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XI

Vorwort

Dieses Buch gibt eine Einfiihrung in die Programmiersprache C und setzt dabei Kenntnisse
in der Sprache Java voraus. Auf den ersten Blick mag das ungew6hnlich erscheinen, ist doch
C ein Vorlaufer von Java und nicht umgekehrt. Der Ansatz ist dennoch sinnvoll, da in vielen
Studiengéngen Java als erste Programmiersprache gelehrt wird. In weiterfiihrenden Fachern
und der darauf aufbauenden Berufspraxis werden jedoch auch C-Kenntnisse bendtigt, bei-
spielsweise zur hardwarenahen Programmierung oder zur Programmierung an der Schnitt-
stelle eines Betriebssystems. C muss also ,,nachgelernt* werden.

Das Buch wendet sich daher an Studentinnen, Studenten und andere Interessierte, die bereits
Erfahrung mit Java haben und C als weitere Programmiersprache lernen wollen oder miis-
sen. Es ist keine grundstiandige Darstellung von C, sondern konzentriert sich auf die Beson-
derheiten der Sprache im Vergleich zu Java. Damit bietet es eine zwar vergleichsweise
kurze, aber doch recht detaillierte und tiefgingige Einfiihrung in C. Profitieren wird man
auch, wenn man schon einmal mit C in Berithrung gekommen ist und nun seine Kenntnisse
vertiefen mochte.

Leserinnen und Leser lernen zunichst die grundlegenden Unterschiede in den Sprachansit-
zen von C und Java, aber auch die vielféltigen Gemeinsamkeiten beider Sprachen kennen.
Sie werden dann mit den Besonderheiten von C vertraut gemacht und lernen, die C-spezifi-
schen Konzepte praktisch anzuwenden. Insbesondere werden sie dazu beféhigt, sicher mit
Zeigern/Pointern (einem fundamentalen Sprachkonstrukt, das es in Java so nicht gibt) um-
zugehen und dynamische Datenstrukturen, die in Java durch vordefinierte Klassen bereitge-
stellt werden, in C selbst auszuprogrammieren.

Das Buch kann man auf drei Arten nutzen:

»  Wenn man sich rasch einen Uberblick iiber C verschaffen mochte, so sollte man die acht
,»Schnelleinstiege® zu Beginn der einzelnen Kapitel lesen. Sie ermdglichen den unmit-
telbaren Einstieg in die praktische C-Programmierung.

*  Wenn man C im Detail kennenlernen mdochte, so sollte man die Kapitel des Buchs suk-
zessive durcharbeiten und die Beispielprogramme praktisch ausprobieren. Man lernt da-
bei nicht nur die sprachlichen Mdoglichkeiten von C, sondern auch typische Program-
miertricks und -fallen kennen.

*  Wenn man bei der spiteren praktischen Arbeit bestimmte Details nachschlagen mdchte,
so sollte man dazu die Anhinge benutzen. Insbesondere findet man ganz am Ende des
Buchs eine tabellarische Darstellung von Informationen, die man bei der C-Program-
mierung héufig benotigt.

Viele Beispiele und Grafiken verdeutlichen den Stoff und Verweise innerhalb des Buchs
zeigen Zusammenhinge zwischen den Teilbereichen auf. Tricks, Fallen und Informationen
fiir Fortgeschrittene sind typografisch hervorgehoben. Ubungsaufgaben dienen zur Uber-
priifung des Lernerfolgs.



X

Die erste Auflage des Buchs erschien unter dem Titel ,,C fiir Java-Programmierer. Diese
zweite Auflage mit dem Titel ,,Von Java zu C* wurde beziiglich einiger weniger technischer
Details aktualisiert. Die Anderungen halten sich aber in engen Grenzen, da C eine sehr sta-
bile Programmiersprache ist. Zudem wurden die Quellenhinweise und die Empfehlungen zu
Programmierwerkzeugen aufgefrischt sowie Fehler korrigiert. SchlieBlich wurde der Text
im Hinblick auf eine geschlechtergerechte Sprache iiberarbeitet, was auch der Grund fiir die
Anderung des Buchtitels war. Sterne * treten aber nach wie vor nur als Operatoren der Pro-
grammiersprache C auf.

KélIn/Bergisch Gladbach, im Sommer 2024 Carsten Vogt
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Zusatzmaterial zum Buch

Zu diesem Buch stehen IThnen weitere Inhalte digital zur Verfiigung:

* die Beispielprogramme,

+ die Losungen der Ubungsaufgaben,

 die nach Drucklegung entdeckten Fehler

Gehen Sie dazu einfach auf
https://plus.hanser-fachbuch.de

und geben Sie dort diesen Code ein:
plus-12abc-8xyz9

Hinweise auf Dokumentationen und Werkzeuge, die im Internet frei verfligbar sind, gibt der
Literaturteil auf Seite 223.
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Das Zeiger-/Pointerkonzept ist eine charakteristische Eigenschaft der Programmierspra-
che C: Zeigervariablen enthalten Adressen von Speicherzellen. Sie ,,zeigen somit auf diese
Speicherzellen und ermdglichen dadurch den Zugriff auf die dort gespeicherten Werte. Im
Zeigerkonzept wird also die grundlegende Eigenschaft von C deutlich, nicht nur eine an-
wendungsorientierte, sondern auch eine hardwarenahe Sprache zu sein.

Speicher

Zeiger-/Pointervariable: enthalt eine Speicheradresse
< ——]

> = Zeiger-/Pointervariable ,zeigt auf eine Speicherzelle®
Wert

Speicherzelle: enthalt einen Wert

Abbildung 5.1 Speicheradresse in einer Zeiger-/Pointervariablen

Zeiger erlauben eine sehr flexible Programmierung: Mit ihnen kann ein Programm wéhrend
seiner Ausfiihrung, also ,,dynamisch®, bestimmen, auf welchen Speicherzellen es arbeitet,
und dabei auf beliebige Bereiche seines Speichers zugreifen. Zeiger sind aber auch geféhr-
lich: Bitmuster in Zellen sind ohne eine zwingende Typpriifung oder andere Schutzmecha-
nismen zugénglich, so dass die Fehlergefahr hoch ist. In Java hat man daher auf ein
allgemeines Zeigerkonzept verzichtet und sich auf typsichere Objektreferenzen beschrankt.

5.1 Java-Objektvariablen vs. C-Zeigervariablen

Die von Java her bekannten Objektreferenzen sind Verweise auf Objekte. Objektreferen-
zen werden in Objektvariablen gespeichert, iiber die man auf die Objekte zugreifen kann.
Objekte und Objektvariablen sind typisiert, gehoren also Klassen an, und bei jeder Opera-
tion auf einer Objektvariablen findet eine strenge Typpriifung statt.

Ein einfaches Java-Programm mit einem Objekt, das Informationen iiber eine Person in ei-
ner Firma enthilt, konnte beispielsweise wie folgt aussehen:

class AngestelltenInfo {
) Java ...
String name;
int personalnummer;

float gehalt;
}i

AngestelltenInfo a = new AngestelltenInfol();

Das Programm definiert die Klasse AngestelltenInfo (wobei, um einen unmittelbaren
Vergleich mit einer C-Struktur ziehen zu kdnnen, keine Methoden vereinbart werden, ins-
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besondere auch keine get- und set-Methoden und kein Konstruktor). Es erzeugt dann ein
Objekt dieser Klasse und legt in der Variablen a eine Referenz darauf ab. Abbildung 5.2 il-
lustriert die zugrunde liegende Sichtweise: Eine typisierte Objektvariable verweist auf ein
typisiertes Objekt. Davon, dass das Objekt und auch die Variable durch Bitmuster in Spei-
cherzellen realisiert werden, wird vollstdndig abstrahiert.

Java-Objektvariable a Java-Objekt der Klasse AngestelltenInfo
E Schmitz a.name
1234 a.personalnummer
2752.44 a.gehalt

Abbildung 5.2 Objektvariable und Objekt in Java

Ein C-Programm, das diesem Java-Beispiel entspricht, konnte die folgende Form haben:
typedef struct { -
... C
char name[41]; -
int personalnummer;

float gehalt;
} angestellten info;

angestellten info as;

angestellten info *a;

a = &as;
Wie aus — 4.4 her bekannt, wird zunéchst ein Strukturtyp angestellten info definiert
und eine Variable as dieses Typs vereinbart. Neu sind die letzten beiden Zeilen des Pro-
gramms: Hier wird eine Zeiger-/Pointervariable a definiert, die Speicheradressen von Va-
riablen des Typs angestellten info aufnehmen kann. Dies wird durch die Typangabe
angestellten info * (sprich ,,Zeiger/Pointer auf angestellten info“) festgelegt.
AnschlieBend wird durch den Adressoperator & die Speicheradresse von as ermittelt und
in a gespeichert. Die Zeigervariable a zeigt jetzt also auf die Strukturvariable as.

Abbildung 5.3 verdeutlicht die Sichtweise von C: Variablen und deren Werte werden durch
Speicherzellen mit den darin enthaltenen Bitmustern realisiert. Auf die Variablen kann man
wahlweise liber Namen oder {iber Speicheradressen zugreifen.

Beim Vergleich der beiden Beispiele fillt iibrigens auf, dass im Java-Programm nur die Ob-
jektvariable einen Namen hat, nicht jedoch das Objekt selbst, wahrend im C-Programm so-
wohl die Strukturvariable selbst als auch die Zeigervariable benannt sind. Es ist jedoch auch
in C moglich, unbenannte Variablen zu erzeugen, auf die dann nur {iber (benannte) Zeiger-
variablen zugegriffen wird. Details dazu findet man in — 5.4.
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Variablen ... werden Speicherzellen
mit Werten und Namen reprasentiert mit Adressen und binéren Inhalten
durch ...
a: Zeigervariable 0...0100 0. 1000 J
as: Strukturvariable 0...1000 [ 00000100 |
Schmitz as.name 0...1001 L 11010010 J
1234 as.personalnummer
2752.44 as.gehalt i i
Variablensicht Speichersicht
(relativ abstrakt) (hardwarenah)

Abbildung 5.3 Zeiger und Zeigervariablen in C — Variablensicht vs. Speichersicht

5.2 Grundlegende Begriffe und Operatoren

5.2.1 Speicheradressen und Zeigervariablen

Variablen in C haben Adressen: Die Adresse einer Variablen ist die Nummer der Speicher-
zelle, in der ihr Wert steht (oder, wenn die Variable mehrere Zellen belegt, die Nummer ih-
rer ersten Zelle, — Abbildung 5.3). Adressen kdénnen in benannten Zeigervariablen
abgelegt werden. Enthélt eine Zeigervariable pt die Adresse einer Variablen var, so sagt
man, dass pt var referenziert oder dass pt auf var zeigt (— Abbildung 5.4 links). Zei-
gervariablen werden auch kurz Zeiger oder Pointer genannt.

Zeigervariablen sind der Ausgangspunkt indirekter Variablenzugriffe: Der Zugriff auf die
Zeigervariable liefert eine Adresse, liber die dann im zweiten Schritt auf die referenzierte
(also die ,,eigentliche*) Variable zugegriffen wird. Man kann so iiber die Zeigervariable den
Wert der referenzierten Variablen auslesen oder man kann ihn iiberschreiben. Dabei sind
auch mehrstufig indirekte Zugriffe moglich: Eine Zeigervariable kann auf eine zweite Zei-
gervariable zeigen, diese moglicherweise auf eine dritte und so weiter (— Abbildung 5.4
rechts).

Eine Zeigervariable ist meist typisiert und kann dann nur Variablen eines bestimmten Typs
referenzieren (siche aber — 5.2.4). Der Typ wird bei der Deklaration der Zeigervariablen
angegeben. Der Zugriff auf eine referenzierte Variable benétigt diese Typinformation, da
dann der Wertebereich dieser Variablen und die auf ihr zuldssigen Operationen bekannt sein
miissen. Zudem ergibt sich aus der Typangabe, wie viele Speicherzellen (ab der durch die
Zeigervariable angegebenen Zelle) zur referenzierten Variablen gehdren. So verweist bei-
spielsweise ein char-Zeiger auf eine einzelne Speicherzelle, ein double-Zeiger auf eine
Gruppe von (meist) acht Speicherzellen (— 4.1.1).
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Einstufige Indirektion: Mehrstufige Indirektion:

Zeigervariable pt:

enthalt Speicheradresse von var
| < — i

,pt zeigt auf var®

referenzierte Variable var:
enthalt Wert >

Abbildung 5.4 Indirektion mit Zeigervariablen

Wert

Um eine Zeigervariable von einer ,,normalen* Variablen zu unterscheiden, wird ihrem Na-
men bei der Deklaration ein * vorangestellt. Beispiele fiir Deklarationen von Zeigervaria-
blen sind die folgenden:
¢ char *cpt;
deklariert eine Variable cpt, die Adressen von Variablen des Typs char aufnehmen
kann.

* angestellten info *apt;
deklariert eine Variable apt, die Adressen von Strukturvariablen des Typs angestell-
ten_info aufnehmen kann.

¢ float **fppt;
deklariert eine Variable fppt, die Adressen von Variablen aufnehmen kann, in denen
wiederum Adressen von Variablen des Typs f1loat stehen konnen. Hier wird also eine
zweistufige Indirektion realisiert (— Abbildung 5.4, — 5.6).

Die Sprechweise ist dann beispielsweise: ,,cpt ist ein Zeiger/Pointer auf char® oder ,,fppt
ist ein Zeiger auf Zeiger auf float™.

, Der Stern bei der Variablendeklaration gehort stets zu einem Variablennamen. Will
/B\  man also zwei Zeiger deklarieren, so muss man int *a, *b schreiben; int *a, b
wiirde eine Zeigervariable a und eine ,,normale® int-Variable b deklarieren.

Dass hier kein Beispiel fiir einen Zeiger auf Arrays angegeben wird, hat einen besonderen
Grund: In C ist ein Array nichts anderes als ein Zeiger, ndmlich ein Zeiger auf den Anfang
der Folge von Speicherzellen, in denen der Inhalt des Arrays steht. Naheres zu diesem The-
ma findet man in — 5.3.2.

Zeigervariablen konnen, auBer Adressen anderer Variablen, den Wert NULL enthalten. NULL
ist der Nullzeiger, der angibt, dass die Zeigervariable zur Zeit auf keine andere Variable
verweist. Die Konstante NULL ist in den Header-Dateien stdio.h und stdlib.h definiert;
man kann daher in Zuweisungen und Vergleichen statt NULL auch den numerischen Wert 0
verwenden.

Eine Zeigervariable, die zwar definiert, aber noch nicht initialisiert wurde, verweist
auf irgendeine Zelle des Speichers. Ein Zugriff auf diese Speicherzelle ist kritisch,
denn dabei kdnnte der Wert der Variablen, die zuféllig an dieser Stelle steht, iiber-
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schrieben werden. Da hier weder vom C-Compiler noch beim Programmablauf
eine Fehlermeldung geliefert wird, muss man bei der Programmierung selbst darauf
achten, dass Zeigervariablen zuerst initialisiert und erst danach benutzt werden. Ei-
ner Zeigervariablen kann insbesondere auf die folgenden beiden Arten ein An-
fangswert zugewiesen werden:

*  Durch Zuweisung der Adresse einer existierenden Variablen (— 5.2.2) oder des
Nullzeigers.

* Durch Belegung eines zuvor freien Speicherbereichs und Zuweisung von des-
sen Adresse (— 5.4.1).

Ubrigens konnen Zeigervariablen nicht nur auf andere Variablen, sondern auch auf Funk-
tionen verweisen. Mit Zeigern auf Funktionen beschéftigt sich — 6.7.

5.2.2 Adress- und Dereferenzierungsoperator

Zur Arbeit mit Zeigern gibt es in C zwei grundlegende Operatoren (siche hierzu auch — Ab-
bildung 5.5 unten):
* Der Adressoperator & liefert zu einer Variablen deren Adresse. Man kann diese Adres-
se in einer Zeigervariablen speichern:
int 1i;
int *ipt;
ipt = &1i;
Auch kann man mit so ermittelten Adressen ,,rechnen®, also beispielsweise die Adresse
der im Speicher vorangehenden oder folgenden Variablen ermitteln (— 5.3).

e Der Dereferenzierungsoperator * liefert zu einem Zeiger die Variable, auf die dieser
Zeiger verweist. Beispielsweise wird durch
int 1i;
int *ipt;
ipt = &i;

*ipt = 1;

der Variablen i der Wert 1 zugewiesen. Durch
*ipt = *ipt + 1;

oder auch

(*ipt) ++;

wird der Wert von i um 1 erhdht.

ipt = &i; *ipt = 1; (*ipt) ++;
int *ipt

e s ]

Abbildung 5.5 Basisoperationen auf Zeigervariablen
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B

Bei der Programmierung mit Zeigern muss man stets gut {iberlegen, mit welcher
Variablen das Programm arbeiten soll — mit der Zeigervariablen selbst oder mit der
Variablen, auf die die Zeigervariable verweist. Beispielsweise besteht ein erhebli-
cher Unterschied zwischen den Zuweisungen pt2 = pt1 und *pt2 = *pt1 (wobei
ptl und pt2 zwei Zeigervariablen sind, — Abbildung 5.6):

ptl ptl
pt2=ptl;
789 789 ptl @)
rptorpt; pt2 E)

123

Abbildung 5.6 Zuweisung an Zeigervariable versus Zuweisung an referenzierte Variable

* Durch pt2 = pt1 wird der Inhalt der Zeigervariablen pt1 (eine Adresse) in die
Zeigervariable pt2 kopiert. Beide Zeigervariablen referenzieren also anschlie-
Bend dieselbe Variable; die Inhalte der referenzierten Variablen selbst bleiben
dagegen unveréindert.

e Durch *pt2 = *pt1 wird der Inhalt der Variablen, auf die pt 1 verweist, in die
Variable kopiert, auf die pt2 verweist. Der Inhalt einer referenzierten Variab-
len &ndert sich also, die Inhalte der Zeigervariablen bleiben aber unveréndert.

Ubrigens sind direkte Zuweisungen zwischen Zeigervariablen nur dann méglich,
wenn beide Variablen vom selben Typ sind. Anderenfalls muss eine explizite Typ-
umwandlung vorgenommen werden:

pt2 = (t2 *) ptl; (wobeipt2 vom Typ t2 * ist)

5.2.3 Zwei Programmbeispiele
Das erste Programmbeispiel demonstriert die Effekte verschiedener Adress- und Dereferen-
zierungsoperationen:

int *ptl, *pt2;

int varl = 100, var2 = 200;

ptl = &varl; /* ptl zeigt nun auf varl */

*ptl = *ptl + 1; /* entspricht varl = varl + 1 */

pt2 = ptl; /* pt2 zeigt nun auch auf varl */

ptl = &var2; /* ptl zeigt nun auf var2 */
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(*ptl) ++; /* entspricht var2 = var2 + 1; */
*pt2 = 150; /* entspricht varl = 150 */

ptl = &varl; /* ptl zeigt nun wieder auf varl */
pt2 = &var2; /* pt2 zeigt nun auf var2 */

*pt2 = *ptl; /* entspricht var2 = varl; */

Das zweite Programmbeispiel zeigt die Verwendung des Adress- und des Dereferenzie-
rungsoperators in einem konkreten Anwendungsproblem, ndmlich bei der Verwaltung von
Bankkonten. Hier kann man durch eine Eingabe eines von zwei Konten auswéhlen und dann
auf das gewihlte Konto einen bestimmten Betrag einzahlen:

float kontostand 1 = 0.0,
kontostand 2 = 0.0,

*kontozeiger,
einzahlung;
int wahl;
printf ("Bitte waehlen: 1 = Konto 1, 2 = Konto 2 ");
scanf ("%d", &wahl) ;
if (wahl==1)
kontozeiger = &kontostand 1;
else
kontozeiger = &kontostand 2;
printf ("Bitte Einzahlungsbetrag eingeben: ");

scanf ("$f", &einzahlung) ;

*kontozeiger = *kontozeiger + einzahlung;
Nach der i f-else-Anweisung verweist die Zeigervariable kontozeiger auf die Variable,
die den Stand des ausgewéhlten Kontos angibt — also entweder auf kontostand 1 oder auf
kontostand 2. Diese Variable wird dann in der letzten Anweisung um den Einzahlungs-
betrag erhoht. Hier ergibt sich also erst wihrend des Programmablaufs (also ,,dynamisch*
bei der Programmausfiihrung), mit welcher Variablen gearbeitet wird; zur Zeit der Pro-
grammiibersetzung liegt das noch nicht fest.

Man koénnte einwenden, dass der gewiinschte Effekt genauso gut durch die Anweisung

if (wahl==1)

kontostand 1 = kontostand 1 + einzahlung;
else

kontostand 2 = kontostand 2 + einzahlung;

erzielt wiirde — also ganz ohne Zeigervariable. Fiir das einfache Beispiel hier ist das sicher
richtig. Sollen aber auf der gewéhlten Variablen mehrere Operationen ausgefiihrt werden,
wiirde das Programm ohne Zeigervariable deutlich komplexer, da dann jede Operation eine
neue i f-else-Fallunterscheidung erfordert.

In diesem Beispiel wird iibrigens auch die Bedeutung des & vor dem Variablennamen im
scanf () -Aufrufklar: Es liefert die Adresse der Variablen — also die Information, in welche
Speicherzelle(n) der eingelesene Wert gebracht werden soll.
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5.2.4 Ungetypte Zeiger
getyp g <@%

Zeigervariablen werden meist beziiglich eines bestimmten Typs deklariert und
konnen damit nur Variablen dieses Typs referenzieren. Dies ist aber nicht zwingend not-
wendig:

void *pt;
deklariert eine Variable pt, die Adressen von Variablen eines beliebigen Typs speichern
kann. Man kann pt also im Laufe ihres ,,Lebens* Adressen von Variablen unterschiedlicher
Typen zuweisen:

int 1 = 1234;

float £ = 1.2345;

pt = &i;
printf ("Wert von *pt: %d\n",* ((int *)pt));
pt = &f;

printf ("Wert von *pt: $f\n",* ((float *)pt));
Wie das Beispiel zeigt, muss hier jeweils eine explizite Typumwandlung des Werts der Zei-
gervariablen stattfinden, wenn auf die referenzierte Variable zugegriffen werden soll.

5.3 Adressarithmetik

5.3.1 Operationen

Zeigervariablen enthalten Speicheradressen, also ganzzahlige Nummern von Speicherzel-
len. Mit Zeigervariablen lésst es sich daher rechnen oder, wie man auch sagt, Adressarith-
metik betreiben. Beispielsweise kann man einen Speicherbereich durchlaufen, indem man
eine Adresse schrittweise erhoht: Ist pt eine Zeigervariable, die eine Variable im Speicher
referenziert, so ist pt+1 die Adresse der ndchsten Variablen, pt+2 der iiberndchsten und so
weiter. So kann man mit Anweisungen wie

(pt+1) = 10;

*
*(pt+2) *(pt+l) + 10;
*(pt+i) = 100; // mit einer ganzzahligen Variablen i

auf verschiedenen referenzierten Variablen arbeiten (— Abbildung 5.7).

pt Speicherzustand nach:
* (pt+l) = 10;
* (pt+2) = *(pt+l) + 10;
*pt * (pt+i) = 100;
10 | *(pt+l)
20 | *(pt+2)

100 | * (pt+i) (fureini>2) . . . . .
Abbildung 5.7 Zeigerarithmetik — Rechnen mit Adressen
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Durch Zuweisungen der Form

pt++;
pt = pt + 2;
pt += 1i;

lasst sich der Wert der Zeigervariablen selbst dndern (— Abbildung 5.8).

pt pt pt
pt++;

pt=pt+2;

Abbildung 5.8 Zeigerarithmetik — Rechnen mit Adressen und Zuweisung an Zeigervariablen

Zahlenwerte, die in Ausdriicken der Adressarithmetik auftreten, stehen nicht fiir eine An-
zahl von Bytes, sondern fiir eine Anzahl von Variablen. So wird beispielsweise durch
pt=pt+1 (oder pt++) der Adresswert in pt um so viele Bytenummern erhoht, dass pt nun
auf die ndchste Variable im Speicher verweist. Wie viele Bytes das sind, hingt vom Typ ab,
fiir den pt deklariert ist (— 5.2.1): Beispielsweise betrdgt die Schrittweite bei Zeigern auf
char ein Byte, bei Zeigern auf double aber z.B. acht Byte (abhéngig von der konkreten
Plattform). Allgemein gilt: Referenziert pt Variablen des Typs T, so entspricht ein Zahlen-
wert n, der in einem Ausdruck mit pt auftritt, n*sizeof (T) Speicherbytes.

Kombiniert man die Adressarithmetik mit dem Dereferenzierungsoperator, so
i\ muss man die Regeln zur Auswertungsreihenfolge der Operatoren beachten (—
Anhang D.3): So wird bei *pt++ zuerst die Adresse in pt inkrementiert und dann
die resultierende Adresse dereferenziert, denn Postfixoperationen werden vor Pri-
fixoperationen ausgefiihrt. Mochte man dagegen den Inhalt der Speicherzelle, auf

die pt zeigt, inkrementieren, so muss man Klammern setzen: (*pt) ++.

Neben der Addition ganzer Zahlen auf Zeigervariablen ist auch die Subtraktion ganzer Zah-
len wie pt-- oder pt=pt-2 zuléssig. Auch kann man zwei Zeigervariablen per == und !=
auf Gleichheit priifen, sofern sie vom selben Typ sind; ein Vergleich mit NULL ist immer
moglich. Zeigen zwei Zeigervariablen auf Komponenten desselben Arrays, so kann man sie
durch <, >, <= und >= miteinander vergleichen und ihre Werte voneinander subtrahieren.
Andere Operationen, wie beispielsweise die Multiplikation zweier Zeigervariablen, sind da-
gegen nicht sinnvoll und daher unzuléssig.

Mit Hilfe der Adressarithmetik kann man also sehr flexibel programmieren. Die Adress-
arithmetik ist aber auch gefahrlich, da weder vom C-Compiler noch beim Programmablauf
hinreichend gepriift wird, ob sie sinnvolle Resultate liefert. So kann eine Zeigervariable
nach der Adressrechnung durchaus auf einen Speicherbereich mit Variablen verweisen, de-
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ren Typ nicht zum Typ der Zeigervariablen passt. Die Bitmuster in diesem Bereich werden
dann fehlinterpretiert.

Man sollte daher nur dann mit Adressarithmetik arbeiten, wenn einem die Organisation des
Speichers fiir das Programm genau bekannt ist. Das ist nicht so ohne Weiteres der Fall:
Selbst bei skalaren Variablen, die unmittelbar hintereinander definiert wurden, kann man
nicht unbesehen davon ausgehen, dass sie im Speicher in derselben Reihenfolge zusammen-
hiangend abgelegt sind. In zwei Fillen lésst sich jedoch auch ohne tiefere Systemkenntnisse
die Adressarithmetik sicher benutzen:

* Bei Arrays, also zusammengesetzten Variablen, die eine Folge von Werten desselben
Typs enthalten (— 5.3.2).

* Bei Speicherblocken, die das Programm vom Betriebssystem angefordert hat und deren
Verwaltung es dann selbst ibernimmt (— 5.4).

5.3.2 Adressarithmetik bei Arrays

Arrays sind das ideale Anwendungsgebiet der Adressarithmetik: Sie bestehen aus mehreren
Komponenten desselben Typs, auf die man {iber einen ganzzahligen Index zugreift (— 4.3).
Da zudem die Komponenten eines Arrays im Speicher aufeinanderfolgend abgelegt sind,
lasst sich die Arrayindizierung unmittelbar durch Adressarithmetik realisieren.

Fiir ein C-Programm ist ein Arrayname a nichts anderes als eine Zeigerkonstante, die auf
die Speicherzelle verweist, ab der die Arrayeintrage abgelegt sind. Eine Zuweisung an die
i-te Komponente von a lisst sich dann wahlweise schreiben als a [1]1=0 oder als * (a+1i) =0
(— Abbildung 5.9). Die Indexschreibweise, die fiir die Programmierung meist bequemer
ist, wird dabei intern stets auf die Adressarithmetik zuriickgefiihrt.

‘ (3—‘—» a[0] oder *a

a a[l] oder *(a+l)

a[2] oder *(a+2)

Abbildung 5.9 Adressierung von Arrays mit Index- oder mit Zeigerschreibweise

Das Programmstiick, das in 4.3.1 folgendermalfien lautete:

unsigned int fibonacci[20];

fibonacci[0] = 1;

fibonacci[l] = 1;

for (int i=2; 1<20; i++)

fibonacci[i] = fibonacci[i-1] + fibonacci[i-2];

sieht in Zeigerschreibweise beispielsweise wie folgt aus:

unsigned int fibonacci[20];

*fibonacci =1

* (fibonacci+l) = 1;

for (int i=2; 1<20; 1i++)

* (fibonacci+i) = * (fibonacci+i-1) + * (fibonacci+i-2);
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