IN DIESEM KAPITEL

erfahren Sie, wie JavaScript entstanden ist und
was es mit dem ECMAScript-Standard auf sich
hat.

lernen Sie die wichtigsten Elemente kennen, die
Sie zum Entwickeln bendtigen.

sehen Sie, wie clientseitiges JavaScript im
Browser funktioniert.

machen Sie die ersten Schritte, wenn es um
serverseitiges JavaScript geht.

Kapitel 1

Auf den Spuren von JavaScript:
Zwischen Browser-Zauberei
und Server-Magie

avaScript ist nahezu iiberall verfiighar, von seiner urspriinglichen Umgebung, dem
Browser, hat sich die Programmiersprache mittlerweile in alle Bereiche des taglichen
Lebens verbreitet. So konnen Sie als JavaScript-EntwicklerIn nicht nur dynamische
Web-Frontends programmieren, sondern auch die zugehorigen Backends serverseitig
mit JavaScript umsetzen. Die Sprache ist jedoch auch in Umgebungen prisent, von
denen Sie wahrscheinlich im ersten Moment nicht erwarten, dass dort eine unscheinbare
Web-Skriptsprache ausgefiithrt wird. So finden Sie JavaScript in Autos, Kiichengeréten,
Industrieanlagen und sogar im Weltall. Das Integrated Science Instrument Module des
James-Webb-Weltraumteleskops wird beispielsweise mit JavaScript kontrolliert (https://
www . jwst.nasa.gov/resources/ISIMmanuscript.pdf). Auch das Weltraumunternehmen
SpaceX nutzt JavaScript fiir seine Raumfliige. Interessant ist hier nicht nur, dass die Crew
Dragon per Touchdisplay ins Weltall gesteuert wird, sondern dass deren UI-Elemente auf
einer JavaScript-Bibliothek basieren (https://www.theverge.com/2020/5/30/21275753/
nasa-spacex-astronauts-fly-crew-dragon-touchscreen-controls).

Sie sehen also, es gibt schlechtere Alternativen, wenn es um Programmiersprachen geht, als
JavaScript. Die Sprache ist verhdltnisméfig einfach zu lernen, weitverbreitet und hat eine

30 TEILI Die Grundlagen von JavaScript

sehr starke Community, die immer wieder neue bahnbrechende Entwicklungen hervor-
bringt. Auflerdem ist JavaScript ein Industriestandard. JavaScript ist der weltweit verbreitete
Name der Programmiersprache ECMAScript, die im Standard ECMA-262 definiert wird.
Diesen finden Sie unter https://www.ecma-international.org/publications-and-
standards/standards/ecma-262/. Fir JavaScript gibt es auflerdem einen ISO-Standard
mit der Bezeichnung ISO/IEC-16262, der dem ECMA-Standard entspricht. Die JavaScript-
Version aus dem Jahr 2022 wiirde, wenn Sie die Definition ausdrucken wiirden, 809 Seiten
in Anspruch nehmen. Dabei handelt es sich nur um den Sprachkern. Erweiterungen wie
die DOM-API sind hier noch nicht mit inbegriffen. Das ECMAScript-Dokument ist auch
nichts, was Sie an einem verregneten Wochenende zum Zeitvertreib lesen sollten, da es
sich beim iiberwiegenden Teil des Texts um formale Beschreibungen der Sprache handelt.

Doch warum heif3t JavaScript nicht auch offiziell JavaScript? Die Antwort auf diese Frage ist
einfach: Die Markenrechte an JavaScript liegen bei Oracle. Solange das Unternehmen den
Namen nicht freigibt, ist es nicht méglich, die Programmiersprache offiziell als JavaScript
zu bezeichnen. Die Standardisierung und Organisation klingt zugegebenermaflen etwas tro-
cken und angestaubt, ist fiir uns als JavaScript-EntwicklerInnen aber von grofier Bedeutung,
da sich die Hersteller von JavaScript-Engines iiberwiegend an diesen Standard halten und
es so mittlerweile nur noch in geringem Umfang zu Problemen zwischen den einzelnen
Plattformen kommt. Zur Entstehungszeit und in den ersten Jahren von JavaScript sah die
Situation noch ganz anders aus.

Die Geschichte - JavaScript in 10 Tagen

Kein Buch iiber JavaScript kommt ohne eine kleine Geschichtsstunde aus. Also mochte
ich auch hier keine Ausnahme machen. Ich beschranke mich jedoch auf die interessanten,
relevanten und vielleicht etwas kuriosen Eckpunkte. Das Geriicht, dass die erste Version
von JavaScript in nur 10 Tagen entstanden ist, hilt sich hartnickig. Das wiirde auch erkla-
ren, warum JavaScript an manchen Stellen so ist, wie es ist. Sie werden sowohl im Verlauf
dieses Buchs als auch bei [hrer Arbeit mit der Programmiersprache feststellen, dass Java-
Script nicht nur seine Sonnen-, sondern auch die ein oder andere Schattenseite hat. Nets-
cape Communications, das Unternehmen, das den Netscape Navigator, einen der ersten
Browser, entwickelt hat, beauftragte 1995 Brendan Eich damit, eine Skriptsprache zu entwi-
ckeln, mit der mehr Dynamik in das bis dahin recht statische HTML des Browsers gebracht
werden sollte.

Netscape tibernahm diese erste Version der Skriptsprache allerdings noch nicht in den
Browser. Einen Prototyp einer Programmiersprache in einen der damals am weitesten
verbreiteten Browser zu integrieren wire viel zu riskant gewesen, vor allem vor dem
Hintergrund, dass zwischen 1995 und 1998 der sogenannte Browserkrieg zwischen Mi-
crosoft und Netscape um die Vorherrschaft tiber das Internet tobte. Und so entwickelte
Brendan Eich bis 1996 weiter an JavaScript, das zunédchst unter dem Codenamen Mocha
und spéter unter LiveScript gefithrt wurde. Version 1.1 wurde mit dem Netscape Navigator
3.0 im August 1996 veroffentlicht. Ebenfalls im August 1996 zog Microsoft mit seinem
Konkurrenzprodukt JScript im Internet Explorer 3 nach.

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 31

Beide Skriptsprachen entwickelten sich tiber die Zeit auf eine recht dhnliche Art, wobei
mal Netscape, mal Microsoft die Nase vorn hatte. Zum Leidwesen der WebentwicklerInnen
der damaligen Zeit unterschieden sich LiveScript und JScript in einigen Aspekten vonein-
ander, dadurch mussten die EntwicklerInnen die jeweilige Umgebung erkennen und speziell
angepasste Programmlogik ausfiithren. Die Geburtsstunde der Polyfills.

Polyfill

%
Ein Polyfill ist ein Stiick Code, das ein Feature in einer Umgebung emuliert,
in der es eigentlich nicht existiert. Mit den Grundziigen der Skriptsprachen
der Browser konnten EntwicklerInnen schon zu einem frithen Zeitpunkt
viele Funktionen bereitstellen und die Schnittstellen so weit vereinheitli-
chen, dass eine halbwegs komfortable Entwicklung moglich war.

Bei neuen Sprachfeatures ist es auch heute noch tblich, auf Polyfills
zuriickzugreifen, bis alle fiir die Applikation relevanten Umgebungen das
Feature unterstiitzen. Eines der populérsten Polyfills, das man in der Regel
gar nicht als solches wahrnimmt, ist TypeScript. Eine Programmiersprache,
die auf den Regeln von JavaScript aufbaut und die fehlende Typsicherheit
zu JavaScript hinzufiigt. Der TypeScript-Code wird dann vom TypeScript-
Compiler in JavaScript ausgefiihrt, das dann im Browser oder serverseitig
ausgefithrt werden kann. Doch der Compiler ist auch in der Lage, moderne
Features in dlteren Umgebungen zur Verfiigung zu stellen.

Falls TypeScript fiir Sie keine Option ist, konnen Sie auch auf spezialisierte
Polyfills fur bestimmte Sprachfeatures zuriickgreifen. Sie sollten jedoch
daran denken, dass ein Polyfill in der Regel weniger performant als das
JavaScript-Original ist. Sobald Sie ein Polyfill also nicht mehr benoétigen,
sollten Sie es aus dem Quellcode Ihrer Applikation entfernen.

Der erste ECMAScript-Standard erschien im Juni 1997 und brachte den ersten Hoffnungs-
schimmer. Die Entwicklung des Standards verlief in der ersten Zeit eher schleppend und
gipfelte im Abbruch der Arbeiten an der vierten Version im Jahr 2008. Das letzte Update
am Sprachstandard gab es zu diesem Zeitpunkt im Jahr 1999. Wir sprechen von einem Zeit-
raum von 9 Jahren in der auch damals schon schnelllebigen Web-Welt. Die Standardisierung
wurde jedoch wieder aufgenommen und viele der Features aus der vierten Version wurden
verworfen. 2009 veroftentlichte die ECMA dann endlich die Version 5 von ECMAScript mit
der Unterstiitzung von JSON.

Einen Meilenstein markiert die Verdffentlichung von ECMAScript 6, kurz ES6, oder spéter
dann ECMAScript2015. Neben vielen interessanten Erweiterungen wie beispielsweise Klas-
sen oder Block-Scoping gibt es seit dieser Version jahrliche Aktualisierungen des Sprach-
standards. Diese werden mit der jeweiligen Jahreszahl benannt. Der ECMAScript-Standard
aus dem Jahr 2022 heif3t also ECMAScript2022.

32 TEILI Die Grundlagen von JavaScript

Wie kommen neue Features in die
Sprache?

Das TC39, eine Abkiirzung fiir Technical Committee 39, eine Arbeitsgruppe der ECMA,
hat die Aufgabe, den ECMAScript-Standard weiterzuentwickeln und neue Features zu
integrieren. Dem TC39 gehoren sowohl JavaScript-EntwicklerInnen als auch Abgesandte
grofler Unternehmen an, die in verschiedenen Rollen an der Entwicklung von ECMAScript-
Umgebungen beteiligt sind. Die Sitzungen des TC39 stehen jedem Mitglied der ECMA
offen.

Der Prozess, mit dem ein neues Feature in den Standard aufgenommen wird, besteht aus 5
Stufen, die durch die ECMA genau definiert sind.

v/ Stufe 0 (Strawman)
Zweck:
¢ Bildet den Einstieg zur Erweiterung der Spezifikation.
Eingangskriterien:
» Keine
v/ Stufe 1(Proposal)
Zweck:
¢ Beschreibt den Anwendungsfall fiir das Feature.
¢ Form der Losung ist skizziert.
¢ DPotenzielle Probleme sind umrissen.
Eingangskriterien:
¢ Es gibt eine zustdndige Person im TC39, die das Feature weiterbringt.
o Prosatext iiber die Ausgestaltung des Features existiert.
¢ Beispiele der Verwendung ist beschrieben.
¢ Grobe API-Beschreibung ist vorhanden.
o Diskussion von Schliisselalgorithmen, Abstraktion und Semantik wurde gefiihrt.

o Identifikation potenzieller »cross cutting concerns« und potenzieller Umsetzungs-
schwierigkeiten ist vorhanden.

+ Offentliches Repository mit den oben genannten Anforderungen existiert.

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 33

v/ Stufe 2 (Draft)
Zweck:
¢ Syntax und Semantik werden exakt beschreiben.
Eingangskriterien:
e Initialer Spezifikationstext ist vorhanden.
v/ Stufe 3 (Candidate)
Zweck:
» Weitere Verfeinerung benoétigt Feedback von BenutzerInnen und HerstellerInnen.
Eingangskriterien:
o Kompletter Spezifikationstext ist vorhanden.

» Ausgewihlte ReviewerInnen haben den aktuellen Spezifikationstext
genehmigt.

o Alle ECMAScript EditorInnen haben den aktuellen Spezifikationstext genehmigt.
v/ Stufe 4 (Finished)

Zweck:

o Feature ist bereit fiir die Integration in den ECMAScript-Standard.

Eingangskriterien:

» Es wurden Test262 Akzeptanztests fiir die wichtigsten Nutzungsszenarien geschrie-
ben und integriert.

 Es gibt zwei kompatible Implementierungen die die Tests durchlaufen.
e Esgibt ausreichend Erfahrung mit der Implementierung in der realen Welt.

¢ Es gibt einen Pull Request in tc39/ecma262 mit dem integrierten
Spezifikationstext.

¢ Alle ECMAScript EditorInnen haben den Pull Request genehmigt.

Die aktuell laufenden Antrége fiir neue Features finden Sie auf GitHub unter https://
github.com/tc39/proposals/. Mit diesem Wissen konnen Sie sich nun in die Welt von
JavaScript stiirzen und Schritt fiir Schritt Ihre eigenen Applikationen entwickeln.

34 TEIL| Die Grundlagen von JavaScript

Webseite vs. Website vs. Web-Applikation

Bei der Arbeit mit JavaScript werden Sie immer wieder tiber verschiedene
Begriffe stolpern. Unter den ersten werden sich wahrscheinlich Webseite,
Website und Web-Applikation befinden. Es gibt zwar kein offizielles Glossar
fir solche Begriffe, jedoch eine weitverbreitete Interpretation.

Viele EntwicklerInnen benutzen den Begriff Webseite eher abwertend und
bezeichnen damit ein einzelnes HTML-Dokument mit etwas CSS und Ja-
vaScript, also nichts Weltbewegendes. Eine Website ist eine Sammlung von
HTML-Dokumenten, also Webseiten, zu einem bestimmten Thema unter
meist unter einer Domain. Der Umfang ist hier schon deutlich grofer. Bei
einer Website ist auch meist das Backend schon mit inbegriffen, der An-
spruch ist also deutlich grofier.

Eine Web-Applikation ist schliefSlich die hochste Ebene. Web-Applikationen
werden meist als Single-Page-Applikationen mit grofien Frameworks und
Schnittstellen im Backend umgesetzt. Mit Web-Applikationen konnen Sie
sowohl grofle Plattformen im Internet als auch kritische Unternehmens-
prozesse in Web-Technologien umsetzen.

Je nachdem, mit wem Sie sprechen, werden die Grenzen zwischen den ein-
zelnen Begriffen verschwimmen. Nehmen Sie diese Erklarungen einfach als
einen groben Anhaltspunkt. Ich verwende in diesem Buch in den meisten
Féllen den Begriff Applikation und meine damit so ziemlich alles, was Sie
mit JavaScript umsetzen konnen, von einfachen animierten Webseiten bis
hin zu umfangreichen Applikationen.

Die Entwicklungsumgebung (IDE)

Die Spanne der verfiigbaren Editoren und Entwicklungsumgebungen reicht von einfachen
Editoren auf der Kommandozeile wie Vi und Emacs tiber umfangreichere grafische Editoren
wie Sublime bis hin zu vollwertigen Entwicklungsumgebungen wie WebStorm und Visual
Studio Code. Die Unterscheidung der Begriffe ist hier auch eher verschwommen. Ein Editor
stellt Thnen in der Regel die Moglichkeit zur Verfiigung, Quelltext zu schreiben, und bietet
nur einige wenige Komfortfeatures wie beispielsweise Syntax Highlighting und Autocom-
pletion. In einer Entwicklungsumgebung sind alle Werkzeuge, die Sie fiir die Entwicklung
Ihrer Applikation benétigen, enthalten. Das bedeutet, dass Sie nicht aus Ihrer Entwicklungs-
umgebung herauswechseln miissen, um eine bestimmte Aufgabe auszufiihren. Ein typisches
Beispiel ist das Ausfiihren von Tests. Die Werkzeuge sind meist so gut in die Entwicklungs-
umgebung integriert, dass Sie die Ergebnisse auch direkt im Quelltext sehen konnen. Im
Fall der Tests sehen Sie beispielsweise das Testergebnis direkt bei der Funktion, die Sie
iiberpriifen.

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 35

Aktuell sind WebStorm von JetBrains und Visual Studio Code von Microsoft die beiden in
der JavaScript-Welt vorherrschenden Entwicklungsumgebungen. WebStorm ist zwar kos-
tenpflichtig, punktet jedoch mit einem grofien Funktionsumfang und hervorragender Sta-
bilitat. Die Entwicklungsumgebung verfiigt tiber eine Plug-in-Architektur, mit der Sie die
Entwicklungsumgebung durch externe Module erweitern und so den Funktionsumfang auf
Ihre Bediirfnisse zuschneiden kénnen. Die offizielle Webseite von WebStorm finden Sie un-
ter https://www. jetbrains.com/de-de/webstorm/.

Der schirfste Konkurrent von WebStorm ist Visual Studio Code oder kurz VSCode, die
kostenfreie Entwicklungsumgebung von Microsoft. VSCode wird als Open-Source-Projekt
auf GitHub unter https://github.com/Microsoft/vscode/ entwickelt. Die Webseite des
Projekts ist unter https://code.visualstudio.com/ erreichbar. Ahnlich wie WebStorm
konnen Sie auch VSCode durch Erweiterungen um zusétzliche Features ergénzen. Erwéh-
nenswert zu VSCode ist vielleicht noch, dass die Entwicklungsumgebung selbst in JavaScript
beziehungsweise TypeScript implementiert ist.

Egal fiir welches Werkzeug Sie sich beim Schreiben Ihres Quellcodes entscheiden, Sie soll-
ten darauf achten, dass IThnen Features wie Syntax Highlighting, also die Hervorhebung
bestimmter Elemente wie die Namen von Bezeichnern, oder Autocompletion, das sind Vor-
schldge wie Funktions- oder Methodennamen, zur Verfiigung stehen.

Mit einer funktionierenden Entwicklungsumgebung kénnen Sie sich daranmachen und
Ihre Arbeitsumgebung kennenlernen, und das ist fiir JavaScript-EntwicklerInnen in erster
Linie die JavaScript-Engine. Fuir kleinere Experimente mit JavaScript konnen Sie alternativ
zu einer vollumfanglichen Entwicklungsumgebung auch auf Online-IDEs wie Codepen
(https://codepen.io/), CodeSandbox (https://codesandbox.io/) oder StackBlitz
(https://stackblitz.com/) ausweichen. Und wenn es mal wirklich schnell gehen soll,
konnen Sie sogar in der Browser-Konsole Ihren JavaScript-Code ausfithren.

Die JavaScript-Engine

Egal in welcher Umgebung Sie JavaScript entwickeln wollen, Sie haben es immer mit einer
JavaScript-Engine zu tun. Dabei handelt es sich um eine Software, der Sie JavaScript-
Quellcode tibergeben und die diesen dann ausfithrt. Zwar ist JavaScript, wie der Name
vermuten ldsst, eine Skriptsprache. Die Engine arbeitet jedoch keineswegs direkt auf dem
Text, den Sie ihr tibergeben. Stattdessen wandelt sie den Text in Bytecode, also Maschi-
nencode, um und verwendet diesen. Diese Umwandlung hat zur Konsequenz, dass Sie den
Code bei Anderungen erneut der Engine {ibergeben miissen und diese ihn erneut einlesen
muss. Dieser Charakter von JavaScript macht die Sprache deutlich leichtgewichtiger als
kompilierte Sprachen wie beispielsweise C, C++ oder Java wo Sie den Quellcode mit einem
separaten Compiler zunéchst iibersetzen miissen, bevor Sie ihn ausfithren konnen.

Aktuell gibt es auf dem Markt eine eher {iberschaubare Anzahl von JavaScript-Engines. Die
wichtigsten sind die V8-Engine, die Sie in Chrome, Edge und Node.js finden, SpiderMon-
key, die Engine hinter Firefox, und JavaScriptCore aus Safari. Nachdem die Interpretation
von JavaScript durch den ECMAScript-Standard relativ strikt vorgeschrieben ist, unter-
scheiden sich die Engines hauptsichlich in der Adaption neuer Features, wobei hier V8 und

36 TEIL| Die Grundlagen von JavaScript

SpiderMonkey in der Regel die Nase vorn haben, und hinsichtlich der Performance einzel-
ner Features. Denn die interne Umsetzung des Standards bleibt den Herstellern der Engines
iiberlassen, sodass diese hier einen gewissen Spielraum haben. Als EntwicklerIn von client-
oder serverseitigem JavaScript haben Sie normalerweise nicht viel mit der Engine selbst zu
tun, sodass Sie sich nicht weiter um die internen Strukturen und Abliufe, wie beispielsweise
das Speichermanagement, kiimmern miissen.

Es ist jedoch hilfreich zu wissen, dass die JavaScript-Engines einen Garbage Collector ha-
ben, der den nicht mehr genutzten Speicher in gewissen Abstanden wieder freirdumt. Einige
Engines weisen Optimierungen auf, die Applikationen bei der Wiederverwendung von Ob-
jektstrukturen beschleunigen. Dabei erzeugt die Engine beim Zugriff auf die Eigenschaften
des Objekts eine Art Katalog fiir den Speicher, mit dessen Hilfe sie die Eigenschaften bei wie-
derholtem Zugriff schneller lokalisieren kann. Diese und weitere Best Practices lernen Sie
im Laufe dieses Buchs noch niher kennen und erfahren, wann es sinnvoll ist, Thren Quell-
code auf eine bestimmte Weise zu strukturieren. Dabei miissen Sie auch immer abwiégen,
wenn Sie Ihren Quellcode auf Performance oder auf Lesbarkeit optimieren.

HTML, CSS und JavaScript im Client

JavaScript ist eine Programmiersprache, die zwar ihren Ursprung im Browser hat, die Sie
jedoch unabhingig von der Umgebung verwenden konnen. Und so besteht ein Browser
nicht nur aus einer JavaScript-Engine, sondern noch aus zahlreichen weiteren Bestandtei-
len wie beispielsweise einer Rendering-Engine, die dafiir sorgt, dass Ihre BenutzerInnen die
Strukturen, die Sie implementieren, auch zu sehen bekommen. Entschlieflen Sie sich dazu,
clientseitige Applikationen zu implementieren, miissen Sie sich zundchst damit beschéfti-
gen, wie die Umgebung aufgebaut ist und wie sie funktioniert. Beim Browser bedeutet das,
Sie sollten wissen, wie die Ressourcen vom Server zum Client kommen, wie dieser sie ver-
arbeitet und schliefSlich das Ergebnis darstellt.

Damit Sie die Beispiele in den folgenden Kapiteln nachvollziehen konnen, stelle ich Ihnen in
diesem Kapitel eine einfache Beispiel-Applikation vor, die Sie als Umgebung fiir Ihre Experi-
mente verwenden konnen. Im Client arbeiten Sie generell mit drei verschiedenen Sprachen:
HTML, mit dem Sie die Struktur einer Seite definieren, CSS, das fiir das Styling der Elemen-
te verantwortlich ist, und JavaScript, mit dem Sie die Logik fiir Ihr Frontend umsetzen. Die
Kombination aus diesen drei Aspekten setzen Sie im einfachsten Fall als statische Webseite
um und legen diese entweder im Dateisystem Ihres Systems oder auf einem Webserver ab.
Uber den Browser kénnen Sie dann entweder iiber »Datei« > »6ffnen« die HTML-Datei
Offnen oder Sie geben, im Fall eines Webservers, dessen Adresse in die URL-Zeile ein.

Beispiel-Set-up

Bei clientseitigem JavaScript fithren Sie den Code im Browser aus. Die Dateien konnen
Sie entweder direkt von Ihrem System laden oder iiber einen Webserver ausliefern.
Fiir das clientseitige Beispiel nutzen wir den zweiten Ansatz, also die serverbasierte
Auslieferung. Diese Aufgabe erfiillt fiir uns Node.js als Server. Diese Plattform wird Ih-
nen auch beim serverseitigen JavaScript wieder begegnen. Die Software erhalten Sie tiber die

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 37

offizielle Webseite des Projekts, die Sie unterhttps://node js.org\ignorespaceserreichen.
Dort finden Sie zwei Varianten, die LTS-Version, die sehr stabil ist und fiir die meisten
BenutzerInnen empfohlen wird, und die aktuelle Version, in der Sie auf die neuesten, teil-
weise noch in der Entwicklung befindlichen Features zugreifen konnen. Fiir Windows und
macOS konnen Sie Installationspakete herunterladen und auf Ihrem System installieren.
Bei Linux-Systemen fiithrt der Weg iiblicherweise iiber den Paketmanager des Systems,
wofiir Sie ebenfalls eine Schritt-fiir-Schritt-Anleitung auf der Webseite finden. Neben
der Node.js-Plattform installieren Sie dabei auch das Werkzeug NPM, den Node Package
Manager, und NPX, ein Werkzeug, mit dem Sie JavaScript-Pakete ausfithren kénnen. Diese
Kombination verwenden Sie, um einen einfachen Webserver mit Node.js auszufithren und
die Dateien Ihres Frontends an Ihren Browser auszuliefern.

Dazu legen Sie in einem Verzeichnis Ihrer Wahl eine Datei mit dem Namen index.html an.
Hier erzeugen Sie eine grundlegende HTML-Struktur fiir Ihre Seite, wie Sie sie im folgenden
Codebeispiel sehen konnen.

Dieses und alle anderen Listings in diesem Buch finden Sie zum Download unter
https://www.wiley—-vch.de/ISBN9783527720644

<!DOCTYPE html>
<html lang="de">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta
name="viewport"
content="width=device-width, initial-scale=1.0" />
<title>JavaScript fir Dummies</title>
<link rel="stylesheet" href="style.css" />
<script src="index.js"></script>
</head>
<body >
<div>Hallo Welt</div>
</body>
</html>

Listing 1.1: Grundstruktur einer HTML-Datei

HTML orientiert sich an XML. Die einzelnen Elemente schreiben Sie als sogenannte Tags,
das sind festgelegte Bezeichnungen, die Sie in spitze Klammern fassen. Jedes Element hat
iblicherweise ein 6ffnendes und ein schlieflendes Tag. Die Elemente bilden eine Baumstruk-
tur, dessen Wurzel das html-Element bildet. In diesem Wurzelelement liegen das head- und
das body-Element. Im head legen Sie hauptséichlich Metainformationen, wie beispielsweise
die Zeichencodierung oder den Titel der Seite, ab. Aufierdem binden Sie hier das Stylesheet,
also die CSS-Ressource, und das JavaScript mithilfe eines script-Tags ein. Im body definie-
ren Sie die sichtbare Struktur. Im Beispiel fiigen Sie ein div-Element mit dem Textinhalt
"Hallo Welt" ein. Ein div-Element ist ein einfaches Container-Element, mit dessen Hilfe
Sie beispielsweise Text anzeigen konnen. Im folgenden Codeblock sehen Sie den Quellcode
der style.css-Datei. Hierbei handelt es sich um einfaches CSS, das dafiir sorgt, dass um
das div-Element ein durchgehender schwarzer Rahmen gezogen wird.

38 TEILI Die Grundlagen von JavaScript

div {
border: 1px solid black;
}

Listing 1.2: Style-Definition

Zu guter Letzt setzen Sie noch das JavaScript um. Hier konnen Sie die alert-Funktion
ausfithren, um zu testen, ob Ihr Set-up funktioniert. Diese Funktion zeigt ein kleines Dia-
logfenster im Browser mit Textinhalt und einem OK-Button an. Betdtigen Sie den Button,
verschwindet der Dialog wieder. Den zugehorigen Quellcode sehen Sie hier:

alert(’Hallo Welt’);

Listing 1.3: JavaScript-Code, der einen Dialog 6ffnet

Semikolon

%

In JavaScript terminieren Sie Anweisungen wie beispielsweise const
result = 1 + 2 oder das alert(’Hallo Welt’) im Beispiel mit einem
Semikolon (;). Dieses Semikolon ist optional, die JavaScript-Engine fligt
es automatisch ein. Es gibt jedoch Fille, in denen dieser Automatismus zu
ungewollten Effekten fiithrt. So zum Beispiel, wenn Sie nach dem return
in einer Funktion den Wert, den Sie zuriickgeben mochten, in einer
neuen Zeile schreiben. In diesem Fall fiigt JavaScript das Semikolon direkt
nach dem return ein und gibt so den Wert undefined zurtick. Um auf
Nummer sicher zu gehen, sollten Sie immer Semikolons verwenden, um
Ihre Anweisungen zu beenden.

Offnen Sie nun ein Terminalfenster auf Threm System und wechseln Sie in das Verzeichnis, in
dem Sie die drei Dateien erzeugt haben. Geben Sie dort den folgenden Befehl ein: npx serve.
Als Ergebnis sollten Sie eine Ausgabe wie in Abbildung 1.1 erhalten.

sebastian.springer@MB-M566CWMG3H JavaScriptFirDummies % npx serve

- Local: http://localhost:3000
- Network: http://192.168.178.46:3000

Copied local address to clipboard!

Abbildung 1.1: Screenshot der Ausfihrung von npx serve

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 39

Dieses Kommando lddt das serve-Paket von npmjs.com herunter und fiihrt es mit Node.js
aus. Die Plattform erzeugt einen Webserver und liefert den Inhalt des aktuellen Verzeich-
nisses aus. Offnen Sie den Browser Threr Wahl und geben in die Adressleiste http://
localhost: 3000 ein, erhalten Sie eine Ansicht wie in Abbildung 1.2.

® ® (D JavaScript fiir Dummies

» localhost

localhost:3000 says

Hallo Welt

Abbildung 1.2: Anzeige der Applikation im Browser

Klicken Sie auf den Button, sehen Sie den Text »Hallo Welt« in einem schwarzen Kas-
ten. Damit haben Sie den ersten Schritt in die Entwicklung von clientseitigem JavaScript
gemacht.

Einbindung von JavaScript

Der Aufbau des vorangegangenen Beispiels sieht vor, dass Sie die Struktur vom Styling und
der Logik strikt trennen und alle drei Aspekte in eigenen Dateien liegen. Dieser Losungs-
ansatz ist zwar der sauberste, jedoch nicht der einzige. Sie konnen JavaScript und HTML
auch néher zusammenbringen, was ich Ihnen jedoch nicht empfehle, da der Quellcode in
diesem Fall sehr schnell untibersichtlich wird und Sie Ihr JavaScript auch nicht an anderen
Stellen in Ihrer Applikation wiederverwenden konnen. Die beiden anderen Varianten der
Einbindung von JavaScript sind JavaScript innerhalb eines Script-Tags und JavaScript als
Eventhandler. Beide Moglichkeiten stelle ich IThnen der Vollstandigkeit halber hier kurz vor.
Der folgende Code gleicht vom Funktionsumfang dem aus dem vorangegangenen Beispiel,
mit dem Unterschied, dass der JavaScript-Code jetzt direkt im HTML liegt.

40 TEIL| Die Grundlagen von JavaScript

<!DOCTYPE html>
<html lang="de"»
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta
name="viewport"
content="width=device-width, initial-scale=1.0" />
<title>JavaScript flr Dummies</title>
<link rel="stylesheet" href="style.css" />
<script»>
alert(’Hallo Welt’);
</script>
</head>
<body >
<div>Hallo Welt</div>
</body>
</html>

Listing 1.4: HTML mit Inline-JavaScript

Fir die letzte Art der Einbindung missen Sie etwas tiefer in die Trickkiste greifen.
In Listing 1.4 sehen Sie, wie Sie JavaScript innerhalb eines HTML-Tags schreiben und
damit auf die Interaktion von BenutzerInnen reagieren kénnen.

<!DOCTYPE html>
<html lang="de"»
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta
name="viewport"
content="width=device-width, initial-scale=1.0" />
<title>JavaScript fur Dummies</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div>Hallo Welt</div>
<button onclick="alert(’Hallo Welt’);">Klick mich</button>
</body>
</html>

Listing 1.5: Im HTML eingebettetes JavaScript

Benutzen Sie JavaScript bitte nicht auf diese Weise. Die Verflechtung von Struktur und Logik
ist in diesem Fall so eng, dass der Code weder lesbar noch erweiterbar ist. Fehler sind in
diesem Fall vorprogrammiert. Es gibt deutlich elegantere Arten, mit denen Sie auf Klicks und
viele andere Ereignisse im Browser reagieren konnen. Wie das genau funktioniert, erfahren
Sie in Kapitel 11.

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 41

Die Browser-Developer-Tools

Ihr Browser kann Ihnen nicht nur Webseiten anzeigen und JavaScript ausfiithren, sondern
kann Sie auch bei der Entwicklung unterstiitzen. Unter der Haube ist ein ganzer Satz méch-
tiger Entwicklungswerkzeuge versteckt. Alles, was Sie tun miissen, um darauf zuzugreifen,
ist, die F12-Taste zu betétigen. Je nachdem, welchen Browser Sie verwenden, sehen diese
Werkzeuge unterschiedlich aus. Die Grundfunktionen finden Sie jedoch in jedem Browser
wieder. In Abbildung 1.3 sehen Sie einen Screenshot der Chrome Developer Tools fiir die
Beispielapplikation.

Hallo Welt

: [0 Elements Recorder JU Bs Metwork Performance

Page Workspace H [j G0 00
»[top rt('Hallo Welt'); » Watch
¢y localhost:3000 Break
Pause on uncaught exceptions
Pause on caught exceptions

¥ Scope
Devtools

» ¢ React Developer Tools
¥ Call Stack

» XHR/fetch Breakpoints
» DOM Breakpoints

» Global Listeners

» Event Listener Breakpoints

Abbildung 1.3: DevTools im Browser

Die wichtigsten Tabs sind:

¢/ Elements: Uber den Elements-Tab kénnen Sie mit der HTML-Struktur und dem Sty-
ling der Seite arbeiten. Bewegen Sie die Maus tiber ein Element im HTML-Baum,
markiert der Browser das zugehorige Element im Hauptfenster. Mit einem Rechtsklick
im Hauptfenster auf ein Element und dann einem Linksklick auf »Inspect« gelangen
Sie direkt zum jeweiligen Element im Elements-Tab.

Auf der rechten Seite der Developer-Tools sehen Sie die Styles des jeweiligen Elements
und woher diese stammen.

Sowohl das HTML als auch das CSS konnen Sie tiber die Developer-Tools manipulie-
ren. Der Browser speichert diese Anderungen jedoch nicht. Laden Sie die Seite neu,
sind Thre Anderungen wieder verschwunden.

42 TEIL| Die Grundlagen von JavaScript

v/ Console: Im Console-Tab konnen Sie JavaScript direkt ausfithren. Auflerdem koénnen
Sie in Threm JavaScript-Quellcode tiber das console-Objekt Ausgaben auf der Kon-
sole erzeugen. Mehr zum Thema JavaScript-Konsole erfahren Sie im nachfolgenden
Abschnitt.

v/ Sources: Der Sources-Tab erlaubt Thnen den Zugriff auf die Dateien Ihrer Applikati-
on. Hier konnen Sie den Quellcode einsehen und, noch viel wichtiger, Sie haben die
Moglichkeit, mit dem Debugger interaktiv mit Ihrem Quellcode zu arbeiten. Wie das
genau funktioniert, sehen Sie im Abschnitt »Debugging«.

v/ Network: Die Dateien Ihrer Applikation werden vom Server zum Browser gesen-
det. Wie diese Kommunikation genau aussieht und wie lange die einzelnen Phasen
des Downloads gedauert haben, sehen Sie im Network-Tab. Dieser ist vor allem inte-
ressant, wenn es darum geht, die Ladeperformance Ihrer Applikation zu tiberpriifen
und nach Optimierungspotenzial zu suchen.

Neben diesen vier Tabs bieten Ihnen die Developer-Tools Ihres Browsers noch viele weitere
Hilfsmittel fiir die Arbeit mit Ihrer Applikation. So kdnnen Sie beispielsweise den Verlauf der
CPU-Auslastung analysieren oder die Speicherbelegung zu einem bestimmten Zeitpunkt
ansehen. In der téglichen Arbeit mit JavaScript greifen Sie auf diese Werkzeuge jedoch eher
selten zur. Deutlich hdufiger haben Sie mit der Konsole zu tun.

Die JavaScript-Konsole

In der Konsole zeigt Ihnen der Browser Fehlermeldungen und Warnungen an, die bei der
Verarbeitung Ihres Quellcodes aufgetreten sind. Auflerdem konnen Sie selbst Ausgaben er-
zeugen. Wie das funktioniert, sehen Sie in Listing 1.6.

console.log(’Hallo Welt’);

Listing 1.6: Erzeugen einer Konsolenausgabe

Damit die Ausgabe funktioniert, binden Sie die index. js-Datei, in der Sie den Quellcode
gespeichert haben, in eine HTML-Datei ein. Wechseln Sie in den Browser, stellen Sie sicher,
dass die Developer Tools mit dem Console-Tab geoftnet sind, und laden Sie die Seite neu.
Darauthin erhalten Sie die Ausgabe "Hallo Welt" auf der Konsole.

Dort gibt es nicht nur eine Ausgabe, sondern auch eine Eingabeaufforderung. Hier kénnen
Sie beliebiges JavaScript eingeben, das der Browser, nachdem Sie die Enter-Taste betitigt
haben, im aktuellen Kontext Threr Applikation ausfiihrt. In der folgenden Abbildung 1.4
sehen Sie die Ausgabe, wenn Sie 2 + 2 auf der Konsole eingegeben haben.

Kommentare

Kommentare sind das Salz in der Suppe von JavaScript. Sie konnen schwer zu lesende Code-
stellen mit dem notigen Kontext versehen und grofSere Strukturen wie beispielsweise Funk-
tionen dokumentieren. Ublicherweise beschreiben Sie hier, wie die Struktur zu verwenden
ist und welche Besonderheiten es gibt. Sie werden aber auch Quellcode finden, der wenig bis

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 43

Hallo Welt

|-< o Elements Recorder JU Console Sources Metwork Performance B1

M@ top>r @ Default levels ¥ 1lssue: B 1

»2 4+ 2

Abbildung 1.4: JavaScript-Ausfiihrung in den DevTools

gar nicht kommentiert ist. Im besten Fall ist der Code selbsterklirend und im schlimmsten
Fall miissen Sie sich um die Kommentare kiimmern.

Sie konnen Kommentare auch verwenden, um Code temporir zu deaktivieren, ohne ihn
gleich komplett 16schen zu miissen.

JavaScript kennt zwei verschiedene Arten von Kommentaren: einzeilige und mehrzeilige.

Einzeilige Kommentare

Einen einzeiligen Kommentar leiten Sie mit zwei // ein. Alles, was danach bis zum Zeilen-
ende folgt, ist fiir die JavaScript-Engine ein Kommentar und wird nicht ausgefiihrt.

const result =1 + 2; // Das Ergebnis ist 3

// Die folgende Zeile erzeugt eine Konsolenausgabe
console.log(’Das Ergebnis ist: ’ + result);

Listing 1.7: Einzeiliger Kommentar in JavaScript

44 TEIL| Die Grundlagen von JavaScript

Mehrzeilige Kommentare

Der Begriff mehrzeiliger Kommentar ist in JavaScript etwas irrefithrend, denn Sie konnen
mit der Syntax /x ... */sowohl einen mehrzeiligen als auch einen einzeiligen Kommen-
tar erzeugen. Nutzen Sie diese Syntaxvariante, ist es JavaScript egal, wie viele Zeilen dieser
Kommentar umfasst. Er beginnt mit der Zeichenkette /x und endet mit /. Zwischen den
beiden Sequenzen konnen eine Handvoll Zeichen, aber auch Hunderte Zeilen liegen.

VES
Die folgende Funktion addiert zwei Zahlen
*/
function add(a, b) {
return a + b; /x Diese Zeile gibt den berechneten Wert zurlck x/

}

Listing 1.8: Mehrzeiliger Kommentar in JavaScript

Debugging

Noch haben Sie nicht viel von JavaScript gesehen, aber wir beschaftigen uns schon mit der
Suche und dem Beheben von Fehlern. Denn das Debugging und die damit einhergehende
Beherrschung der entsprechenden Werkzeuge ist eine elementare Fertigkeit, die Sie in Ihrer
Tatigkeit immer wieder benotigen. Es ist also niemals zu friih, sich mit diesen Hilfsmitteln
zu beschéftigen.

Ihr Browser verfiigt tiber einen vollwertigen Debugger, mit dem Sie sich schrittweise durch
Ihren Quellcode bewegen konnen, und zwar zur Laufzeit Ihrer Applikation. Mit einem ein-
zelnen console. log-Statement ergibt Debugging natiirlich wenig Sinn, also greife ich den
folgenden Kapiteln etwas vor und zeigen Ihnen in Listing 1.9 einen Codeblock, den Sie etwas
sinnvoller debuggen kénnen.

function add(a, b) {
const result = a + b;
return result;

}

const number1 = 3.14;
const number2 = 42;

const sum = add(numberi, number2);
console.log(sum);

Listing 1.9: Codebeispiel als Grundlage fir Debugging

Im Quellcode definieren Sie zunichst eine Funktion add, die zwei Werte akzeptiert. Diese
beiden Werte addieren Sie und speichern sie in einer Konstante mit dem Namen result
und geben diese anschlieflend mithilfe des return-Statements zuriick. Im Anschluss daran
definieren Sie zwei weitere Konstanten mit den Werten 3,14 und 42. Diese beiden Werten
tibergeben Sie anschlieflend beim Aufruf der add-Funktion und speichern das Ergebnis in

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 45

der Konstanten sumzwischen. Im letzten Schritt geben Sie das Ergebnis auf der Konsole des
Browsers aus. Fiigen Sie diesen Quellcode in Thre index. js-Datei und speichern Sie diese
ab, konnen Sie mit dem Debuggen beginnen.

Zum Debuggen Thres Codes miissen Sie einen Breakpoint setzen. Ein Breakpoint ist ein
Punkt im Quellcode, an dem der Browser die Ausfithrung der Programmlogik anhilt und
Ihnen die Moglichkeit bietet, sich in Threr Applikation zum Zeitpunkt der Ausfithrung um-
zusehen und sogar direkt mit der Programmlogik zu interagieren. Diese Breakpoints konnen
Sie entweder direkt im Quellcode oder mithilfe der Entwicklerwerkzeuge Ihres Browsers
setzen.

Um einen Breakpoint im Code zu setzen, fiigen Sie an der gewiinschten Stelle ein debugger-
Statement ein. Wie das funktioniert, sehen Sie im folgenden Beispiel.

function add(a, b) {
const result = a + b;
return result;

}

const number1l = 3.14;
const number2 = 42;

const sum = add(number1, number2);
debugger;
console.log(sum);

Listing 1.10: Einsatz des debugger-Statements

Das debugger-Statement sorgt dafiir, dass der Debugger Ihres Browsers nach dem Aufruf der
add-Funktion anhélt. Damit dies funktioniert, miissen die Entwicklerwerkzeuge des Brow-
sers geoffnet sein und Sie miissen die Applikation einmal neu laden. Sind die Entwickler-
werkzeuge nicht geoffnet, ignoriert der Browser das debugger-Statement und fiithrt Ihre
Applikation wie gewohnt ohne Halt von Anfang bis Ende aus.

Der Vorteil dieser Variante ist, dass Sie die Breakpoints direkt dort definieren, wo Sie arbei-
ten. Sie wissen also genau, wo die Ausfithrung angehalten werden soll, und miissen nicht erst
mithevoll nach der passenden Datei suchen. Setzen Sie einen Breakpoint manuell im Quell-
code, hat das den Nachteil, dass Sie den Quellcode modifizieren miissen. Das bedeutet, dass
Sie dabei Fehler einfiigen konnten, falls Sie sich vertippen, und dass Sie Ihre Applikation im
unglinstigsten Fall neu bauen miissen, falls Sie Werkzeuge wie TypeScript oder Webpack
verwenden.

Deutlich eleganter, weil ohne Modifikation am Quellcode, funktioniert das Setzen von
Breakpoints direkt aus den Entwicklerwerkzeugen des Browsers. Hierfir offnen Sie
zundchst wie gewohnt Ihre Applikation im Browser, 6ffnen anschliefSend die Entwickler-
werkzeuge und wechseln dann in den Sources-Tab. Auf der linken Seite sehen Sie einen
Dateibaum. Dort konnen Sie die Quelltext-Datei auswihlen, in der Sie Ihren Breakpoint
setzen mochten. Alternativ konnen Sie auch nach der Datei suchen, indem Sie entweder
iiber das Kontextmenii des Dateibaums und »Open file« oder den Tastatur-Shortcut
CTRL-P, beziehungsweise auf einem Mac CMD-P, eine Suchmaske 6ffnen, in der Sie den

46 TEIL| Die Grundlagen von JavaScript

gewlinschten Dateinamen eingeben konnen. Sobald Sie den Quellcode der Datei sehen,
konnen Sie links auf die Zeilennummer klicken, um einen Breakpoint zu setzen. Dieser
wird Thnen durch eine Markierung an der Zeilennummer angezeigt.

Klicken Sie mit der rechten Maustaste auf eine Zeilennummer, konnen Sie iiber den
Meniipunkt »add conditional breakpoint...« einen sogenannten bedingten Breakpoint
setzen. Dieser wird nur aktiv, wenn die Bedingung, die Sie fiir diesen Breakpoint angeben,
wabhr ist. Fiigen Sie also beispielsweise in Zeile 3 einen solchen bedingten Breakpoint mit
der Bedingung »result === 45.14« ein, halt der Browser hier nur an, wenn der Wert der
Konstanten result 45.14 ist.

Der Debugging-Prozess

Haben Sie Ihre Applikation im Browser gedffnet und die Entwicklerwerkzeuge sind aktiv,
hélt der Browser am Breakpoint an. Sie sollten dann eine Ansicht wie in Abbildung 1.5 sehen.

|< Lo le 5 Recorder JU ' Si Metwork Performance Memory

Page Workspa ; ER | CT

*[top ' ' . (D) Debugger paused

¢y localhost:
» Watch

¥ Breakpoints
eloper Tools 5 i erl, n 1i Pause on uncaught exceptions

GEETR Pause on caught exceptions

Window

* (anonymous)

Abbildung 1.5: JavaScript-Debugging im Browser

Dass sich der Browser im Debug-Modus befindet und aktuell angehalten ist, sehen Sie, da
die Zeile mit dem aktiven Breakpoint hervorgehoben ist und in der rechten Spalte der Ent-
wicklerwerkzeuge die Information »Debugger paused« steht. Im Debugger konnen Sie nun
iber die Schaltelemente in der rechten Spalte der Entwicklerwerkzeuge navigieren.

Neben diesen Steuerelementen konnen Sie Watch Expressions definieren. Das sind
Ausdriicke, die bei jedem Schritt des Debuggers erneut ausgewertet werden und Ihnen
den jeweiligen Wert anzeigen. Auflerdem sehen Sie eine Liste Threr Breakpoints, in der Sie

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 47

Steuerelement Bedeutung

Resume Die Ausfithrung wird bis zum nachsten
Breakpoint fortgesetzt

Step over Der Debugger springt iiber den
néchsten Funktionsaufruf, sodass direkt
dessen Ergebnis vorliegt

Step into Der Debugger springt in den niachsten
Funktionsaufruf, sodass Sie sich die
Funktion genauer ansehen konnen

Step out Springt aus dem aktuellen
Funktionsaufruf, sodass Sie mit dem
Riickgabewert weitermachen konnen

Step Springt zur néchsten Anweisung

Tabelle 1.1: Steuerelemente des Debuggers

diese verwalten konnen. Ein weiteres wichtiges Element ist die Scope-Liste, in der Sie die
Belegung aller aktuell verfiigbaren Variablen und Konstanten einsehen kénnen.

Wechseln Sie mit aktivem Debugger auf die JavaScript-Konsole, konnen Sie mit Ihrer Ap-
plikation interagieren und beispielsweise Funktionen aufrufen oder sich die Belegung von
Variablen ausgeben lassen. Sie haben an dieser Stelle Zugrift auf den gesamten JavaScript-
Funktionsumfang.

Die Beispiele fiir das Debuggen haben sich bisher auf Chrome bezogen. Sie sind jedoch beim
Debuggen Ihres JavaScript-Quellcodes nicht auf diesen Browser beschréankt. Auch Firefox,
Safari, Edge und alle weiteren Browser bieten Ihnen dhnliche Funktionalitdt, die eventuell
etwas anders benannt ist und sich an unterschiedlichen Stellen wiederfinden. Fiir die De-
tails der jeweiligen Plattform sollten Sie einen Blick in die Dokumentation Ihres Browsers
werfen.

Debugging aus der Entwicklungsumgebung heraus

Das Debugging ist jedoch nicht nur auf Browser beschrankt. Moderne Entwicklungsumge-
bungen bieten Ihnen die Moglichkeit, sich mit dem Browser zu verbinden und dann direkt
aus der Entwicklungsumgebung heraus zu debuggen. Bei der Konfiguration unterscheiden
sich die jeweiligen Entwicklungsumgebungen stark voneinander, sodass ich Sie an dieser
Stelle auf die Dokumentation Ihrer Entwicklungsumgebung verweisen und Ihnen exempla-
risch das Vorgehen in Visual Studio Code zeigen méochte.

Visual Studio Code verfiigt {iber eine integrierte Debugger-Anbindung fiir Chrome und
Edge. Als Voraussetzung fiir die folgende Debugging-Session muss Ihre Applikation iiber
eine URL erreichbar sein. Wie Sie bereits im ersten Beispiel gesehen haben, bewerkstelligen
Sie dies beispielsweise tiber das Kommando npx serve, das einen lokalen Webserver startet.
Anschlieflend 6ffnen Sie iiber »View« > »Command Palette« das Suchfeld fiir Kommandos
und geben »Debug: Open Link« ein. Wahlen Sie den Vorschlag der Entwicklungsumgebung

48 TEIL| Die Grundlagen von JavaScript

aus und geben Sie dann die Adresse http://localhost:3000 ein. AnschliefSend startet der
Debugger von Visual Studio Code und stellt Ihnen die gleichen Features wie schon der Brow-
ser zur Verfiigung. Der entscheidende Vorteil ist hier, dass Sie sich direkt im Quellcode Ihrer
Applikation befinden und sich in Ihrer gewohnten Arbeitsumgebung bewegen. Beachten Sie
allerdings, dass Anderungen am Quellcode nicht direkt in der aktuellen Debugging-Session
wirksam werden, da die JavaScript-Engine den Quelltext eingelesen und umgewandelt hat.

In Abbildung 1.6 sehen Sie, wie der Debugger in VSCode aussieht.

“ « 3 O Javascrip I 7 ¥ 4D O D Qo
[> Mo Configur~ 5 index.js X {1« occ® D --
~ VARIABLES 5 index.js > ..
v Module You, 7 minutes ago | 1 author (You)
1 function addla, b) {
¥ add: f addCa, b) {
o o 2 const result = a + b;
CHLErds Sl 3 return result;
number?: 42 4 }
sum: 45.14 5 const numberl = 3.14;
ATRRE R Ve i 6 const number2 = 42;
> WATCH 7 const sum = add(numberl, number2);
“ CALL STACK @ §|> 8 debugger;
~ It [PAUSED ONDEB. 12 console. log(sum};

<anonymous> in...

ModuleJob. run

PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL PORTS ++» = ~ X

Filter (e.g. text, lexclude)
/Users/sebastian.springer/.nvm/versions/node/v19.8.1/bin/node ./index.j
> LOADED SCRIPTS s
~ BREAKPOINTS
[Caught Excepti...
(J Uncaught Exce... 5
P @oA0 Wo 5 ive Share Spaces: 2 UTF-8 LF {} JavaScript + Spell « Prettier [l

Abbildung 1.6: JavaScript-Debugging in VSCode

Serverseitiges JavaScript

JavaScript ist zwar im Browser grof geworden, ist jedoch mittlerweile auch serverseitig ei-
ne feste Grofle. Im Jahr 2009 wurde die Plattform Node.js veroffentlicht, die sich im Kern
auf die V8-Engine aus Chrome stiitzt. Neben diesem Kern aus nativen Bibliotheken bildet
eine Reihe von Modulen, die in JavaScript implementiert sind, die Basis der Plattform. Uber
diese Module erhalten Sie beispielsweise Zugriff auf das Dateisystem oder auf Netzwerk-
ressourcen.

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 49

Node.js verfolgt die Idee einer leichtgewichtigen Plattform, die Ihnen eine Low-Level-
Schnittstelle auf das System zur Verfiigung stellt, auf dem Sie den Prozess ausfithren. Um
alle weiteren Features, die auf dieser Schnittstelle aufsetzen, wie beispielsweise Datenbank-
zugriffe oder Backend-Frameworks, miissen Sie sich selbst kiimmern oder das Okosystem
in Form eines Pakets nutzen.

Node.js ist zwar nicht die einzige serverseitige JavaScript-Plattform, jedoch die dlteste und
aktuell am weitesten verbreitete. Aus diesem Grund werden wir uns hier vor allem mit
Node.js beschiftigen. Andere Plattformen wie Deno oder Bun verfolgen dhnliche Paradig-
men, sodass Sie vieles von dem, was Sie iiber Node.js lernen, auch auf die anderen Plattfor-
men anwenden konnen.

Eine Applikation mit Node.js ausfiihren

Die einfachste Variante, eine Applikation mit Node.js auszufithren, ist, wenn Sie eine
JavaScript-Datei erzeugen. Der Name der Einstiegsdatei in eine solche Applikation lautet
iiblicherweise index.js, seltener app.js oder main.js. Diese Datei kann beliebigen JavaScript-
Code enthalten, den Node.js dann ausfithrt. Als konkretes Beispiel fiir den Einstieg in
Node.js nutzen Sie den Quellcode der Clientseite. In Listing 1.11 finden Sie den Code, der
ohne weitere Modifikationen auch in Node.js ausfiihrbar ist.

function add(a, b) {
const result = a +
return result;

b;
}

const numberl = 3.14;
const number2 = 42;

const sum = add(number1, number2);
console.log(sum);

Listing 1.11: Beispielcode fur Node.js

Haben Sie diesen Quellcode in einer Datei mit dem Namen index.js gespeichert, konnen
Sie ihn auf der Kommandozeile ausfiithren. Wechseln Sie dafiir in das Verzeichnis, in dem
die Datei liegt, und setzen Sie das folgende Kommando ab: node index. js. Als Ausgabe
erhalten Sie auf der Kommandozeile die Zahl 45.14.

Intern liest Node.js die Datei, die Sie beim Kommando angegeben haben, ein, verarbeitet
sie und fiihrt sie schliefSlich aus. Das Ergebnis kann entweder eine direkte Ausgabe, wie
hier im Beispiel, oder ein lange laufender Prozess sein. Die zweite Variante ist fiir Web-
Applikationen deutlich 6fter anzutreffen, da Node.js meist als Serverprozess verwendet wird
und dieser in der Regel so lange lduft, bis er von aufSen beendet oder durch einen Fehler zum
Absturz gebracht wird. Anders sieht die Situation aus, wenn Sie Node.js als Grundlage fiir
Entwicklungswerkzeuge verwenden, die Quellcode analysieren oder modifizieren. In die-
sem Fall starten Sie den Prozess, er verrichtet seine Arbeit und wird dann wieder beendet.

50 TEILI Die Grundlagen von JavaScript

Wie Sie im Beispiel gesehen haben, konnen Sie auch in Node.js mit console.log Ausgaben
auf der Konsole erzeugen. Die Plattform verfiigt jedoch auch iiber einen integrierten De-
bugger und dieser unterscheidet sich in seinen Features kaum von dem, den Sie clientseitig
kennengelernt haben.

Debugging von Node.js-Applikationen

Nachdem sich Node.js und Chrome die gleiche JavaScript-Engine teilen, ist es auch nicht
verwunderlich, dass sie iiber die gleichen Moglichkeiten zum Debuggen verfiigen. Den in-
tegrierten Debugger konnen Sie mit dem Kommando »node inspect index.js« starten. Dabei
interagieren Sie iiber die Kommandozeile mit dem Debugger und Threr Applikation. Diese
Art der Fehlersuche funktioniert zwar, ist jedoch wenig komfortabel. Eine bessere Losung
besteht darin, dass Sie mit node —-inspect index.js den V8 Inspector aktivieren. Dieser
erlaubt es Ihnen, sich mit den Chrome-Entwicklerwerkzeugen tiber das Chrome-DevTools-
Protokoll mit IThrem Node.js-Prozess zu verbinden, sodass Sie Ihre aus dem Frontend ge-
wohnte Debugging-Umgebung auch hier verwenden konnen. Im aktuellen Beispiel startet
Node.js zwar im Debug-Modus, durchlduft jedoch das Skript so schnell, dass Sie nicht die
Moglichkeit haben, sich mit den Entwicklerwerkzeugen zu verbinden. Die Losung besteht
in diesem Fall darin, dass Sie den Prozess mit dem Kommando node —-inspect-brk starten.
Diese Option sorgt dafiir, dass der Debugger zu Beginn der Ausfithrung anhilt und Ihnen
so die Moglichkeit gibt, die Entwicklerwerkzeuge zu verbinden und Breakpoints zu setzen.

DevTools Devices
I Devices
Discover USB devices Port forwarding...
Pages I
Extensions Discover network targets Configure...

Open dedicated DevTools for Node

Remote Target socanost

e worklets Target (v21.6.2) trace

Other index.js
file:ffjUs
inspect

stian.springer/projectsfjsddummies/codefJavaScriptF%C3%BCrDummiesfindex.js

Abbildung 1.7: JavaScript-Debugging in VSCode

KAPITEL 1 Zwischen Browser-Zauberei und Server-Magie 51

Um Chrome mit Node.js zu verbinden, geben Sie in der Adresszeile von Chrome chro-
me://inspect ein. Daraufhin zeigt Ihnen der Browser eine Liste von Node.js-Instanzen, mit
denen Sie sich verbinden konnen. In Abbildung 1.7 sehen Sie ein Beispiel der Instanzliste.

Wahlen Sie bei einer der Instanzen »Inspect« aus, 6ffnet Chrome die Entwicklerwerkzeuge
fiir Sie und Sie konnen sie analog zum Debugging im Client verwenden.

Debugging aus der Entwicklungsumgebung heraus

Wie beim clientseitigen JavaScript miissen Sie auch in Node.js nicht auf die Annehm-
lichkeiten Ihrer Entwicklungsumgebung beim Debuggen verzichten und koénnen den
Debugging-Prozess auch direkt von dort aus starten. Dies funktioniert in allen géngigen
Entwicklungsumgebungen und ist in der Regel in der Dokumentation der jeweiligen
Software gut nachvollziehbar beschrieben.

Ich zeige Ihnen an dieser Stelle wieder exemplarisch in Visual Studio Code, wie Sie vorgehen
konnen. Im ersten Schritt sollten Sie einen Breakpoint setzen. Dies erreichen Sie entweder
iiber ein debugger-Statement oder indem Sie links neben die Nummer der gewiinschten
Zeile klicken. Offnen Sie danach die Einstiegsdatei Ihrer Applikation und wihlen Sie an-
schlieflend im Menii »Run« den Punkt »Start Debugging« aus. Alternativ konnen Sie die
Taste F5 verwenden. Visual Studio Code gibt Ihnen dann eine Auswahl von Debuggern.
Klicken Sie auf den Eintrag »Node.js«. Daraufhin aktiviert die Entwicklungsumgebung die
Debugging-Ansicht und stellt Thnen Kontrollelemente zur Navigation und weitere Informa-
tionen wie die Scope-Ansicht oder eine Liste von Breakpoints zur Verfiigung.

