

Leseprobe

zu

Von Java zu C

von Carsten Vogt

Print-ISBN: 978-3-446-48103-9
E-Book-ISBN: 978-3-446-48128-2

Weitere Informationen und Bestellungen unter

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446481039

sowie im Buchhandel

© Carl Hanser Verlag, München

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446481039

 V

Inhalt

Vorwort ...XI

Zusatzmaterial zum Buch...XIII

1 Einführung.. 1
1.1 C und Java von den Anfängen bis heute .. 1

1.1.1 Die Entwicklung von C... 1
1.1.1.1 Der Ursprung... 1
1.1.1.2 Grundlegende Eigenschaften .. 1
1.1.1.3 Standards ... 2

1.1.2 Objektorientierte Nachfolgesprachen ... 3
1.1.2.1 C++.. 3
1.1.2.2 Java.. 3

1.1.3 Einsatzgebiete von C und Java ... 4
1.2 C und Java im Sprachvergleich.. 4

1.2.1 Drei Beispielprogramme... 4
1.2.1.1 Einfaches Programm mit Ausgabe.. 4
1.2.1.2 Programm mit Eingabe und C-spezifischen Datentypen 5
1.2.1.3 Programm mit einer Funktion ... 7

1.2.2 Eigenschaften von Java vs. Eigenschaften von C... 8
1.2.2.1 Tabellarischer Vergleich ... 8
1.2.2.2 Objektorientierung vs. Prozedurorientierung.................................... 9
1.2.2.3 Interpretation vs. Übersetzung .. 10

1.3 Zu diesem Buch.. 12
1.3.1 Aufbau .. 12
1.3.2 Benutzung ... 13
1.3.3 Weitere Quellen .. 14

2 Struktur und Übersetzung von C-Programmen ... 17
2.1 Struktur von C-Programmen .. 17

2.1.1 C-Quellcode in einer einzelnen Datei ... 17
2.1.2 C-Quellcode in mehreren Dateien .. 18

2.2 Übersetzung von C-Programmen... 19
2.2.1 Phasen der Übersetzung.. 19
2.2.2 Modularisierung.. 21
2.2.3 GCC und weitere Programmierwerkzeuge ... 22

2.3 Anweisungen des Präprozessors .. 24
2.3.1 #include: Einfügen von Header-Dateien... 25
2.3.2 #define: einfache Ersetzung von Zeichenketten ... 26
2.3.3 #define: Makros mit Parametern... 27
2.3.4 #ifdef, #if: bedingte Übersetzung ... 29

2.4 Übungsaufgaben... 30

VI

3 Kontrollstrukturen... 33
3.1 Blöcke .. 33
3.2 Bedingte Anweisungen .. 34
3.3 Schleifen... 34
3.4 Ausnahmebehandlung und goto... 35
3.5 Übungsaufgaben... 36

4 Datenorganisation .. 39
4.1 Skalare Datentypen .. 39

4.1.1 Zahlen- und Zeichentypen .. 39
4.1.2 Wahrheitswerte ... 41
4.1.3 Operationen... 42

4.2 Konstanten und Variablen.. 44
4.2.1 Konstanten .. 44
4.2.2 Definition und Initialisierung von skalaren Variablen 45
4.2.3 Wertzuweisungen.. 45

4.3 Arrays... 46
4.3.1 Eindimensionale Arrays.. 46
4.3.2 Mehrdimensionale Arrays... 49
4.3.3 Zeichenketten.. 50

4.4 Strukturen... 52
4.4.1 Grundlegende Eigenschaften von Strukturen ... 52
4.4.2 Strukturtypen .. 54
4.4.3 Schachtelung von Strukturen .. 55

4.5 Unions und Bitfelder .. 55
4.5.1 Unions... 55
4.5.2 Bitfelder .. 56

4.6 Selbstdefinierte Wert- und Typnamen ... 58
4.6.1 Aufzählungstypen ... 58
4.6.2 Der typedef-Operator .. 59

4.7 Übungsaufgaben... 60

5 Zeiger... 63
5.1 Java-Objektvariablen vs. C-Zeigervariablen.. 63
5.2 Grundlegende Begriffe und Operatoren... 65

5.2.1 Speicheradressen und Zeigervariablen ... 65
5.2.2 Adress- und Dereferenzierungsoperator ... 67
5.2.3 Zwei Programmbeispiele .. 68
5.2.4 Ungetypte Zeiger .. 70

5.3 Adressarithmetik .. 70
5.3.1 Operationen... 70
5.3.2 Adressarithmetik bei Arrays ... 72
5.3.3 Exkurs: Zeichenkettenvariablen und -konstanten... 74

5.4 Dynamische Speicherverwaltung... 75
5.4.1 malloc() ... 75

5.4.1.1 Objekterzeugung in Java vs. Speicherbelegung in C 75

 VII

5.4.1.2 Definition von malloc()... 76
5.4.2 free().. 77
5.4.3 Zwei Programmbeispiele .. 78

5.5 Zeiger auf Strukturen ... 79
5.5.1 Arrays mit Zeigern auf Strukturen.. 80
5.5.2 Strukturen mit Zeigern auf Strukturen.. 81

5.6 Zeiger auf Zeiger.. 82
5.7 Übungsaufgaben... 83

6 Funktionen .. 87
6.1 Java-Methoden vs. C-Funktionen .. 87
6.2 Schnittstellen .. 89

6.2.1 Prototypen... 89
6.2.2 Weitere Besonderheiten von C ... 91

6.3 Ausführung... 93
6.3.1 Ablauf ... 93
6.3.2 Parameterübergabe.. 94

6.3.2.1 Wertaufruf ... 94
6.3.2.2 Referenzaufruf... 95
6.3.2.3 Übergabe von Arrays .. 97

6.3.3 Ergebnisrückgabe.. 98
6.4 Das Hauptprogramm main() .. 100
6.5 Sichtbarkeiten und Lebensdauern .. 101

6.5.1 Lokale Variablen... 102
6.5.1.1 Automatische Variablen.. 102
6.5.1.2 Statische Variablen.. 102
6.5.1.3 Registervariablen... 103

6.5.2 Globale Variablen ... 104
6.5.2.1 Programme in einer einzelnen Datei ... 104
6.5.2.2 Programme in mehreren Dateien .. 105

6.5.3 Tabellarische Zusammenfassung.. 107
6.6 Funktionsbibliotheken.. 107

6.6.1 Definition und Benutzung... 107
6.6.2 Die Standardbibliothek ... 108

6.6.2.1 Funktionen für Zeichen und Zeichenketten 109
6.6.2.2 Mathematische Funktionen ... 111
6.6.2.3 Betriebssystemnahe Dienste.. 112

6.7 Techniken für Fortgeschrittene .. 114
6.7.1 Zeiger auf Funktionen... 114
6.7.2 Funktionen als Parameter.. 116
6.7.3 Funktionen mit variabler Anzahl von Parametern...................................... 116

6.8 Übungsaufgaben... 118

7 Ein-/Ausgabe und Dateizugriffe.. 123
7.1 Grundlegende Konzepte... 123

7.1.1 Datenströme in Java und in C ... 123

VIII

7.1.2 Standardströme/-dateien ... 125
7.1.3 Klassen von E/A-Funktionen.. 125

7.2 Funktionen für die Standardein-/-ausgabe ... 127
7.2.1 printf(): formatierte Ausgabe .. 127

7.2.1.1 Grundidee .. 127
7.2.1.2 Allgemeine Form .. 128
7.2.1.3 Weitere Beispiele .. 128

7.2.2 scanf(): formatierte Eingabe ... 129
7.2.2.1 Grundidee .. 129
7.2.2.2 Allgemeine Form .. 130
7.2.2.3 Pufferung der Eingabedaten .. 131
7.2.2.4 Weitere Beispiele .. 131

7.2.3 Weitere Funktionen für Zeichen und Zeichenketten 134
7.3 Funktionen für beliebige Datenströme... 135

7.3.1 Öffnen und Schließen ... 135
7.3.2 Ein-/Ausgabe einzelner Zeichen... 138
7.3.3 Ein-/Ausgabe von Zeichenketten.. 138
7.3.4 Formatierte Ein-/Ausgabe... 139
7.3.5 Ein-/Ausgabe beliebiger Bytefolgen... 140
7.3.6 Wahlfreier Zugriff... 141
7.3.7 Spezielle Funktionen... 143

7.4 Operationen auf dem Dateisystem ... 145
7.5 Übungsaufgaben... 145

8 Dynamische Datenstrukturen ... 149
8.1 Dynamische Datenhaltung in Java und in C .. 149
8.2 Listen.. 150

8.2.1 Eigenschaften.. 150
8.2.2 Einfach verkettete Listen .. 151

8.2.2.1 Typ der Knoten ... 151
8.2.2.2 Durchlaufen einer Liste... 152
8.2.2.3 Suchen von Einträgen ... 153
8.2.2.4 Einfügen von Knoten .. 153
8.2.2.5 Entfernen von Knoten ... 156

8.2.3 Doppelt verkettete Listen.. 159
8.2.3.1 Typ der Knoten ... 159
8.2.3.2 Durchlaufen einer Liste... 160
8.2.3.3 Suchen von Einträgen ... 160
8.2.3.4 Einfügen von Knoten .. 161
8.2.3.5 Entfernen von Knoten ... 163

8.2.4 Queues und Stacks .. 165
8.2.4.1 Queues... 165
8.2.4.2 Stacks .. 166

8.3 Hashtabellen ... 166
8.3.1 Eigenschaften.. 167
8.3.2 Realisierung in Java und in C ... 167

 IX

8.4 Bäume .. 169
8.4.1 Eigenschaften.. 169
8.4.2 Binärbäume... 170

8.4.2.1 Eigenschaften und Beispiele ... 170
8.4.2.2 Realisierung in C... 172
8.4.2.3 Durchlaufen eines Binärbaums ... 173
8.4.2.4 Löschen eines Binärbaums.. 175
8.4.2.5 Suchen eines Werts in einem Suchbaum 176
8.4.2.6 Einfügen eines Werts in einen Suchbaum..................................... 176
8.4.2.7 Löschen eines Werts aus einem Suchbaum 177

8.5 Mengen... 180
8.5.1 Realisierung durch Listen und Bäume.. 180

8.5.1.1 Grundlegende Mengenoperationen auf C-Listen 180
8.5.1.2 Bilden der Vereinigungsmenge... 181
8.5.1.3 Bilden der Differenzmenge ... 182
8.5.1.4 Bilden der Schnittmenge ... 182

8.5.2 Realisierung durch Bitmaps.. 183
8.6 Übungsaufgaben... 185

A Auswertung von Ausdrücken.. 187
A.1 Implizite Typkonversionen .. 187

A.1.1 Konversionen in Rechenausdrücken... 187
A.1.2 Konversionen bei Zuweisungen.. 188

A.2 Sequenzpunkte ... 189
A.3 Bindungsstärken und Auswertungsreihenfolgen.. 190

B Vordefinierte Konstanten.. 191
B.1 Wertebereiche der skalaren Typen... 191
B.2 Mathematische Konstanten .. 192

C Standardbibliothek .. 193
C.1 Dateizugriffe und Ein-/Ausgabe .. 193

C.1.1 Thematische Übersicht über die Funktionen .. 193
C.1.2 Funktionen in alphabetischer Reihenfolge ... 195

C.2 Zeichen, Zeichenketten und Bytefolgen .. 207
C.2.1 Test einzelner Zeichen .. 207
C.2.2 Umwandlung von Zeichen.. 207
C.2.3 Zeichenketten.. 208
C.2.4 Bytefolgen/Arrays... 209
C.2.5 Konversionen .. 210

C.3 Mathematische Funktionen .. 210
C.4 Betriebssystemnahe Dienste... 212

C.4.1 Dynamische Speicherverwaltung ... 212
C.4.2 Zeitfunktionen... 212
C.4.3 Weitere Funktionen... 214

X

D Häufig benötigte Tabellen ... 215
D.1 ASCII ... 215
D.2 Variablengrößen und Wertebereiche.. 216
D.3 Bindungsstärke von Operatoren... 217
D.4 Optionen für fopen() .. 218
D.5 Konversionsangaben für die Ein-/Ausgabe.. 219

D.5.1 printf() ... 219
D.5.2 scanf() ... 221

Literatur und Internet ... 223
Bücher .. 223
Standardisierungsdokumente.. 223
Internet-Quellen.. 224

Index .. 225

 XI

Vorwort

Dieses Buch gibt eine Einführung in die Programmiersprache C und setzt dabei Kenntnisse
in der Sprache Java voraus. Auf den ersten Blick mag das ungewöhnlich erscheinen, ist doch
C ein Vorläufer von Java und nicht umgekehrt. Der Ansatz ist dennoch sinnvoll, da in vielen
Studiengängen Java als erste Programmiersprache gelehrt wird. In weiterführenden Fächern
und der darauf aufbauenden Berufspraxis werden jedoch auch C-Kenntnisse benötigt, bei-
spielsweise zur hardwarenahen Programmierung oder zur Programmierung an der Schnitt-
stelle eines Betriebssystems. C muss also „nachgelernt“ werden.
Das Buch wendet sich daher an Studentinnen, Studenten und andere Interessierte, die bereits
Erfahrung mit Java haben und C als weitere Programmiersprache lernen wollen oder müs-
sen. Es ist keine grundständige Darstellung von C, sondern konzentriert sich auf die Beson-
derheiten der Sprache im Vergleich zu Java. Damit bietet es eine zwar vergleichsweise
kurze, aber doch recht detaillierte und tiefgängige Einführung in C. Profitieren wird man
auch, wenn man schon einmal mit C in Berührung gekommen ist und nun seine Kenntnisse
vertiefen möchte.
Leserinnen und Leser lernen zunächst die grundlegenden Unterschiede in den Sprachansät-
zen von C und Java, aber auch die vielfältigen Gemeinsamkeiten beider Sprachen kennen.
Sie werden dann mit den Besonderheiten von C vertraut gemacht und lernen, die C-spezifi-
schen Konzepte praktisch anzuwenden. Insbesondere werden sie dazu befähigt, sicher mit
Zeigern/Pointern (einem fundamentalen Sprachkonstrukt, das es in Java so nicht gibt) um-
zugehen und dynamische Datenstrukturen, die in Java durch vordefinierte Klassen bereitge-
stellt werden, in C selbst auszuprogrammieren.
Das Buch kann man auf drei Arten nutzen:
• Wenn man sich rasch einen Überblick über C verschaffen möchte, so sollte man die acht

„Schnelleinstiege“ zu Beginn der einzelnen Kapitel lesen. Sie ermöglichen den unmit-
telbaren Einstieg in die praktische C-Programmierung.

• Wenn man C im Detail kennenlernen möchte, so sollte man die Kapitel des Buchs suk-
zessive durcharbeiten und die Beispielprogramme praktisch ausprobieren. Man lernt da-
bei nicht nur die sprachlichen Möglichkeiten von C, sondern auch typische Program-
miertricks und -fallen kennen.

• Wenn man bei der späteren praktischen Arbeit bestimmte Details nachschlagen möchte,
so sollte man dazu die Anhänge benutzen. Insbesondere findet man ganz am Ende des
Buchs eine tabellarische Darstellung von Informationen, die man bei der C-Program-
mierung häufig benötigt.

Viele Beispiele und Grafiken verdeutlichen den Stoff und Verweise innerhalb des Buchs
zeigen Zusammenhänge zwischen den Teilbereichen auf. Tricks, Fallen und Informationen
für Fortgeschrittene sind typografisch hervorgehoben. Übungsaufgaben dienen zur Über-
prüfung des Lernerfolgs.

XII

Die erste Auflage des Buchs erschien unter dem Titel „C für Java-Programmierer“. Diese
zweite Auflage mit dem Titel „Von Java zu C“ wurde bezüglich einiger weniger technischer
Details aktualisiert. Die Änderungen halten sich aber in engen Grenzen, da C eine sehr sta-
bile Programmiersprache ist. Zudem wurden die Quellenhinweise und die Empfehlungen zu
Programmierwerkzeugen aufgefrischt sowie Fehler korrigiert. Schließlich wurde der Text
im Hinblick auf eine geschlechtergerechte Sprache überarbeitet, was auch der Grund für die
Änderung des Buchtitels war. Sterne * treten aber nach wie vor nur als Operatoren der Pro-
grammiersprache C auf.

Köln/Bergisch Gladbach, im Sommer 2024 Carsten Vogt

 XIII

Zusatzmaterial zum Buch

Zu diesem Buch stehen Ihnen weitere Inhalte digital zur Verfügung:
• die Beispielprogramme,
• die Lösungen der Übungsaufgaben,
• die nach Drucklegung entdeckten Fehler
Gehen Sie dazu einfach auf
https://plus.hanser-fachbuch.de

und geben Sie dort diesen Code ein:
plus-12abc-8xyz9

Hinweise auf Dokumentationen und Werkzeuge, die im Internet frei verfügbar sind, gibt der
Literaturteil auf Seite 223.

 63

5 Zeiger

Das Zeiger-/Pointerkonzept ist eine charakteristische Eigenschaft der Programmierspra-
che C: Zeigervariablen enthalten Adressen von Speicherzellen. Sie „zeigen“ somit auf diese
Speicherzellen und ermöglichen dadurch den Zugriff auf die dort gespeicherten Werte. Im
Zeigerkonzept wird also die grundlegende Eigenschaft von C deutlich, nicht nur eine an-
wendungsorientierte, sondern auch eine hardwarenahe Sprache zu sein.

Abbildung 5.1 Speicheradresse in einer Zeiger-/Pointervariablen

Speicher

Zeiger-/Pointervariable: enthält eine Speicheradresse

= Zeiger-/Pointervariable „zeigt auf eine Speicherzelle“

Wert
Speicherzelle: enthält einen Wert

Zeiger erlauben eine sehr flexible Programmierung: Mit ihnen kann ein Programm während
seiner Ausführung, also „dynamisch“, bestimmen, auf welchen Speicherzellen es arbeitet,
und dabei auf beliebige Bereiche seines Speichers zugreifen. Zeiger sind aber auch gefähr-
lich: Bitmuster in Zellen sind ohne eine zwingende Typprüfung oder andere Schutzmecha-
nismen zugänglich, so dass die Fehlergefahr hoch ist. In Java hat man daher auf ein
allgemeines Zeigerkonzept verzichtet und sich auf typsichere Objektreferenzen beschränkt.

5.1 Java-Objektvariablen vs. C-Zeigervariablen
Die von Java her bekannten Objektreferenzen sind Verweise auf Objekte. Objektreferen-
zen werden in Objektvariablen gespeichert, über die man auf die Objekte zugreifen kann.
Objekte und Objektvariablen sind typisiert, gehören also Klassen an, und bei jeder Opera-
tion auf einer Objektvariablen findet eine strenge Typprüfung statt.
Ein einfaches Java-Programm mit einem Objekt, das Informationen über eine Person in ei-
ner Firma enthält, könnte beispielsweise wie folgt aussehen:

class AngestelltenInfo { Java ...
 String name;
 int personalnummer;
 float gehalt;
};
...
AngestelltenInfo a = new AngestelltenInfo();

Das Programm definiert die Klasse AngestelltenInfo (wobei, um einen unmittelbaren
Vergleich mit einer C-Struktur ziehen zu können, keine Methoden vereinbart werden, ins-

64 5 Zeiger

besondere auch keine get- und set-Methoden und kein Konstruktor). Es erzeugt dann ein
Objekt dieser Klasse und legt in der Variablen a eine Referenz darauf ab. Abbildung 5.2 il-
lustriert die zugrunde liegende Sichtweise: Eine typisierte Objektvariable verweist auf ein
typisiertes Objekt. Davon, dass das Objekt und auch die Variable durch Bitmuster in Spei-
cherzellen realisiert werden, wird vollständig abstrahiert.

Abbildung 5.2 Objektvariable und Objekt in Java

Java-Objektvariable a Java-Objekt der Klasse AngestelltenInfo

Schmitz

1234

2752.44

a.name

a.personalnummer

a.gehalt

Ein C-Programm, das diesem Java-Beispiel entspricht, könnte die folgende Form haben:
typedef struct { ... C
 char name[41];
 int personalnummer;
 float gehalt;
} angestellten_info;
angestellten_info as;
angestellten_info *a;
a = &as;

Wie aus 4.4 her bekannt, wird zunächst ein Strukturtyp angestellten_info definiert
und eine Variable as dieses Typs vereinbart. Neu sind die letzten beiden Zeilen des Pro-
gramms: Hier wird eine Zeiger-/Pointervariable a definiert, die Speicheradressen von Va-
riablen des Typs angestellten_info aufnehmen kann. Dies wird durch die Typangabe
angestellten_info * (sprich „Zeiger/Pointer auf angestellten_info“) festgelegt.
Anschließend wird durch den Adressoperator & die Speicheradresse von as ermittelt und
in a gespeichert. Die Zeigervariable a zeigt jetzt also auf die Strukturvariable as.
Abbildung 5.3 verdeutlicht die Sichtweise von C: Variablen und deren Werte werden durch
Speicherzellen mit den darin enthaltenen Bitmustern realisiert. Auf die Variablen kann man
wahlweise über Namen oder über Speicheradressen zugreifen.
Beim Vergleich der beiden Beispiele fällt übrigens auf, dass im Java-Programm nur die Ob-
jektvariable einen Namen hat, nicht jedoch das Objekt selbst, während im C-Programm so-
wohl die Strukturvariable selbst als auch die Zeigervariable benannt sind. Es ist jedoch auch
in C möglich, unbenannte Variablen zu erzeugen, auf die dann nur über (benannte) Zeiger-
variablen zugegriffen wird. Details dazu findet man in 5.4.

Abbildung 5.3 Zeiger und Zeigervariablen in C – Variablensicht vs. Speichersicht

Variablen

Schmitz

1234

2752.44

as.name

as.personalnummer

as.gehalt

a: Zeigervariable

as: Strukturvariable

SpeichersichtVariablensicht
(relativ abstrakt) (hardwarenah)

0...0100

0...1000
...

0...1001

...

0...1000

00000100
11010010

...

mit Werten und Namen
... werden Speicherzellen
repräsentiert
durch ...

mit Adressen und binären Inhalten

5.2 Grundlegende Begriffe und Operatoren 65

5.2 Grundlegende Begriffe und Operatoren

5.2.1 Speicheradressen und Zeigervariablen

Variablen in C haben Adressen: Die Adresse einer Variablen ist die Nummer der Speicher-
zelle, in der ihr Wert steht (oder, wenn die Variable mehrere Zellen belegt, die Nummer ih-
rer ersten Zelle,  Abbildung 5.3). Adressen können in benannten Zeigervariablen
abgelegt werden. Enthält eine Zeigervariable pt die Adresse einer Variablen var, so sagt
man, dass pt var referenziert oder dass pt auf var zeigt ( Abbildung 5.4 links). Zei-
gervariablen werden auch kurz Zeiger oder Pointer genannt.
Zeigervariablen sind der Ausgangspunkt indirekter Variablenzugriffe: Der Zugriff auf die
Zeigervariable liefert eine Adresse, über die dann im zweiten Schritt auf die referenzierte
(also die „eigentliche“) Variable zugegriffen wird. Man kann so über die Zeigervariable den
Wert der referenzierten Variablen auslesen oder man kann ihn überschreiben. Dabei sind
auch mehrstufig indirekte Zugriffe möglich: Eine Zeigervariable kann auf eine zweite Zei-
gervariable zeigen, diese möglicherweise auf eine dritte und so weiter ( Abbildung 5.4
rechts).
Eine Zeigervariable ist meist typisiert und kann dann nur Variablen eines bestimmten Typs
referenzieren (siehe aber 5.2.4). Der Typ wird bei der Deklaration der Zeigervariablen
angegeben. Der Zugriff auf eine referenzierte Variable benötigt diese Typinformation, da
dann der Wertebereich dieser Variablen und die auf ihr zulässigen Operationen bekannt sein
müssen. Zudem ergibt sich aus der Typangabe, wie viele Speicherzellen (ab der durch die
Zeigervariable angegebenen Zelle) zur referenzierten Variablen gehören. So verweist bei-
spielsweise ein char-Zeiger auf eine einzelne Speicherzelle, ein double-Zeiger auf eine
Gruppe von (meist) acht Speicherzellen (4.1.1).

Abbildung 5.4 Indirektion mit Zeigervariablen

Einstufige Indirektion:

Wert

Zeigervariable pt:

referenzierte Variable var:

Mehrstufige Indirektion:

...

enthält Speicheradresse von var

enthält Wert

„pt zeigt auf var“

66 5 Zeiger

Um eine Zeigervariable von einer „normalen“ Variablen zu unterscheiden, wird ihrem Na-
men bei der Deklaration ein * vorangestellt. Beispiele für Deklarationen von Zeigervaria-
blen sind die folgenden:
• char *cpt;

deklariert eine Variable cpt, die Adressen von Variablen des Typs char aufnehmen
kann.

• angestellten_info *apt;
deklariert eine Variable apt, die Adressen von Strukturvariablen des Typs angestell-
ten_info aufnehmen kann.

• float **fppt;
deklariert eine Variable fppt, die Adressen von Variablen aufnehmen kann, in denen
wiederum Adressen von Variablen des Typs float stehen können. Hier wird also eine
zweistufige Indirektion realisiert ( Abbildung 5.4, 5.6).

Die Sprechweise ist dann beispielsweise: „cpt ist ein Zeiger/Pointer auf char“ oder „fppt
ist ein Zeiger auf Zeiger auf float“.

Der Stern bei der Variablendeklaration gehört stets zu einem Variablennamen. Will
man also zwei Zeiger deklarieren, so muss man int *a, *b schreiben; int *a, b
würde eine Zeigervariable a und eine „normale“ int-Variable b deklarieren.

Dass hier kein Beispiel für einen Zeiger auf Arrays angegeben wird, hat einen besonderen
Grund: In C ist ein Array nichts anderes als ein Zeiger, nämlich ein Zeiger auf den Anfang
der Folge von Speicherzellen, in denen der Inhalt des Arrays steht. Näheres zu diesem The-
ma findet man in 5.3.2.
Zeigervariablen können, außer Adressen anderer Variablen, den Wert NULL enthalten. NULL
ist der Nullzeiger, der angibt, dass die Zeigervariable zur Zeit auf keine andere Variable
verweist. Die Konstante NULL ist in den Header-Dateien stdio.h und stdlib.h definiert;
man kann daher in Zuweisungen und Vergleichen statt NULL auch den numerischen Wert 0
verwenden.

Eine Zeigervariable, die zwar definiert, aber noch nicht initialisiert wurde, verweist
auf irgendeine Zelle des Speichers. Ein Zugriff auf diese Speicherzelle ist kritisch,
denn dabei könnte der Wert der Variablen, die zufällig an dieser Stelle steht, über-

5.2 Grundlegende Begriffe und Operatoren 67

schrieben werden. Da hier weder vom C-Compiler noch beim Programmablauf
eine Fehlermeldung geliefert wird, muss man bei der Programmierung selbst darauf
achten, dass Zeigervariablen zuerst initialisiert und erst danach benutzt werden. Ei-
ner Zeigervariablen kann insbesondere auf die folgenden beiden Arten ein An-
fangswert zugewiesen werden:
• Durch Zuweisung der Adresse einer existierenden Variablen (5.2.2) oder des

Nullzeigers.
• Durch Belegung eines zuvor freien Speicherbereichs und Zuweisung von des-

sen Adresse (5.4.1).
Übrigens können Zeigervariablen nicht nur auf andere Variablen, sondern auch auf Funk-
tionen verweisen. Mit Zeigern auf Funktionen beschäftigt sich  6.7.

5.2.2 Adress- und Dereferenzierungsoperator

Zur Arbeit mit Zeigern gibt es in C zwei grundlegende Operatoren (siehe hierzu auch Ab-
bildung 5.5 unten):
• Der Adressoperator & liefert zu einer Variablen deren Adresse. Man kann diese Adres-

se in einer Zeigervariablen speichern:
int i;
int *ipt;
ipt = &i;
Auch kann man mit so ermittelten Adressen „rechnen“, also beispielsweise die Adresse
der im Speicher vorangehenden oder folgenden Variablen ermitteln (5.3).

• Der Dereferenzierungsoperator * liefert zu einem Zeiger die Variable, auf die dieser
Zeiger verweist. Beispielsweise wird durch
int i;
int *ipt;
ipt = &i;
*ipt = 1;
der Variablen i der Wert 1 zugewiesen. Durch
*ipt = *ipt + 1;
oder auch
(*ipt)++;
wird der Wert von i um 1 erhöht.

Abbildung 5.5 Basisoperationen auf Zeigervariablen

int *ipt

int i

ipt = &i; *ipt = 1;

1

(*ipt)++;

2

68 5 Zeiger

Bei der Programmierung mit Zeigern muss man stets gut überlegen, mit welcher
Variablen das Programm arbeiten soll – mit der Zeigervariablen selbst oder mit der
Variablen, auf die die Zeigervariable verweist. Beispielsweise besteht ein erhebli-
cher Unterschied zwischen den Zuweisungen pt2 = pt1 und *pt2 = *pt1 (wobei
pt1 und pt2 zwei Zeigervariablen sind,  Abbildung 5.6):

Abbildung 5.6 Zuweisung an Zeigervariable versus Zuweisung an referenzierte Variable

pt2

789

pt1

123

pt2

789

pt1

123

pt2

123

pt1

123

pt2=pt1;

*pt2=*pt1;

• Durch pt2 = pt1 wird der Inhalt der Zeigervariablen pt1 (eine Adresse) in die
Zeigervariable pt2 kopiert. Beide Zeigervariablen referenzieren also anschlie-
ßend dieselbe Variable; die Inhalte der referenzierten Variablen selbst bleiben
dagegen unverändert.

• Durch *pt2 = *pt1 wird der Inhalt der Variablen, auf die pt1 verweist, in die
Variable kopiert, auf die pt2 verweist. Der Inhalt einer referenzierten Variab-
len ändert sich also, die Inhalte der Zeigervariablen bleiben aber unverändert.

Übrigens sind direkte Zuweisungen zwischen Zeigervariablen nur dann möglich,
wenn beide Variablen vom selben Typ sind. Anderenfalls muss eine explizite Typ-
umwandlung vorgenommen werden:
pt2 = (t2 *) pt1; (wobei pt2 vom Typ t2 * ist)

5.2.3 Zwei Programmbeispiele

Das erste Programmbeispiel demonstriert die Effekte verschiedener Adress- und Dereferen-
zierungsoperationen:

int *pt1, *pt2;
int var1 = 100, var2 = 200;
pt1 = &var1; /* pt1 zeigt nun auf var1 */
*pt1 = *pt1 + 1; /* entspricht var1 = var1 + 1 */
pt2 = pt1; /* pt2 zeigt nun auch auf var1 */
pt1 = &var2; /* pt1 zeigt nun auf var2 */

5.2 Grundlegende Begriffe und Operatoren 69

(*pt1)++; /* entspricht var2 = var2 + 1; */
pt2 = 150; / entspricht var1 = 150 */
pt1 = &var1; /* pt1 zeigt nun wieder auf var1 */
pt2 = &var2; /* pt2 zeigt nun auf var2 */
*pt2 = *pt1; /* entspricht var2 = var1; */

Das zweite Programmbeispiel zeigt die Verwendung des Adress- und des Dereferenzie-
rungsoperators in einem konkreten Anwendungsproblem, nämlich bei der Verwaltung von
Bankkonten. Hier kann man durch eine Eingabe eines von zwei Konten auswählen und dann
auf das gewählte Konto einen bestimmten Betrag einzahlen:

float kontostand_1 = 0.0,
 kontostand_2 = 0.0,
 *kontozeiger,
 einzahlung;
int wahl;
printf("Bitte waehlen: 1 = Konto 1, 2 = Konto 2 ");
scanf("%d",&wahl);
if (wahl==1)
 kontozeiger = &kontostand_1;
 else
 kontozeiger = &kontostand_2;
printf("Bitte Einzahlungsbetrag eingeben: ");
scanf("%f",&einzahlung);
*kontozeiger = *kontozeiger + einzahlung;

Nach der if-else-Anweisung verweist die Zeigervariable kontozeiger auf die Variable,
die den Stand des ausgewählten Kontos angibt – also entweder auf kontostand_1 oder auf
kontostand_2. Diese Variable wird dann in der letzten Anweisung um den Einzahlungs-
betrag erhöht. Hier ergibt sich also erst während des Programmablaufs (also „dynamisch“
bei der Programmausführung), mit welcher Variablen gearbeitet wird; zur Zeit der Pro-
grammübersetzung liegt das noch nicht fest.
Man könnte einwenden, dass der gewünschte Effekt genauso gut durch die Anweisung

if (wahl==1)
 kontostand_1 = kontostand_1 + einzahlung;
 else
 kontostand_2 = kontostand_2 + einzahlung;

erzielt würde – also ganz ohne Zeigervariable. Für das einfache Beispiel hier ist das sicher
richtig. Sollen aber auf der gewählten Variablen mehrere Operationen ausgeführt werden,
würde das Programm ohne Zeigervariable deutlich komplexer, da dann jede Operation eine
neue if-else-Fallunterscheidung erfordert.
In diesem Beispiel wird übrigens auch die Bedeutung des & vor dem Variablennamen im
scanf()-Aufruf klar: Es liefert die Adresse der Variablen – also die Information, in welche
Speicherzelle(n) der eingelesene Wert gebracht werden soll.

70 5 Zeiger

5.2.4 Ungetypte Zeiger

Zeigervariablen werden meist bezüglich eines bestimmten Typs deklariert und
können damit nur Variablen dieses Typs referenzieren. Dies ist aber nicht zwingend not-
wendig:

void *pt;
deklariert eine Variable pt, die Adressen von Variablen eines beliebigen Typs speichern
kann. Man kann pt also im Laufe ihres „Lebens“ Adressen von Variablen unterschiedlicher
Typen zuweisen:

int i = 1234;
float f = 1.2345;
pt = &i;
printf("Wert von *pt: %d\n",*((int *)pt));
pt = &f;
printf("Wert von *pt: %f\n",*((float *)pt));

Wie das Beispiel zeigt, muss hier jeweils eine explizite Typumwandlung des Werts der Zei-
gervariablen stattfinden, wenn auf die referenzierte Variable zugegriffen werden soll.

5.3 Adressarithmetik

5.3.1 Operationen

Zeigervariablen enthalten Speicheradressen, also ganzzahlige Nummern von Speicherzel-
len. Mit Zeigervariablen lässt es sich daher rechnen oder, wie man auch sagt, Adressarith-
metik betreiben. Beispielsweise kann man einen Speicherbereich durchlaufen, indem man
eine Adresse schrittweise erhöht: Ist pt eine Zeigervariable, die eine Variable im Speicher
referenziert, so ist pt+1 die Adresse der nächsten Variablen, pt+2 der übernächsten und so
weiter. So kann man mit Anweisungen wie

*(pt+1) = 10;
*(pt+2) = *(pt+1) + 10;
*(pt+i) = 100; // mit einer ganzzahligen Variablen i

auf verschiedenen referenzierten Variablen arbeiten ( Abbildung 5.7).

Abbildung 5.7 Zeigerarithmetik – Rechnen mit Adressen

pt

...

10

100

20

*pt
*(pt+1)
*(pt+2)

*(pt+i) (für ein i>2)

Speicherzustand nach:
*(pt+1) = 10;
*(pt+2) = *(pt+1) + 10;
*(pt+i) = 100;

5.3 Adressarithmetik 71

Durch Zuweisungen der Form
pt++;
pt = pt + 2;
pt += i;

lässt sich der Wert der Zeigervariablen selbst ändern ( Abbildung 5.8).

Abbildung 5.8 Zeigerarithmetik – Rechnen mit Adressen und Zuweisung an Zeigervariablen

pt

...

pt++;
pt

...

pt

...

pt

...

pt=pt+2;

pt+=i;

Zahlenwerte, die in Ausdrücken der Adressarithmetik auftreten, stehen nicht für eine An-
zahl von Bytes, sondern für eine Anzahl von Variablen. So wird beispielsweise durch
pt=pt+1 (oder pt++) der Adresswert in pt um so viele Bytenummern erhöht, dass pt nun
auf die nächste Variable im Speicher verweist. Wie viele Bytes das sind, hängt vom Typ ab,
für den pt deklariert ist (5.2.1): Beispielsweise beträgt die Schrittweite bei Zeigern auf
char ein Byte, bei Zeigern auf double aber z.B. acht Byte (abhängig von der konkreten
Plattform). Allgemein gilt: Referenziert pt Variablen des Typs T, so entspricht ein Zahlen-
wert n, der in einem Ausdruck mit pt auftritt, n*sizeof(T) Speicherbytes.

Kombiniert man die Adressarithmetik mit dem Dereferenzierungsoperator, so
muss man die Regeln zur Auswertungsreihenfolge der Operatoren beachten (
Anhang D.3): So wird bei *pt++ zuerst die Adresse in pt inkrementiert und dann
die resultierende Adresse dereferenziert, denn Postfixoperationen werden vor Prä-
fixoperationen ausgeführt. Möchte man dagegen den Inhalt der Speicherzelle, auf
die pt zeigt, inkrementieren, so muss man Klammern setzen: (*pt)++.

Neben der Addition ganzer Zahlen auf Zeigervariablen ist auch die Subtraktion ganzer Zah-
len wie pt-- oder pt=pt-2 zulässig. Auch kann man zwei Zeigervariablen per == und !=
auf Gleichheit prüfen, sofern sie vom selben Typ sind; ein Vergleich mit NULL ist immer
möglich. Zeigen zwei Zeigervariablen auf Komponenten desselben Arrays, so kann man sie
durch <, >, <= und >= miteinander vergleichen und ihre Werte voneinander subtrahieren.
Andere Operationen, wie beispielsweise die Multiplikation zweier Zeigervariablen, sind da-
gegen nicht sinnvoll und daher unzulässig.
Mit Hilfe der Adressarithmetik kann man also sehr flexibel programmieren. Die Adress-
arithmetik ist aber auch gefährlich, da weder vom C-Compiler noch beim Programmablauf
hinreichend geprüft wird, ob sie sinnvolle Resultate liefert. So kann eine Zeigervariable
nach der Adressrechnung durchaus auf einen Speicherbereich mit Variablen verweisen, de-

72 5 Zeiger

ren Typ nicht zum Typ der Zeigervariablen passt. Die Bitmuster in diesem Bereich werden
dann fehlinterpretiert.
Man sollte daher nur dann mit Adressarithmetik arbeiten, wenn einem die Organisation des
Speichers für das Programm genau bekannt ist. Das ist nicht so ohne Weiteres der Fall:
Selbst bei skalaren Variablen, die unmittelbar hintereinander definiert wurden, kann man
nicht unbesehen davon ausgehen, dass sie im Speicher in derselben Reihenfolge zusammen-
hängend abgelegt sind. In zwei Fällen lässt sich jedoch auch ohne tiefere Systemkenntnisse
die Adressarithmetik sicher benutzen:
• Bei Arrays, also zusammengesetzten Variablen, die eine Folge von Werten desselben

Typs enthalten (5.3.2).
• Bei Speicherblöcken, die das Programm vom Betriebssystem angefordert hat und deren

Verwaltung es dann selbst übernimmt (5.4).

5.3.2 Adressarithmetik bei Arrays

Arrays sind das ideale Anwendungsgebiet der Adressarithmetik: Sie bestehen aus mehreren
Komponenten desselben Typs, auf die man über einen ganzzahligen Index zugreift (4.3).
Da zudem die Komponenten eines Arrays im Speicher aufeinanderfolgend abgelegt sind,
lässt sich die Arrayindizierung unmittelbar durch Adressarithmetik realisieren.
Für ein C-Programm ist ein Arrayname a nichts anderes als eine Zeigerkonstante, die auf
die Speicherzelle verweist, ab der die Arrayeinträge abgelegt sind. Eine Zuweisung an die
i-te Komponente von a lässt sich dann wahlweise schreiben als a[i]=0 oder als *(a+i)=0
( Abbildung 5.9). Die Indexschreibweise, die für die Programmierung meist bequemer
ist, wird dabei intern stets auf die Adressarithmetik zurückgeführt.

Abbildung 5.9 Adressierung von Arrays mit Index- oder mit Zeigerschreibweise

a
a[0] oder *a
a[1] oder *(a+1)
a[2] oder *(a+2)

Das Programmstück, das in 4.3.1 folgendermaßen lautete:
unsigned int fibonacci[20];
fibonacci[0] = 1;
fibonacci[1] = 1;
for (int i=2; i<20; i++)
 fibonacci[i] = fibonacci[i-1] + fibonacci[i-2];

sieht in Zeigerschreibweise beispielsweise wie folgt aus:
unsigned int fibonacci[20];
*fibonacci = 1;
*(fibonacci+1) = 1;
for (int i=2; i<20; i++)
 *(fibonacci+i) = *(fibonacci+i-1) + *(fibonacci+i-2);

 225

#define .. 26, 27
#endif.. 29
#if.. 29
#ifdef .. 29
#include .. 25
&... 43, 67
&&.. 43
* .. 67
^ .. 43
| ... 43
|| .. 43

Adressarithmetik 70
Adressoperator.. 67
Aggregat ... 49, 53
Alignment... 53
ANSI-C... 2
Anweisung, bedingte 34
Argument.. 94
Array... 46

Adressarithmetik 72
eindimensionaler 46
Initialisierung 49, 50
Linearisierung 50
mehrdimensionaler 49
als Parameter 92, 97
mit Strukturen.................................. 53
mit Zeigern 80

asctime() ... 212
Assembler... 20
assert() .. 35
atexit() .. 114, 214
atox() .. 110, 210
Aufzählungstyp 58
Ausgabe, formatierte 127
Ausnahmebehandlung 35
Auswertung

von Ausdrücken 42, 189, 217
partielle.. 43

Baum .. 169
binärer ... 170

Datentyp in C.................................172
Standardoperationen173

Betriebssystem
Dienste112, 212
Kommando113, 214

Bibliothek..................................19, 20, 107
Standardbibliothek.................108, 193

binär vs. formatiert........................127, 129
Binärbaum...170

Ausgeben174
Durchlaufen173
Einfügen...176
Entfernen..177
Löschen..175
Suchen..176

Binärcode ..21
Binärmodus136, 140
Binder..20
Bindungsstärke................................42, 217
Bitfeld ...56
Bitoperatoren...43
Block ...33
boolean..41

C++ ...3
C-Standards...2
Call

by reference95
by value..94

calloc() ..112, 212
Cast ...46, 187
char..39, 40, 44
char16_t...40
char32_t...40
clearerr()..144, 195
CLion ..24
Clock Tick.....................................113, 212
clock() ...113, 212
Codesegment...107
Compiler ...20
const ..44
ctime() ...113, 213

Index

226 Index

Cygwin ... 22

Datei ... 123, 135
Öffnen ... 135
Positionszeiger 136, 141
Puffer............................. 131, 136, 144
Schließen 137
Zugriffsfunktionen 125, 193

Dateizeiger.................................... 124, 137
Datensegment 75, 107
Datenstrom 123, 135
Datenstruktur

dynamische.................................... 149
rekursive .. 172

Datentypen (siehe auch Typen) 39
Definition.. 33
Deklaration ... 33
Dereferenzierungsoperator 67
Dev-C++... 24
difftime() .. 213
double ... 41, 44
do-while.. 34
Downcast .. 46, 187

Eclipse .. 24
Ein-/Ausgabe .. 123

Standardfunktionen 125, 193
Eingabe, formatierte 129
Ellipse... 117
else.. 34
Endlosschleife .. 35
enum ... 58
Enumerationstyp..................................... 58
Error.. 20
Escape-Sequenzen 44
exit() ... 114, 214

fclose().. 137, 195
Fehlerausgabe............................... 125, 144
feof() ... 143, 196
ferror() .. 144, 196
fflush() .. 143, 196
fgetc() ... 138, 196
fgetpos().. 142
fgets().. 138, 197

FIFO..165
File Pointer....................................124, 137
Flag ...57
float ...41, 44
fopen()...135, 197
for ..34
Formatangabe/
 -element/-string128, 129, 201, 204
fprintf()..139, 198
fputc()..138, 198
fputs() ..139, 198
fread()..140, 198
free()..77, 212
freopen()..137
fscanf() ..139, 199
fseek() ...142, 199
fsetpos()...142
ftell() ...141, 199
Funktion ..87

Argument ...94
Aufruf ..93
Definition...89
Deklaration89
Kopf nach Kernighan/Ritchie93
mathematische111, 210
als Parameter..................................116
Prototyp18, 89
Rückgabewert98
Zeiger darauf..................................114

Funktionsbibliothek107
Standardbibliothek.................108, 193

Funktionsparameter.................................94
Array ..92, 97
Funktion...116
Struktur ..91
Übergabe..94
variable Anzahl116
Zeiger ...92, 95

fwrite() ..141, 200

ganze Zahlen ...39
Ganzzahlkonstante44
Garbage Collection77
GCC (Compiler)......................................22
gcc (Kommando)23

Index 227

getc()... 138, 196
getchar().. 134, 200
Gleitkommakonstante............................. 44
Gleitkommazahlen.................................. 41
goto... 35

Hashfunktion .. 167
Hashtabelle ... 166
Hauptprogramm.................................... 100
Header-Datei 17, 25, 90
Heapsegment 75, 107

if.. 34
Indirektion .. 65
Initialisierung.................. 45, 102, 103, 104

von Arrays 49, 50
von Stringvariablen 51
von Strukturen 53
von Unions 56

Inorder .. 173
int.. 39, 44
Integrated Development Environment
 (IDE).. 24
Interpretation .. 11
isxxx()... 109, 207

Java... 3
im Vergleich zu C 8

Kalenderzeit.................................. 113, 213
Keller .. 151, 166
Kernighan-Ritchie-C 2
komplexe Zahlen 41
Konstante.. 44

benannte 26, 44
mathematische............................... 192
symbolische............................... 26, 58
vordefinierte 191
Zeichenkette 51, 74

Kontrollstruktur 33
Konversionsangabe 128, 129, 201, 204

Label ... 35
Lademodul.. 21
Laufzeitsystem.. 21

libc...108
Library...19
LIFO..166
Linker ..20
Linux ...108
Liste...150

Datentyp.................................151, 159
doppelt verkettete...........................150
Durchlaufen152, 160
einfach verkettete...........................150
Einfügen.................................153, 161
Entfernen................................156, 163
lineare ..150
Suchen....................................153, 160
zyklisch verkettete151

localtime()113, 213
long ...39, 44
long double..41, 44
long long ...44
lvalue...46

main...100
Makro..27
malloc()75, 76, 212
Maschinensprache...................................10
Memory Leak..77
memxxx()112, 209
Menge ...180

Realisierung durch Bitmap183
Realisierung durch Liste180
sortierte ..151

MinGW ...22
Modifikator ...40
Modul..18, 21
Modularisierung......................................21

Nullzeiger..66

Objektmodul ...20
objektorientiert ..9
Öffnen einer Datei.................................135
Operatoren...42

aussagenlogische........................42, 43
Bindungsstärke42, 217
relationale ..42

228 Index

Padbyte ... 53
Parameter.. 94
perror().. 144, 200
Pointer (siehe auch Zeiger)..................... 65
Pointervariable.. 64
Positionszeiger.............................. 136, 141
Postorder... 174
Präprozessor 20, 24

Anweisungen................................... 17
Preorder .. 173
printf() .. 127, 200
Programmentwicklungsumgebung......... 24
Programmiersprache

objektorientierte 9
prozedurale 10

Prototyp .. 18, 89
prozedural ... 10
Prozessorzeit... 113
Pufferung der Eingabe.......................... 131
Punktnotation.................................... 52, 55
putc() .. 138
putchar() 135, 203
puts()... 135, 203

Queue.. 151, 165

realloc() .. 112
Referenzaufruf.. 95
Rekursion.. 172

wechselseitige 90
remove() 145, 203
rename().. 145, 203
return .. 98
rewind() .. 142, 204

scanf() ... 129, 204
Schachtelung

von Blöcken 33
von Strukturen 55

Schleife ... 34
endlose... 35

Schließen einer Datei............................ 137
Sequenzpunkt 42, 189
setvbuf().. 144, 206
Shift .. 43

short...39, 40
signed ..41
size_t ...76
sizeof ...40
Speicherbelegung, dynamische75, 112, 212
Speicherklasse.......................................101

auto ..102
extern ...104
register ...103
static ...102

sprintf() ...140, 206
Sprunganweisung....................................35
sscanf() ..140, 206
Stack..151, 166
Stacksegment75, 94, 107
Standardbibliothek108, 193
Standardströme/-dateien125
stdin/stdout/stderr..................................125
strcat() ...51, 208
strcmp() ...51, 208
strcpy() ..51, 208
String (siehe auch Zeichenkette).............50
strlen() ...51, 208
Struktur (struct)52

als Funktionswert.............................99
Initialisierung...................................53
als Parameter....................................91
Typdefinition54
Zeiger darauf....................................79
mit Zeigern auf Strukturen...............81

Strukturbaum...171
strxxx() ..109, 208
Suchbaum..171

Einfügen...176
Entfernen..177
Suchen..176

switch ..34
system()...113, 214

Textmodus.....................................136, 140
time()...113, 213
tmpfile() ..145, 206
tolower()..109, 207
toupper()..109, 207
Type Cast ..46, 187

Index 229

typedef .. 59
Typen.. 39

für Aufzählungen 58
global definierte 105
skalare ... 39
für Strukturen 54
Umwandlung 46
Wertebereiche 39, 41, 191, 216

Typumwandlung................................... 187

Überlauf.. 133
Übersetzer... 20
Übersetzung...................................... 11, 20

bedingte ... 29
Umwandlungsfunktionen 110, 210
ungetc()... 138
Union .. 55
UNIX .. 108
unsigned.. 40, 44

Variable .. 39
automatische.................................. 102
globale 45, 104
Initialisierung 45, 102, 103, 104
lokale 45, 102
statische ... 102

Variable Length Arrays (VLAs)............. 47
Variablenzugriff, indirekter.................... 65
Vektoroperationen 97
Verdeckung .. 33
Visual Studio .. 24
void *.. 70

Wahrheitswerte41
Warning...20
Warteschlange...............................151, 165
wchar_t..40
Wertaufruf...94
Wertzuweisung45, 188
while..34
Whitespace..109
WSL ..22

Zeichen..39
Konstanten44
Standardfunktionen................109, 207

Zeichenkette (String)50
Initialisierung...................................51
konstante51, 74
Standardfunktionen................109, 208

Zeiger ..65
als Funktionswert.............................99
als Parameter..............................92, 95
auf Funktionen114
auf Zeiger...82
ungetypter ..70

Zeigervariable ...64
Zeitfunktionen...............................113, 212
Zuweisung.......................................45, 188

	Deckblatt_Leseprobe
	Inhalt
	Vorwort
	Zusatzmaterial
	Leseprobe
	Index

