

Contents

1	The Phenomenon: Occurrence and Characteristics	1
1.1	Marching Towards Absolute Zero	1
1.2	Discovery of Superconductivity	2
1.3	Occurrence of Superconductivity	3
1.3.1	Elemental Superconductivity	3
1.3.2	Alloys	3
1.3.3	Binary Compounds (A-15 Materials)	3
1.3.4	Heavy Fermion Superconductors	4
1.3.5	Organic Superconductors	4
1.3.6	C ₆₀ -Based Superconductors	6
1.4	The Superconducting State	7
1.5	Phase Coherence	9
1.6	Coherence Length	10
1.6.1	Pippard's Equation and Coherence Length	11
1.6.2	The Size of an Electron Pair	12
1.6.3	Analogy Between Long Range Spatial Order in a Solid and Phase-Order in a Superconductor	13
1.7	Critical Magnetic Field	13
1.8	Meissner Effect	14
1.9	Comparison Between a Superconductor and a Very Good (or Ideal) Conductor	15
1.10	Isotope Effect	17
1.11	Isotope Effect in HTSCs	18
1.11.1	Optical Behaviour Study	18
1.11.2	Elastic and Ultrasonic Studies	18
1.12	The Energy Gap	19
1.13	Thermodynamics of Superconductors	21
1.13.1	Latent Heat of Superconducting Transitions	24
1.13.2	Heat Capacity of Superconductors	24
1.13.3	Strong Coupling Case	26
1.14	London Equations and Penetration Depth	27

1.15	Ginzberg-Landau Theory	29
1.16	Type-I and Type-II Superconductors	32
1.16.1	How a Normal Core is Formed in Mixed State?	35
1.17	Why Materials with High T_c Tend to Fall in Type-II Category?	37
1.18	Why It is Extremely Difficult to Obtain Higher T_c ?	38
	References	39
2	Crystal Structure of High Temperature Superconductors	41
2.1	Introduction	41
2.1.1	Perovskite Structure	41
2.2	The Structure of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$	41
2.2.1	Variation of T_c with Oxygen Stoichiometry	43
2.3	The Structure of $\text{La}_{2-x}\text{M}_x\text{CuO}_4$	46
2.4	The Structure of Bi-Based Cuprate Superconductors	46
2.5	Structure of Thallium-Based Cuprate Superconductors	48
2.5.1	Comparison of Bismuth and Thallium Based Cuprates	49
2.6	Mercury Based Cuprate Superconductors	51
2.7	Characteristics of High Temperature Superconductors	53
2.7.1	Resemblance Between HTSC and Conventional Superconductors	54
2.7.2	Unusual Properties of HTSCs	54
2.8	Fermi Energy and Fermi Velocity of Superconductors	55
2.9	Comparison of High T_c Cuprates with Typical Metals in Relation to Normal State Resistivity	57
	References	57
3	Critical Current	59
3.1	Introduction	59
3.2	Critical Current of a Wire	60
3.3	Critical Current in Mixed State	61
3.4	Flux Pinning	61
3.4.1	Role of Inhomogeneties	62
3.4.2	Flux Pinning (Pinning of Flux-Vortices in Conventional Superconductors)	63
3.5	Depinning of Flux Vortices	63
3.6	Critical Current in High Temperature Superconductors	65
3.6.1	Effect of Structure	65
3.7	RSJ Model of an HTSC (High T_c Superconductor)	66
3.8	Effect of Granularity on Superconductivity	68
3.9	Measurement for J_c	69
3.10	Flux Flow and Defining J_c	70
3.11	Anisotropies in High T_c Superconductors	71
3.12	Flux Pinning in High Temperature Superconductors	73
3.13	Columnar Defects and Flux Pinning	74
3.13.1	Flux Pinning in HTSCs by Vortex Pancakes	75

3.14	Experimental Results on Introduction of Flux Pinning Centers in HTSCs	77
3.14.1	Melt Textured Growth	77
3.14.2	Introduction of Second Phase (Chemical Inhomogeneity)	78
3.14.3	Extended Defects (Columnar Defects)	78
3.15	Magnetic Phase Diagrams of HTSCs	78
3.16	Melting of the FLL Because of Reduced Size of $\xi_{\text{GL}}(T)$	80
3.16.1	Effect of Reduced Size of $\xi_{\text{GL}}(T)$	81
3.17	Kosterlitz-Thouless-Berezinski Transition	81
3.18	Anisotropy and Change Over from a 2D to 3D Behaviour	82
3.18.1	High Field Regime ($B \gg B_{\text{cr}}$)	83
3.18.2	Weak Field Region ($B \ll B_{\text{cr}}$)	83
3.18.3	The Cross-Over Field B_{cr}	84
3.19	The Effect of Anisotropy Parameter γ on the Vortex Phase Transitions	84
3.20	Desired Microstructure Synthesis for High Critical Current Density in High T_c Superconductors	85
3.20.1	Some Inherent Problems (Weak-Links and "Flux Lattice Melting")	85
3.20.2	Possible Ways Out of "Weak-Links"	87
3.20.3	Provision of Flux Pinning Sites	91
3.20.4	Desired Microstructure for High J_c	93
3.21	High T_c Technology	94
3.21.1	Advantage of Weak Pinning	95
3.22	Comparison Between Non-Uniform Order in a Solid and that in a Superconductor	95
	References	96
4	Synthesis of High T_c Superconductors	99
4.1	Synthesis of $\text{Y}_1\text{Ba}_2\text{Cu}_3\text{O}_7$ in Bulk Form	99
4.2	Why Thin Films of High T_c Superconductors?	100
4.3	Techniques for Thin Film Preparation	101
4.3.1	Chemical Deposition Methods	103
4.3.2	Chemical Vapour Deposition (CVD)	103
4.3.3	Spray Pyrolysis	103
4.4	Basic Thin film Processes for HTSC Films	104
4.5	Various Techniques for Deposition of Films of High Temperature Superconductors	106
4.6	Preparation of Thin Films of HTSC- $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$: An Introduction	108
4.6.1	Choice of the Substrate for Thin Film Deposition	108
4.6.2	YBCO Film/Substrate Interaction	109
4.7	Techniques Employed for Synthesis of YBCO Thin Films	112

4.7.1	Electron Beam Evaporation	112
4.7.2	Molecular Beam Epitaxy	113
4.7.3	Sputter Deposition	114
4.7.4	Sputter Deposition of HTSC Films	116
4.7.5	Pulsed Laser Deposition	118
4.7.6	Chemical Vapour Deposition	119
References		120
5	Superconductivity in Cuprates	123
5.1	Mott Insulator	123
5.2	The First Cuprate $\text{La}_{2-x} \text{M}_x \text{CuO}_4$	123
5.3	The Charge-Transfer Model of a High T_c Cuprate Superconductor	124
5.4	Electron and Hole Doping of CuO_2 Layers	125
5.4.1	Source of Hole (Carriers) in Various Cuprate Families ..	126
5.5	The Conductions Plane in Cuprates	127
5.6	Octahedral Ligand Field	128
5.7	Jahn-Teller Effect	128
5.8	Energy levels for Copper	129
5.9	Comparison of Cu^{3+} and Cu^{2+} ions in the Oxide Octahedron ..	130
5.10	The Hamiltonian and the Relevant Energy Levels in the Conduction Plane	130
5.11	Hole Superconductivity in Oxides	132
5.12	Two Band and One Band Hubbard Models	134
5.13	The Electronic Structure of Cuprates	134
5.14	Strong Electron Correlations	136
5.15	Charge Density Wave and Spin Density Wave	137
5.16	Variation of T_c with Hole Concentration	138
5.16.1	Role of CuO_2 Planes (Effect on T_c)	138
5.17	Defects in Bi Based Superconductors	140
5.18	Effect of Oxygen Stoichiometry on T_c of HTSCs Bi Based and Tl Based Superconductors	140
5.19	Comparison of Bi- and Tl-Cuprates	141
5.20	Comparison of Mercury Based and Thallium Monolayer Based Cuprate Superconductors	143
5.21	Mercury Based Superconductors	143
5.22	Mercury Doped Tl:2223 Superconductor	144
References		145
6	The Proximity and Josephson Effects	147
6.1	DC Josephson Effects	147
6.2	Some Types of Josephson Junctions	150
6.2.1	Typical Current Voltage Characteristics for the Above Types of Junctions	152
6.3	Equivalent Circuit of a Josephson Junction	152

6.4	AC Josephson Effect	153
6.5	Giaever Tunnelling/Tunnelling of Quasi-Particles	155
6.6	Superconductive Tunnelling in a S-I-S Junction	159
6.7	Quasi-Particle Tunnelling for a Symmetric S-I-S Junction	162
6.7.1	Effect of Thickness of Insulator in S-I-S Junction	163
6.8	Properties of Josephson Junction	163
6.9	Flux Quantisation	165
6.10	SQUIDs	166
6.11	DC SQUID (A Superconducting Loop with Two Josephson Junctions)	167
6.11.1	The Characteristics of an Ideal DC SQUID	170
6.12	The rf SQUID	172
6.12.1	Principle	172
6.12.2	Working	173
6.13	Applications of SQUIDs	176
6.14	HTSC SQUIDs	176
6.15	Some Practical rf SQUIDs	177
6.15.1	Break Junction rf SQUIDs	177
6.15.2	Two-and One-Hole rf SQUIDs	177
6.16	SQUIDs Fabricated From Films	178
6.16.1	SQUIDs using Polycrystalline Films	179
6.16.2	SQUIDs using Epitaxial Films	180
6.17	How SQUIDs are Used for Flux Measurements	182
6.17.1	Superconducting Flux Transformers	184
6.18	Design and Noise Aspects of SQUIDs	186
6.18.1	Choice for Critical Current I_c of J.J.	186
6.18.2	Choice for the Inductance of the Ring	186
6.18.3	Noise, Noise Energy and Energy Resolution of SQUID ..	187
6.19	Proximity Effect (Induced Superconductivity)	190
6.19.1	S-I Junction	192
6.20	S-N Junction	192
6.20.1	Fundamental Properties of S-N Contacts	192
6.20.2	Boundary Conditions for Pair Amplitude (F)	193
6.20.3	Effect of a Finite Boundary Resistance	194
6.20.4	(Cuprate -S)/N Interface	195
6.21	Grain Boundary Junctions	195
6.22	Requirements for Josephson Devices	197
6.22.2	Test for the ac Josephson Effect	198
	References	198
7	Theories of Superconductivity	199
7.1	Microscopic Theory of Superconductivity (The BCS Theory) ..	200
7.1.1	Qualitative Ideas	201
7.1.2	The BCS Ground State	203

XIV Contents

7.2	Anderson's Resonating Valence Bond Theory	210
7.2.1	Anderson's Valence Bonds	210
7.3	Spin-Bag Theory	214
7.3.1	Questions Which Remain	214
	References	214
8	Application of Superconductivity	215
8.1	Potential Applications	215
8.1.1	Superconducting Magnets	215
8.2	Applications of High- T_c Oxide Superconductors	215
8.3	Applications of High T_c Films	217
	Index	219