavaScript hinzufügt. Der TypeScript-Code wird dann vom TypeScript-
Compiler in JavaScript ausgeführt, das dann im Browser oder serverseitig
ausgeführt werden kann. Doch der Compiler ist auch in der Lage, moderne
Features in älteren Umgebungen zur Verfügung zu stellen.

Falls TypeScript für Sie keine Option ist, können Sie auch auf spezialisierte
Polyfills für bestimmte Sprachfeatures zurückgreifen. Sie sollten jedoch
daran denken, dass ein Polyfill in der Regel weniger performant als das
JavaScript-Original ist. Sobald Sie ein Polyfill also nicht mehr benötigen,
sollten Sie es aus dem Quellcode Ihrer Applikation entfernen.

Der erste ECMAScript-Standard erschien im Juni 1997 und brachte den ersten Hoffnungs-
schimmer. Die Entwicklung des Standards verlief in der ersten Zeit eher schleppend und
gipfelte im Abbruch der Arbeiten an der vierten Version im Jahr 2008. Das letzte Update
am Sprachstandard gab es zu diesem Zeitpunkt im Jahr 1999. Wir sprechen von einem Zeit-
raum von 9 Jahren in der auch damals schon schnelllebigen Web-Welt. Die Standardisierung
wurde jedoch wieder aufgenommen und viele der Features aus der vierten Version wurden
verworfen. 2009 veröffentlichte die ECMA dann endlich die Version 5 von ECMAScript mit
der Unterstützung von JSON.

Einen Meilenstein markiert die Veröffentlichung von ECMAScript 6, kurz ES6, oder später
dann ECMAScript2015. Neben vielen interessanten Erweiterungen wie beispielsweise Klas-
sen oder Block-Scoping gibt es seit dieser Version jährliche Aktualisierungen des Sprach-
standards. Diese werden mit der jeweiligen Jahreszahl benannt. Der ECMAScript-Standard
aus dem Jahr 2022 heißt also ECMAScript2022.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 32

�

� �

�

32 TEIL I Die Grundlagen von JavaScript

Wie kommen neue Features in die
Sprache?
Das TC39, eine Abkürzung für Technical Committee 39, eine Arbeitsgruppe der ECMA,
hat die Aufgabe, den ECMAScript-Standard weiterzuentwickeln und neue Features zu
integrieren. Dem TC39 gehören sowohl JavaScript-EntwicklerInnen als auch Abgesandte
großer Unternehmen an, die in verschiedenen Rollen an der Entwicklung von ECMAScript-
Umgebungen beteiligt sind. Die Sitzungen des TC39 stehen jedem Mitglied der ECMA
offen.

Der Prozess, mit dem ein neues Feature in den Standard aufgenommen wird, besteht aus 5
Stufen, die durch die ECMA genau definiert sind.

✔ Stufe 0 (Strawman)

Zweck:

• Bildet den Einstieg zur Erweiterung der Spezifikation.

Eingangskriterien:

• Keine

✔ Stufe 1(Proposal)

Zweck:

• Beschreibt den Anwendungsfall für das Feature.

• Form der Lösung ist skizziert.

• Potenzielle Probleme sind umrissen.

Eingangskriterien:

• Es gibt eine zuständige Person im TC39, die das Feature weiterbringt.

• Prosatext über die Ausgestaltung des Features existiert.

• Beispiele der Verwendung ist beschrieben.

• Grobe API-Beschreibung ist vorhanden.

• Diskussion von Schlüsselalgorithmen, Abstraktion und Semantik wurde geführt.

• Identifikation potenzieller »cross cutting concerns« und potenzieller Umsetzungs-
schwierigkeiten ist vorhanden.

• Öffentliches Repository mit den oben genannten Anforderungen existiert.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 33

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 33

✔ Stufe 2 (Draft)

Zweck:

• Syntax und Semantik werden exakt beschreiben.

Eingangskriterien:

• Initialer Spezifikationstext ist vorhanden.

✔ Stufe 3 (Candidate)

Zweck:

• Weitere Verfeinerung benötigt Feedback von BenutzerInnen und HerstellerInnen.

Eingangskriterien:

• Kompletter Spezifikationstext ist vorhanden.

• Ausgewählte ReviewerInnen haben den aktuellen Spezifikationstext
genehmigt.

• Alle ECMAScript EditorInnen haben den aktuellen Spezifikationstext genehmigt.

✔ Stufe 4 (Finished)

Zweck:

• Feature ist bereit für die Integration in den ECMAScript-Standard.

Eingangskriterien:

• Es wurden Test262 Akzeptanztests für die wichtigsten Nutzungsszenarien geschrie-
ben und integriert.

• Es gibt zwei kompatible Implementierungen die die Tests durchlaufen.

• Es gibt ausreichend Erfahrung mit der Implementierung in der realen Welt.

• Es gibt einen Pull Request in tc39/ecma262 mit dem integrierten
Spezifikationstext.

• Alle ECMAScript EditorInnen haben den Pull Request genehmigt.

Die aktuell laufenden Anträge für neue Features finden Sie auf GitHub unter https://
github.com/tc39/proposals/. Mit diesem Wissen können Sie sich nun in die Welt von
JavaScript stürzen und Schritt für Schritt Ihre eigenen Applikationen entwickeln.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 34

�

� �

�

34 TEIL I Die Grundlagen von JavaScript

Webseite vs. Website vs. Web-Applikation

Bei der Arbeit mit JavaScript werden Sie immer wieder über verschiedene
Begriffe stolpern. Unter den ersten werden sich wahrscheinlich Webseite,
Website und Web-Applikation befinden. Es gibt zwar kein offizielles Glossar
für solche Begriffe, jedoch eine weitverbreitete Interpretation.

Viele EntwicklerInnen benutzen den Begriff Webseite eher abwertend und
bezeichnen damit ein einzelnes HTML-Dokument mit etwas CSS und Ja-
vaScript, also nichts Weltbewegendes. Eine Website ist eine Sammlung von
HTML-Dokumenten, also Webseiten, zu einem bestimmten Thema unter
meist unter einer Domain. Der Umfang ist hier schon deutlich größer. Bei
einer Website ist auch meist das Backend schon mit inbegriffen, der An-
spruch ist also deutlich größer.

Eine Web-Applikation ist schließlich die höchste Ebene. Web-Applikationen
werden meist als Single-Page-Applikationen mit großen Frameworks und
Schnittstellen im Backend umgesetzt. Mit Web-Applikationen können Sie
sowohl große Plattformen im Internet als auch kritische Unternehmens-
prozesse in Web-Technologien umsetzen.

Je nachdem, mit wem Sie sprechen, werden die Grenzen zwischen den ein-
zelnen Begriffen verschwimmen. Nehmen Sie diese Erklärungen einfach als
einen groben Anhaltspunkt. Ich verwende in diesem Buch in den meisten
Fällen den Begriff Applikation und meine damit so ziemlich alles, was Sie
mit JavaScript umsetzen können, von einfachen animierten Webseiten bis
hin zu umfangreichen Applikationen.

Die Entwicklungsumgebung (IDE)
Die Spanne der verfügbaren Editoren und Entwicklungsumgebungen reicht von einfachen
Editoren auf der Kommandozeile wie Vi und Emacs über umfangreichere grafische Editoren
wie Sublime bis hin zu vollwertigen Entwicklungsumgebungen wie WebStorm und Visual
Studio Code. Die Unterscheidung der Begriffe ist hier auch eher verschwommen. Ein Editor
stellt Ihnen in der Regel die Möglichkeit zur Verfügung, Quelltext zu schreiben, und bietet
nur einige wenige Komfortfeatures wie beispielsweise Syntax Highlighting und Autocom-
pletion. In einer Entwicklungsumgebung sind alle Werkzeuge, die Sie für die Entwicklung
Ihrer Applikation benötigen, enthalten. Das bedeutet, dass Sie nicht aus Ihrer Entwicklungs-
umgebung herauswechseln müssen, um eine bestimmte Aufgabe auszuführen. Ein typisches
Beispiel ist das Ausführen von Tests. Die Werkzeuge sind meist so gut in die Entwicklungs-
umgebung integriert, dass Sie die Ergebnisse auch direkt im Quelltext sehen können. Im
Fall der Tests sehen Sie beispielsweise das Testergebnis direkt bei der Funktion, die Sie
überprüfen.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 35

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 35

Aktuell sind WebStorm von JetBrains und Visual Studio Code von Microsoft die beiden in
der JavaScript-Welt vorherrschenden Entwicklungsumgebungen. WebStorm ist zwar kos-
tenpflichtig, punktet jedoch mit einem großen Funktionsumfang und hervorragender Sta-
bilität. Die Entwicklungsumgebung verfügt über eine Plug-in-Architektur, mit der Sie die
Entwicklungsumgebung durch externe Module erweitern und so den Funktionsumfang auf
Ihre Bedürfnisse zuschneiden können. Die offizielle Webseite von WebStorm finden Sie un-
ter https://www.jetbrains.com/de-de/webstorm/.

Der schärfste Konkurrent von WebStorm ist Visual Studio Code oder kurz VSCode, die
kostenfreie Entwicklungsumgebung von Microsoft. VSCode wird als Open-Source-Projekt
auf GitHub unter https://github.com/Microsoft/vscode/ entwickelt. Die Webseite des
Projekts ist unter https://code.visualstudio.com/ erreichbar. Ähnlich wie WebStorm
können Sie auch VSCode durch Erweiterungen um zusätzliche Features ergänzen. Erwäh-
nenswert zu VSCode ist vielleicht noch, dass die Entwicklungsumgebung selbst in JavaScript
beziehungsweise TypeScript implementiert ist.

Egal für welches Werkzeug Sie sich beim Schreiben Ihres Quellcodes entscheiden, Sie soll-
ten darauf achten, dass Ihnen Features wie Syntax Highlighting, also die Hervorhebung
bestimmter Elemente wie die Namen von Bezeichnern, oder Autocompletion, das sind Vor-
schläge wie Funktions- oder Methodennamen, zur Verfügung stehen.

Mit einer funktionierenden Entwicklungsumgebung können Sie sich daranmachen und
Ihre Arbeitsumgebung kennenlernen, und das ist für JavaScript-EntwicklerInnen in erster
Linie die JavaScript-Engine. Für kleinere Experimente mit JavaScript können Sie alternativ
zu einer vollumfänglichen Entwicklungsumgebung auch auf Online-IDEs wie Codepen
(https://codepen.io/), CodeSandbox (https://codesandbox.io/) oder StackBlitz
(https://stackblitz.com/) ausweichen. Und wenn es mal wirklich schnell gehen soll,
können Sie sogar in der Browser-Konsole Ihren JavaScript-Code ausführen.

Die JavaScript-Engine
Egal in welcher Umgebung Sie JavaScript entwickeln wollen, Sie haben es immer mit einer
JavaScript-Engine zu tun. Dabei handelt es sich um eine Software, der Sie JavaScript-
Quellcode übergeben und die diesen dann ausführt. Zwar ist JavaScript, wie der Name
vermuten lässt, eine Skriptsprache. Die Engine arbeitet jedoch keineswegs direkt auf dem
Text, den Sie ihr übergeben. Stattdessen wandelt sie den Text in Bytecode, also Maschi-
nencode, um und verwendet diesen. Diese Umwandlung hat zur Konsequenz, dass Sie den
Code bei Änderungen erneut der Engine übergeben müssen und diese ihn erneut einlesen
muss. Dieser Charakter von JavaScript macht die Sprache deutlich leichtgewichtiger als
kompilierte Sprachen wie beispielsweise C, C++ oder Java wo Sie den Quellcode mit einem
separaten Compiler zunächst übersetzen müssen, bevor Sie ihn ausführen können.

Aktuell gibt es auf dem Markt eine eher überschaubare Anzahl von JavaScript-Engines. Die
wichtigsten sind die V8-Engine, die Sie in Chrome, Edge und Node.js finden, SpiderMon-
key, die Engine hinter Firefox, und JavaScriptCore aus Safari. Nachdem die Interpretation
von JavaScript durch den ECMAScript-Standard relativ strikt vorgeschrieben ist, unter-
scheiden sich die Engines hauptsächlich in der Adaption neuer Features, wobei hier V8 und

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 36

�

� �

�

36 TEIL I Die Grundlagen von JavaScript

SpiderMonkey in der Regel die Nase vorn haben, und hinsichtlich der Performance einzel-
ner Features. Denn die interne Umsetzung des Standards bleibt den Herstellern der Engines
überlassen, sodass diese hier einen gewissen Spielraum haben. Als EntwicklerIn von client-
oder serverseitigem JavaScript haben Sie normalerweise nicht viel mit der Engine selbst zu
tun, sodass Sie sich nicht weiter um die internen Strukturen und Abläufe, wie beispielsweise
das Speichermanagement, kümmern müssen.

Es ist jedoch hilfreich zu wissen, dass die JavaScript-Engines einen Garbage Collector ha-
ben, der den nicht mehr genutzten Speicher in gewissen Abständen wieder freiräumt. Einige
Engines weisen Optimierungen auf, die Applikationen bei der Wiederverwendung von Ob-
jektstrukturen beschleunigen. Dabei erzeugt die Engine beim Zugriff auf die Eigenschaften
des Objekts eine Art Katalog für den Speicher, mit dessen Hilfe sie die Eigenschaften bei wie-
derholtem Zugriff schneller lokalisieren kann. Diese und weitere Best Practices lernen Sie
im Laufe dieses Buchs noch näher kennen und erfahren, wann es sinnvoll ist, Ihren Quell-
code auf eine bestimmte Weise zu strukturieren. Dabei müssen Sie auch immer abwägen,
wenn Sie Ihren Quellcode auf Performance oder auf Lesbarkeit optimieren.

HTML, CSS und JavaScript im Client
JavaScript ist eine Programmiersprache, die zwar ihren Ursprung im Browser hat, die Sie
jedoch unabhängig von der Umgebung verwenden können. Und so besteht ein Browser
nicht nur aus einer JavaScript-Engine, sondern noch aus zahlreichen weiteren Bestandtei-
len wie beispielsweise einer Rendering-Engine, die dafür sorgt, dass Ihre BenutzerInnen die
Strukturen, die Sie implementieren, auch zu sehen bekommen. Entschließen Sie sich dazu,
clientseitige Applikationen zu implementieren, müssen Sie sich zunächst damit beschäfti-
gen, wie die Umgebung aufgebaut ist und wie sie funktioniert. Beim Browser bedeutet das,
Sie sollten wissen, wie die Ressourcen vom Server zum Client kommen, wie dieser sie ver-
arbeitet und schließlich das Ergebnis darstellt.

Damit Sie die Beispiele in den folgenden Kapiteln nachvollziehen können, stelle ich Ihnen in
diesem Kapitel eine einfache Beispiel-Applikation vor, die Sie als Umgebung für Ihre Experi-
mente verwenden können. Im Client arbeiten Sie generell mit drei verschiedenen Sprachen:
HTML, mit dem Sie die Struktur einer Seite definieren, CSS, das für das Styling der Elemen-
te verantwortlich ist, und JavaScript, mit dem Sie die Logik für Ihr Frontend umsetzen. Die
Kombination aus diesen drei Aspekten setzen Sie im einfachsten Fall als statische Webseite
um und legen diese entweder im Dateisystem Ihres Systems oder auf einem Webserver ab.
Über den Browser können Sie dann entweder über »Datei« > »öffnen« die HTML-Datei
öffnen oder Sie geben, im Fall eines Webservers, dessen Adresse in die URL-Zeile ein.

Beispiel-Set-up
Bei clientseitigem JavaScript führen Sie den Code im Browser aus. Die Dateien können
Sie entweder direkt von Ihrem System laden oder über einen Webserver ausliefern.
Für das clientseitige Beispiel nutzen wir den zweiten Ansatz, also die serverbasierte
Auslieferung. Diese Aufgabe erfüllt für uns Node.js als Server. Diese Plattform wird Ih-
nen auch beim serverseitigen JavaScript wieder begegnen. Die Software erhalten Sie über die

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 37

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 37

offizielle Webseite des Projekts, die Sie unter https://nodejs.org\ignorespaceserreichen.
Dort finden Sie zwei Varianten, die LTS-Version, die sehr stabil ist und für die meisten
BenutzerInnen empfohlen wird, und die aktuelle Version, in der Sie auf die neuesten, teil-
weise noch in der Entwicklung befindlichen Features zugreifen können. Für Windows und
macOS können Sie Installationspakete herunterladen und auf Ihrem System installieren.
Bei Linux-Systemen führt der Weg üblicherweise über den Paketmanager des Systems,
wofür Sie ebenfalls eine Schritt-für-Schritt-Anleitung auf der Webseite finden. Neben
der Node.js-Plattform installieren Sie dabei auch das Werkzeug NPM, den Node Package
Manager, und NPX, ein Werkzeug, mit dem Sie JavaScript-Pakete ausführen können. Diese
Kombination verwenden Sie, um einen einfachen Webserver mit Node.js auszuführen und
die Dateien Ihres Frontends an Ihren Browser auszuliefern.

Dazu legen Sie in einem Verzeichnis Ihrer Wahl eine Datei mit dem Namen index.html an.
Hier erzeugen Sie eine grundlegende HTML-Struktur für Ihre Seite, wie Sie sie im folgenden
Codebeispiel sehen können.

Dieses und alle anderen Listings in diesem Buch finden Sie zum Download unter
https://www.wiley-vch.de/ISBN9783527720644

<!DOCTYPE html>
<html lang="de">

<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta

name="viewport"
content="width=device-width, initial-scale=1.0" />

<title>JavaScript für Dummies</title>
<link rel="stylesheet" href="style.css" />
<script src="index.js"></script>

</head>
<body>

<div>Hallo Welt</div>
</body>

</html>

Listing 1.1: Grundstruktur einer HTML-Datei

HTML orientiert sich an XML. Die einzelnen Elemente schreiben Sie als sogenannte Tags,
das sind festgelegte Bezeichnungen, die Sie in spitze Klammern fassen. Jedes Element hat
üblicherweise ein öffnendes und ein schließendes Tag. Die Elemente bilden eine Baumstruk-
tur, dessen Wurzel das html-Element bildet. In diesem Wurzelelement liegen das head- und
das body-Element. Im head legen Sie hauptsächlich Metainformationen, wie beispielsweise
die Zeichencodierung oder den Titel der Seite, ab. Außerdem binden Sie hier das Stylesheet,
also die CSS-Ressource, und das JavaScript mithilfe eines script-Tags ein. Im bodydefinie-
ren Sie die sichtbare Struktur. Im Beispiel fügen Sie ein div-Element mit dem Textinhalt
"Hallo Welt" ein. Ein div-Element ist ein einfaches Container-Element, mit dessen Hilfe
Sie beispielsweise Text anzeigen können. Im folgenden Codeblock sehen Sie den Quellcode
der style.css-Datei. Hierbei handelt es sich um einfaches CSS, das dafür sorgt, dass um
das div-Element ein durchgehender schwarzer Rahmen gezogen wird.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 38

�

� �

�

38 TEIL I Die Grundlagen von JavaScript

div {
border: 1px solid black;

}

Listing 1.2: Style-Definition

Zu guter Letzt setzen Sie noch das JavaScript um. Hier können Sie die alert-Funktion
ausführen, um zu testen, ob Ihr Set-up funktioniert. Diese Funktion zeigt ein kleines Dia-
logfenster im Browser mit Textinhalt und einem OK-Button an. Betätigen Sie den Button,
verschwindet der Dialog wieder. Den zugehörigen Quellcode sehen Sie hier:

alert(’Hallo Welt’);

Listing 1.3: JavaScript-Code, der einen Dialog öffnet

Semikolon

In JavaScript terminieren Sie Anweisungen wie beispielsweise const
result = 1 + 2 oder das alert(’Hallo Welt’) im Beispiel mit einem
Semikolon (;). Dieses Semikolon ist optional, die JavaScript-Engine fügt
es automatisch ein. Es gibt jedoch Fälle, in denen dieser Automatismus zu
ungewollten Effekten führt. So zum Beispiel, wenn Sie nach dem return
in einer Funktion den Wert, den Sie zurückgeben möchten, in einer
neuen Zeile schreiben. In diesem Fall fügt JavaScript das Semikolon direkt
nach dem return ein und gibt so den Wert undefined zurück. Um auf
Nummer sicher zu gehen, sollten Sie immer Semikolons verwenden, um
Ihre Anweisungen zu beenden.

Öffnen Sie nun ein Terminalfenster auf Ihrem System und wechseln Sie in das Verzeichnis, in
dem Sie die drei Dateien erzeugt haben. Geben Sie dort den folgenden Befehl ein: npx serve.
Als Ergebnis sollten Sie eine Ausgabe wie in Abbildung 1.1 erhalten.

Abbildung 1.1: Screenshot der Ausführung von npx serve

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 39

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 39

Dieses Kommando lädt das serve-Paket von npmjs.com herunter und führt es mit Node.js
aus. Die Plattform erzeugt einen Webserver und liefert den Inhalt des aktuellen Verzeich-
nisses aus. Öffnen Sie den Browser Ihrer Wahl und geben in die Adressleiste http://
localhost:3000 ein, erhalten Sie eine Ansicht wie in Abbildung 1.2.

Abbildung 1.2: Anzeige der Applikation im Browser

Klicken Sie auf den Button, sehen Sie den Text »Hallo Welt« in einem schwarzen Kas-
ten. Damit haben Sie den ersten Schritt in die Entwicklung von clientseitigem JavaScript
gemacht.

Einbindung von JavaScript
Der Aufbau des vorangegangenen Beispiels sieht vor, dass Sie die Struktur vom Styling und
der Logik strikt trennen und alle drei Aspekte in eigenen Dateien liegen. Dieser Lösungs-
ansatz ist zwar der sauberste, jedoch nicht der einzige. Sie können JavaScript und HTML
auch näher zusammenbringen, was ich Ihnen jedoch nicht empfehle, da der Quellcode in
diesem Fall sehr schnell unübersichtlich wird und Sie Ihr JavaScript auch nicht an anderen
Stellen in Ihrer Applikation wiederverwenden können. Die beiden anderen Varianten der
Einbindung von JavaScript sind JavaScript innerhalb eines Script-Tags und JavaScript als
Eventhandler. Beide Möglichkeiten stelle ich Ihnen der Vollständigkeit halber hier kurz vor.
Der folgende Code gleicht vom Funktionsumfang dem aus dem vorangegangenen Beispiel,
mit dem Unterschied, dass der JavaScript-Code jetzt direkt im HTML liegt.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 40

�

� �

�

40 TEIL I Die Grundlagen von JavaScript

<!DOCTYPE html>
<html lang="de">

<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta

name="viewport"
content="width=device-width, initial-scale=1.0" />

<title>JavaScript für Dummies</title>
<link rel="stylesheet" href="style.css" />
<script>

alert(’Hallo Welt’);
</script>

</head>
<body>

<div>Hallo Welt</div>
</body>

</html>

Listing 1.4: HTML mit Inline-JavaScript

Für die letzte Art der Einbindung müssen Sie etwas tiefer in die Trickkiste greifen.
In Listing 1.4 sehen Sie, wie Sie JavaScript innerhalb eines HTML-Tags schreiben und
damit auf die Interaktion von BenutzerInnen reagieren können.

<!DOCTYPE html>
<html lang="de">

<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta

name="viewport"
content="width=device-width, initial-scale=1.0" />

<title>JavaScript für Dummies</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>

<div>Hallo Welt</div>
<button onclick="alert(’Hallo Welt’);">Klick mich</button>

</body>
</html>

Listing 1.5: Im HTML eingebettetes JavaScript

Benutzen Sie JavaScript bitte nicht auf diese Weise. Die Verflechtung von Struktur und Logik
ist in diesem Fall so eng, dass der Code weder lesbar noch erweiterbar ist. Fehler sind in
diesem Fall vorprogrammiert. Es gibt deutlich elegantere Arten, mit denen Sie auf Klicks und
viele andere Ereignisse im Browser reagieren können. Wie das genau funktioniert, erfahren
Sie in Kapitel 11.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 41

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 41

Die Browser-Developer-Tools
Ihr Browser kann Ihnen nicht nur Webseiten anzeigen und JavaScript ausführen, sondern
kann Sie auch bei der Entwicklung unterstützen. Unter der Haube ist ein ganzer Satz mäch-
tiger Entwicklungswerkzeuge versteckt. Alles, was Sie tun müssen, um darauf zuzugreifen,
ist, die F12-Taste zu betätigen. Je nachdem, welchen Browser Sie verwenden, sehen diese
Werkzeuge unterschiedlich aus. Die Grundfunktionen finden Sie jedoch in jedem Browser
wieder. In Abbildung 1.3 sehen Sie einen Screenshot der Chrome Developer Tools für die
Beispielapplikation.

Abbildung 1.3: DevTools im Browser

Die wichtigsten Tabs sind:

✔ Elements: Über den Elements-Tab können Sie mit der HTML-Struktur und dem Sty-
ling der Seite arbeiten. Bewegen Sie die Maus über ein Element im HTML-Baum,
markiert der Browser das zugehörige Element im Hauptfenster. Mit einem Rechtsklick
im Hauptfenster auf ein Element und dann einem Linksklick auf »Inspect« gelangen
Sie direkt zum jeweiligen Element im Elements-Tab.

Auf der rechten Seite der Developer-Tools sehen Sie die Styles des jeweiligen Elements
und woher diese stammen.

Sowohl das HTML als auch das CSS können Sie über die Developer-Tools manipulie-
ren. Der Browser speichert diese Änderungen jedoch nicht. Laden Sie die Seite neu,
sind Ihre Änderungen wieder verschwunden.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 42

�

� �

�

42 TEIL I Die Grundlagen von JavaScript

✔ Console: Im Console-Tab können Sie JavaScript direkt ausführen. Außerdem können
Sie in Ihrem JavaScript-Quellcode über das console-Objekt Ausgaben auf der Kon-
sole erzeugen. Mehr zum Thema JavaScript-Konsole erfahren Sie im nachfolgenden
Abschnitt.

✔ Sources: Der Sources-Tab erlaubt Ihnen den Zugriff auf die Dateien Ihrer Applikati-
on. Hier können Sie den Quellcode einsehen und, noch viel wichtiger, Sie haben die
Möglichkeit, mit dem Debugger interaktiv mit Ihrem Quellcode zu arbeiten. Wie das
genau funktioniert, sehen Sie im Abschnitt »Debugging«.

✔ Network: Die Dateien Ihrer Applikation werden vom Server zum Browser gesen-
det. Wie diese Kommunikation genau aussieht und wie lange die einzelnen Phasen
des Downloads gedauert haben, sehen Sie im Network-Tab. Dieser ist vor allem inte-
ressant, wenn es darum geht, die Ladeperformance Ihrer Applikation zu überprüfen
und nach Optimierungspotenzial zu suchen.

Neben diesen vier Tabs bieten Ihnen die Developer-Tools Ihres Browsers noch viele weitere
Hilfsmittel für die Arbeit mit Ihrer Applikation. So können Sie beispielsweise den Verlauf der
CPU-Auslastung analysieren oder die Speicherbelegung zu einem bestimmten Zeitpunkt
ansehen. In der täglichen Arbeit mit JavaScript greifen Sie auf diese Werkzeuge jedoch eher
selten zur. Deutlich häufiger haben Sie mit der Konsole zu tun.

Die JavaScript-Konsole
In der Konsole zeigt Ihnen der Browser Fehlermeldungen und Warnungen an, die bei der
Verarbeitung Ihres Quellcodes aufgetreten sind. Außerdem können Sie selbst Ausgaben er-
zeugen. Wie das funktioniert, sehen Sie in Listing 1.6.

console.log(’Hallo Welt’);

Listing 1.6: Erzeugen einer Konsolenausgabe

Damit die Ausgabe funktioniert, binden Sie die index.js-Datei, in der Sie den Quellcode
gespeichert haben, in eine HTML-Datei ein. Wechseln Sie in den Browser, stellen Sie sicher,
dass die Developer Tools mit dem Console-Tab geöffnet sind, und laden Sie die Seite neu.
Daraufhin erhalten Sie die Ausgabe "Hallo Welt"auf der Konsole.

Dort gibt es nicht nur eine Ausgabe, sondern auch eine Eingabeaufforderung. Hier können
Sie beliebiges JavaScript eingeben, das der Browser, nachdem Sie die Enter-Taste betätigt
haben, im aktuellen Kontext Ihrer Applikation ausführt. In der folgenden Abbildung 1.4
sehen Sie die Ausgabe, wenn Sie 2 + 2auf der Konsole eingegeben haben.

Kommentare
Kommentare sind das Salz in der Suppe von JavaScript. Sie können schwer zu lesende Code-
stellen mit dem nötigen Kontext versehen und größere Strukturen wie beispielsweise Funk-
tionen dokumentieren. Üblicherweise beschreiben Sie hier, wie die Struktur zu verwenden
ist und welche Besonderheiten es gibt. Sie werden aber auch Quellcode finden, der wenig bis

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 43

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 43

Abbildung 1.4: JavaScript-Ausführung in den DevTools

gar nicht kommentiert ist. Im besten Fall ist der Code selbsterklärend und im schlimmsten
Fall müssen Sie sich um die Kommentare kümmern.

Sie können Kommentare auch verwenden, um Code temporär zu deaktivieren, ohne ihn
gleich komplett löschen zu müssen.

JavaScript kennt zwei verschiedene Arten von Kommentaren: einzeilige und mehrzeilige.

Einzeilige Kommentare
Einen einzeiligen Kommentar leiten Sie mit zwei //ein. Alles, was danach bis zum Zeilen-
ende folgt, ist für die JavaScript-Engine ein Kommentar und wird nicht ausgeführt.

const result = 1 + 2; // Das Ergebnis ist 3

// Die folgende Zeile erzeugt eine Konsolenausgabe
console.log(’Das Ergebnis ist: ’ + result);

Listing 1.7: Einzeiliger Kommentar in JavaScript

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 44

�

� �

�

44 TEIL I Die Grundlagen von JavaScript

Mehrzeilige Kommentare
Der Begriff mehrzeiliger Kommentar ist in JavaScript etwas irreführend, denn Sie können
mit der Syntax /* ... */ sowohl einen mehrzeiligen als auch einen einzeiligen Kommen-
tar erzeugen. Nutzen Sie diese Syntaxvariante, ist es JavaScript egal, wie viele Zeilen dieser
Kommentar umfasst. Er beginnt mit der Zeichenkette /* und endet mit */. Zwischen den
beiden Sequenzen können eine Handvoll Zeichen, aber auch Hunderte Zeilen liegen.

/*
Die folgende Funktion addiert zwei Zahlen

*/
function add(a, b) {

return a + b; /* Diese Zeile gibt den berechneten Wert zurück */
}

Listing 1.8: Mehrzeiliger Kommentar in JavaScript

Debugging
Noch haben Sie nicht viel von JavaScript gesehen, aber wir beschäftigen uns schon mit der
Suche und dem Beheben von Fehlern. Denn das Debugging und die damit einhergehende
Beherrschung der entsprechenden Werkzeuge ist eine elementare Fertigkeit, die Sie in Ihrer
Tätigkeit immer wieder benötigen. Es ist also niemals zu früh, sich mit diesen Hilfsmitteln
zu beschäftigen.

Ihr Browser verfügt über einen vollwertigen Debugger, mit dem Sie sich schrittweise durch
Ihren Quellcode bewegen können, und zwar zur Laufzeit Ihrer Applikation. Mit einem ein-
zelnen console.log-Statement ergibt Debugging natürlich wenig Sinn, also greife ich den
folgenden Kapiteln etwas vor und zeigen Ihnen in Listing 1.9 einen Codeblock, den Sie etwas
sinnvoller debuggen können.

function add(a, b) {
const result = a + b;
return result;

}

const number1 = 3.14;
const number2 = 42;

const sum = add(number1, number2);
console.log(sum);

Listing 1.9: Codebeispiel als Grundlage für Debugging

Im Quellcode definieren Sie zunächst eine Funktion add, die zwei Werte akzeptiert. Diese
beiden Werte addieren Sie und speichern sie in einer Konstante mit dem Namen result
und geben diese anschließend mithilfe des return-Statements zurück. Im Anschluss daran
definieren Sie zwei weitere Konstanten mit den Werten 3,14und 42. Diese beiden Werten
übergeben Sie anschließend beim Aufruf der add-Funktion und speichern das Ergebnis in

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 45

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 45

der Konstanten sumzwischen. Im letzten Schritt geben Sie das Ergebnis auf der Konsole des
Browsers aus. Fügen Sie diesen Quellcode in Ihre index.js-Datei und speichern Sie diese
ab, können Sie mit dem Debuggen beginnen.

Zum Debuggen Ihres Codes müssen Sie einen Breakpoint setzen. Ein Breakpoint ist ein
Punkt im Quellcode, an dem der Browser die Ausführung der Programmlogik anhält und
Ihnen die Möglichkeit bietet, sich in Ihrer Applikation zum Zeitpunkt der Ausführung um-
zusehen und sogar direkt mit der Programmlogik zu interagieren. Diese Breakpoints können
Sie entweder direkt im Quellcode oder mithilfe der Entwicklerwerkzeuge Ihres Browsers
setzen.

Um einen Breakpoint im Code zu setzen, fügen Sie an der gewünschten Stelle ein debugger-
Statement ein. Wie das funktioniert, sehen Sie im folgenden Beispiel.

function add(a, b) {
const result = a + b;
return result;

}

const number1 = 3.14;
const number2 = 42;

const sum = add(number1, number2);
debugger;
console.log(sum);

Listing 1.10: Einsatz des debugger-Statements

Das debugger-Statement sorgt dafür, dass der Debugger Ihres Browsers nach dem Aufruf der
add-Funktion anhält. Damit dies funktioniert, müssen die Entwicklerwerkzeuge des Brow-
sers geöffnet sein und Sie müssen die Applikation einmal neu laden. Sind die Entwickler-
werkzeuge nicht geöffnet, ignoriert der Browser das debugger-Statement und führt Ihre
Applikation wie gewohnt ohne Halt von Anfang bis Ende aus.

Der Vorteil dieser Variante ist, dass Sie die Breakpoints direkt dort definieren, wo Sie arbei-
ten. Sie wissen also genau, wo die Ausführung angehalten werden soll, und müssen nicht erst
mühevoll nach der passenden Datei suchen. Setzen Sie einen Breakpoint manuell im Quell-
code, hat das den Nachteil, dass Sie den Quellcode modifizieren müssen. Das bedeutet, dass
Sie dabei Fehler einfügen könnten, falls Sie sich vertippen, und dass Sie Ihre Applikation im
ungünstigsten Fall neu bauen müssen, falls Sie Werkzeuge wie TypeScript oder Webpack
verwenden.

Deutlich eleganter, weil ohne Modifikation am Quellcode, funktioniert das Setzen von
Breakpoints direkt aus den Entwicklerwerkzeugen des Browsers. Hierfür öffnen Sie
zunächst wie gewohnt Ihre Applikation im Browser, öffnen anschließend die Entwickler-
werkzeuge und wechseln dann in den Sources-Tab. Auf der linken Seite sehen Sie einen
Dateibaum. Dort können Sie die Quelltext-Datei auswählen, in der Sie Ihren Breakpoint
setzen möchten. Alternativ können Sie auch nach der Datei suchen, indem Sie entweder
über das Kontextmenü des Dateibaums und »Open file« oder den Tastatur-Shortcut
CTRL-P, beziehungsweise auf einem Mac CMD-P, eine Suchmaske öffnen, in der Sie den

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 46

�

� �

�

46 TEIL I Die Grundlagen von JavaScript

gewünschten Dateinamen eingeben können. Sobald Sie den Quellcode der Datei sehen,
können Sie links auf die Zeilennummer klicken, um einen Breakpoint zu setzen. Dieser
wird Ihnen durch eine Markierung an der Zeilennummer angezeigt.

Klicken Sie mit der rechten Maustaste auf eine Zeilennummer, können Sie über den
Menüpunkt »add conditional breakpoint...« einen sogenannten bedingten Breakpoint
setzen. Dieser wird nur aktiv, wenn die Bedingung, die Sie für diesen Breakpoint angeben,
wahr ist. Fügen Sie also beispielsweise in Zeile 3 einen solchen bedingten Breakpoint mit
der Bedingung »result === 45.14« ein, hält der Browser hier nur an, wenn der Wert der
Konstanten result45.14 ist.

Der Debugging-Prozess
Haben Sie Ihre Applikation im Browser geöffnet und die Entwicklerwerkzeuge sind aktiv,
hält der Browser am Breakpoint an. Sie sollten dann eine Ansicht wie in Abbildung 1.5 sehen.

Abbildung 1.5: JavaScript-Debugging im Browser

Dass sich der Browser im Debug-Modus befindet und aktuell angehalten ist, sehen Sie, da
die Zeile mit dem aktiven Breakpoint hervorgehoben ist und in der rechten Spalte der Ent-
wicklerwerkzeuge die Information »Debugger paused« steht. Im Debugger können Sie nun
über die Schaltelemente in der rechten Spalte der Entwicklerwerkzeuge navigieren.

Neben diesen Steuerelementen können Sie Watch Expressions definieren. Das sind
Ausdrücke, die bei jedem Schritt des Debuggers erneut ausgewertet werden und Ihnen
den jeweiligen Wert anzeigen. Außerdem sehen Sie eine Liste Ihrer Breakpoints, in der Sie

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 47

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 47

Steuerelement Bedeutung

Resume Die Ausführung wird bis zum nächsten
Breakpoint fortgesetzt

Step over Der Debugger springt über den
nächsten Funktionsaufruf, sodass direkt
dessen Ergebnis vorliegt

Step into Der Debugger springt in den nächsten
Funktionsaufruf, sodass Sie sich die
Funktion genauer ansehen können

Step out Springt aus dem aktuellen
Funktionsaufruf, sodass Sie mit dem
Rückgabewert weitermachen können

Step Springt zur nächsten Anweisung

Tabelle 1.1: Steuerelemente des Debuggers

diese verwalten können. Ein weiteres wichtiges Element ist die Scope-Liste, in der Sie die
Belegung aller aktuell verfügbaren Variablen und Konstanten einsehen können.

Wechseln Sie mit aktivem Debugger auf die JavaScript-Konsole, können Sie mit Ihrer Ap-
plikation interagieren und beispielsweise Funktionen aufrufen oder sich die Belegung von
Variablen ausgeben lassen. Sie haben an dieser Stelle Zugriff auf den gesamten JavaScript-
Funktionsumfang.

Die Beispiele für das Debuggen haben sich bisher auf Chrome bezogen. Sie sind jedoch beim
Debuggen Ihres JavaScript-Quellcodes nicht auf diesen Browser beschränkt. Auch Firefox,
Safari, Edge und alle weiteren Browser bieten Ihnen ähnliche Funktionalität, die eventuell
etwas anders benannt ist und sich an unterschiedlichen Stellen wiederfinden. Für die De-
tails der jeweiligen Plattform sollten Sie einen Blick in die Dokumentation Ihres Browsers
werfen.

Debugging aus der Entwicklungsumgebung heraus
Das Debugging ist jedoch nicht nur auf Browser beschränkt. Moderne Entwicklungsumge-
bungen bieten Ihnen die Möglichkeit, sich mit dem Browser zu verbinden und dann direkt
aus der Entwicklungsumgebung heraus zu debuggen. Bei der Konfiguration unterscheiden
sich die jeweiligen Entwicklungsumgebungen stark voneinander, sodass ich Sie an dieser
Stelle auf die Dokumentation Ihrer Entwicklungsumgebung verweisen und Ihnen exempla-
risch das Vorgehen in Visual Studio Code zeigen möchte.

Visual Studio Code verfügt über eine integrierte Debugger-Anbindung für Chrome und
Edge. Als Voraussetzung für die folgende Debugging-Session muss Ihre Applikation über
eine URL erreichbar sein. Wie Sie bereits im ersten Beispiel gesehen haben, bewerkstelligen
Sie dies beispielsweise über das Kommando npx serve, das einen lokalen Webserver startet.
Anschließend öffnen Sie über »View« > »Command Palette« das Suchfeld für Kommandos
und geben »Debug: Open Link« ein. Wählen Sie den Vorschlag der Entwicklungsumgebung

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 48

�

� �

�

48 TEIL I Die Grundlagen von JavaScript

aus und geben Sie dann die Adresse http://localhost:3000 ein. Anschließend startet der
Debugger von Visual Studio Code und stellt Ihnen die gleichen Features wie schon der Brow-
ser zur Verfügung. Der entscheidende Vorteil ist hier, dass Sie sich direkt im Quellcode Ihrer
Applikation befinden und sich in Ihrer gewohnten Arbeitsumgebung bewegen. Beachten Sie
allerdings, dass Änderungen am Quellcode nicht direkt in der aktuellen Debugging-Session
wirksam werden, da die JavaScript-Engine den Quelltext eingelesen und umgewandelt hat.

In Abbildung 1.6 sehen Sie, wie der Debugger in VSCode aussieht.

Abbildung 1.6: JavaScript-Debugging in VSCode

Serverseitiges JavaScript
JavaScript ist zwar im Browser groß geworden, ist jedoch mittlerweile auch serverseitig ei-
ne feste Größe. Im Jahr 2009 wurde die Plattform Node.js veröffentlicht, die sich im Kern
auf die V8-Engine aus Chrome stützt. Neben diesem Kern aus nativen Bibliotheken bildet
eine Reihe von Modulen, die in JavaScript implementiert sind, die Basis der Plattform. Über
diese Module erhalten Sie beispielsweise Zugriff auf das Dateisystem oder auf Netzwerk-
ressourcen.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 49

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 49

Node.js verfolgt die Idee einer leichtgewichtigen Plattform, die Ihnen eine Low-Level-
Schnittstelle auf das System zur Verfügung stellt, auf dem Sie den Prozess ausführen. Um
alle weiteren Features, die auf dieser Schnittstelle aufsetzen, wie beispielsweise Datenbank-
zugriffe oder Backend-Frameworks, müssen Sie sich selbst kümmern oder das Ökosystem
in Form eines Pakets nutzen.

Node.js ist zwar nicht die einzige serverseitige JavaScript-Plattform, jedoch die älteste und
aktuell am weitesten verbreitete. Aus diesem Grund werden wir uns hier vor allem mit
Node.js beschäftigen. Andere Plattformen wie Deno oder Bun verfolgen ähnliche Paradig-
men, sodass Sie vieles von dem, was Sie über Node.js lernen, auch auf die anderen Plattfor-
men anwenden können.

Eine Applikation mit Node.js ausführen
Die einfachste Variante, eine Applikation mit Node.js auszuführen, ist, wenn Sie eine
JavaScript-Datei erzeugen. Der Name der Einstiegsdatei in eine solche Applikation lautet
üblicherweise index.js, seltener app.js oder main.js. Diese Datei kann beliebigen JavaScript-
Code enthalten, den Node.js dann ausführt. Als konkretes Beispiel für den Einstieg in
Node.js nutzen Sie den Quellcode der Clientseite. In Listing 1.11 finden Sie den Code, der
ohne weitere Modifikationen auch in Node.js ausführbar ist.

function add(a, b) {
const result = a + b;
return result;

}

const number1 = 3.14;
const number2 = 42;

const sum = add(number1, number2);
console.log(sum);

Listing 1.11: Beispielcode für Node.js

Haben Sie diesen Quellcode in einer Datei mit dem Namen index.js gespeichert, können
Sie ihn auf der Kommandozeile ausführen. Wechseln Sie dafür in das Verzeichnis, in dem
die Datei liegt, und setzen Sie das folgende Kommando ab: node index.js. Als Ausgabe
erhalten Sie auf der Kommandozeile die Zahl 45.14.

Intern liest Node.js die Datei, die Sie beim Kommando angegeben haben, ein, verarbeitet
sie und führt sie schließlich aus. Das Ergebnis kann entweder eine direkte Ausgabe, wie
hier im Beispiel, oder ein lange laufender Prozess sein. Die zweite Variante ist für Web-
Applikationen deutlich öfter anzutreffen, da Node.js meist als Serverprozess verwendet wird
und dieser in der Regel so lange läuft, bis er von außen beendet oder durch einen Fehler zum
Absturz gebracht wird. Anders sieht die Situation aus, wenn Sie Node.js als Grundlage für
Entwicklungswerkzeuge verwenden, die Quellcode analysieren oder modifizieren. In die-
sem Fall starten Sie den Prozess, er verrichtet seine Arbeit und wird dann wieder beendet.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 50

�

� �

�

50 TEIL I Die Grundlagen von JavaScript

Wie Sie im Beispiel gesehen haben, können Sie auch in Node.js mit console.logAusgaben
auf der Konsole erzeugen. Die Plattform verfügt jedoch auch über einen integrierten De-
bugger und dieser unterscheidet sich in seinen Features kaum von dem, den Sie clientseitig
kennengelernt haben.

Debugging von Node.js-Applikationen
Nachdem sich Node.js und Chrome die gleiche JavaScript-Engine teilen, ist es auch nicht
verwunderlich, dass sie über die gleichen Möglichkeiten zum Debuggen verfügen. Den in-
tegrierten Debugger können Sie mit dem Kommando »node inspect index.js« starten. Dabei
interagieren Sie über die Kommandozeile mit dem Debugger und Ihrer Applikation. Diese
Art der Fehlersuche funktioniert zwar, ist jedoch wenig komfortabel. Eine bessere Lösung
besteht darin, dass Sie mit node --inspect index.jsden V8 Inspector aktivieren. Dieser
erlaubt es Ihnen, sich mit den Chrome-Entwicklerwerkzeugen über das Chrome-DevTools-
Protokoll mit Ihrem Node.js-Prozess zu verbinden, sodass Sie Ihre aus dem Frontend ge-
wohnte Debugging-Umgebung auch hier verwenden können. Im aktuellen Beispiel startet
Node.js zwar im Debug-Modus, durchläuft jedoch das Skript so schnell, dass Sie nicht die
Möglichkeit haben, sich mit den Entwicklerwerkzeugen zu verbinden. Die Lösung besteht
in diesem Fall darin, dass Sie den Prozess mit dem Kommando node --inspect-brkstarten.
Diese Option sorgt dafür, dass der Debugger zu Beginn der Ausführung anhält und Ihnen
so die Möglichkeit gibt, die Entwicklerwerkzeuge zu verbinden und Breakpoints zu setzen.

Abbildung 1.7: JavaScript-Debugging in VSCode

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 51

�

� �

�

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 51

Um Chrome mit Node.js zu verbinden, geben Sie in der Adresszeile von Chrome chro-
me://inspect ein. Daraufhin zeigt Ihnen der Browser eine Liste von Node.js-Instanzen, mit
denen Sie sich verbinden können. In Abbildung 1.7 sehen Sie ein Beispiel der Instanzliste.

Wählen Sie bei einer der Instanzen »Inspect« aus, öffnet Chrome die Entwicklerwerkzeuge
für Sie und Sie können sie analog zum Debugging im Client verwenden.

Debugging aus der Entwicklungsumgebung heraus
Wie beim clientseitigen JavaScript müssen Sie auch in Node.js nicht auf die Annehm-
lichkeiten Ihrer Entwicklungsumgebung beim Debuggen verzichten und können den
Debugging-Prozess auch direkt von dort aus starten. Dies funktioniert in allen gängigen
Entwicklungsumgebungen und ist in der Regel in der Dokumentation der jeweiligen
Software gut nachvollziehbar beschrieben.

Ich zeige Ihnen an dieser Stelle wieder exemplarisch in Visual Studio Code, wie Sie vorgehen
können. Im ersten Schritt sollten Sie einen Breakpoint setzen. Dies erreichen Sie entweder
über ein debugger-Statement oder indem Sie links neben die Nummer der gewünschten
Zeile klicken. Öffnen Sie danach die Einstiegsdatei Ihrer Applikation und wählen Sie an-
schließend im Menü »Run« den Punkt »Start Debugging« aus. Alternativ können Sie die
Taste F5 verwenden. Visual Studio Code gibt Ihnen dann eine Auswahl von Debuggern.
Klicken Sie auf den Eintrag »Node.js«. Daraufhin aktiviert die Entwicklungsumgebung die
Debugging-Ansicht und stellt Ihnen Kontrollelemente zur Navigation und weitere Informa-
tionen wie die Scope-Ansicht oder eine Liste von Breakpoints zur Verfügung.

Trim Size: 176mm x 240mm Springer720644 c01.tex V1 - 14.˜August 2024 9:25 P.M. Page 52

�

� �

�

