0}

HANSER

Leseprobe

ZU

Von Java zu C

von Carsten Vogt

Print-ISBN: 978-3-446-48103-9
E-Book-ISBN: 978-3-446-48128-2

Weitere Informationen und Bestellungen unter
https://www.hanser-kundencenter.de/fachbuch/artikel/9783446481039
sowie im Buchhandel

© Carl Hanser Verlag, Miinchen

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446481039

Inhalt

Vorwort XI
Zusatzmaterial zum Buch XIII
1 Einfiihrung 1
1.1 Cund Java von den Anfangen bis heUtecccveeviiiiiieiieciieciece e 1
1.1.1 Die Entwicklung vOn C.......cccccuiiiiiiiiieniieiieeiieie ettt sveesne e eeee s 1
0 O B B T 0] 3 YU 1

1.1.1.2 Grundlegende Eigenschaftencccoecvevvviivienieiieeiicee e, 1

L1013 Standardsooeeeeeieiieeeceeeee e s 2

1.1.2 Objektorientierte Nachfolgesprachencccoeceevevieiienieeiiieniecieecee e 3

0 0 B O TSSOSO 3

L1220 JAVA. ittt e 3

1.1.3 Einsatzgebiete von C und Javaccccoeveiiiieiiiieeeeeeee e 4

1.2 CundJava im Sprachvergleich..........ccooiiiiiiiiiiie e 4
1.2.1 Drei BeiSpielprogramme...........ccceecuirieriirieniereeiesie et 4
1.2.1.1 Einfaches Programm mit Ausgabe..........ccccceverierinieneniene e 4

1.2.1.2 Programm mit Eingabe und C-spezifischen Datentypen................... 5

1.2.1.3 Programm mit einer FUnktionccoeeevieoienineneeienceeeeeene 7

1.2.2 Eigenschaften von Java vs. Eigenschaften von C...........coccoviriiiiiininnnen. 8
1.2.2.1 Tabellarischer Vergleichccoociiieniiiiniiieeeeeeee e 8

1.2.2.2 Objektorientierung vs. Prozedurorientierung...........ccecceevreeereeeennen. 9

1.2.2.3 Interpretation vs. UDEISEtZUNGccvrveveverreereererieieseeseesssneoes 10

1.3 Zu dieSem BUCK......c.ooiiiiee e e 12
L3010 AUTDAU ot 12

1.3.2 BENULZUNG ..cuueiiiiiiiieeiieiiteete ettt ettt ettt et ettt sbe e e e st 13

1.3.3 Weitere QUEIIENcccuieiiiiiiieiiecie ettt ettt e v e sve e 14

2 Struktur und Ubersetzung von C-Programmen 17
2.1 Struktur von C-Programmenccccueruereeriesiesienieerenieseesiesesesessessessnesseessessesns 17
2.1.1 C-Quellcode in einer einzelnen Datei...........ccceeeviiviecieeiiiiiieeieceeeieeies 17

2.1.2 C-Quellcode in mehreren Dateiencceeeeeeereineecrieeiecciieeee e 18

2.2 Ubersetzung von C-PrOGrammen...............coevveveverveneveseenssesessessesesessessssessnnnns 19
2.2.1 Phasen der UBEISEtZUNG.............ccooveveveeieereeeeeeeeeeeeeeeeeseseeeesese st sesnens 19

2.2.2 MOAUIATISIEIUNGeeoveieeeieieieieeieeieeieete et eaeeseesesseesaessaessesssessesssensenseensenns 21

2.2.3 GCC und weitere Programmierwerkzeugeccoevvevvevienercienienienieniennens 22

2.3 Anweisungen des PrAproZeSSOrSccvcveriieieriieienieeierieseesieseeesseesessessseseesnessennns 24
2.3.1 #include: Einfligen von Header-Dateien...........c.ccceeevevervenieseenienierieseennens 25

2.3.2 #define: einfache Ersetzung von Zeichenkettenccoeeveeeviinvenieneennnnns 26

2.3.3 #define: Makros mit Parametern..........cocevveueieiecniinienienieieieieceeeese e 27

2.3.4 #ifdef, #if: bedingte UDEISEtZUNGcocovvveveeeieeieieeeeieeeeeeeseeeeee s 29

2.4 UbUNGSAUTZADEN..........cvveieieeiieieeeeveeeeeeeeee ettt sanenens 30

Vi

3.1
3.2
3.3
34
3.5

4.1

4.2

43

4.4

4.5

4.6

4.7

5.1
52

5.3

54

Kontrollstrukturen
BLOCKE ..ottt
Bedingte ANWEISUNZENccveeieiieiieiieeieteeeeeieeeeee e evesseessesteessesseessesseessesseessenes
SCRIEIERI. ...ttt ettt
Ausnahmebehandlung und gOt0..........cceevvivieiierieriiiieieee e
UbUNGSAUTZADEN.........vveieieeiceceeeeeeeee ettt eeens

Datenorganisation
SKalare DateNEYPEN ...cc.eecuvierieerieiiieieeete st esteeite et e saeeteestaeesseestaesnseesseessseeseenseens
4.1.1 Zahlen- und ZeiChentyPencccccveevueerieiiiieiie e e eeeete e ene e e seaeeae e
4.1.2 WahThEISWETLEevieuieiiieieie ettt sttt s e eee
4.1.3 OPETAtIONEI.....cevieierieiieiieeieerteesteesteeesteeteessaeeseessseanseesseessseessaesssessseesssennes
Konstanten und Variablen..........coocooeiiiiiiiiieiieee e
4.2.1 KONSEANTEI ..cueeieniieiieie ettt ettt sttt e et e e e eae
4.2.2 Definition und Initialisierung von skalaren Variablenc.ccccccooenieicne
4.2.3 WertZUWEISUNZEN......eoueiiieiieieeiietieiie st ete sttt eeee sttt st eesbe et e sbeentenbeeneesaeens

SHUKLUIETL ...ttt ettt eb ettt ea st nens
4.4.1 Grundlegende Eigenschaften von Strukturenccccoceeeeeivvnccnnicncnene.
4.4.2 SHUKTUTTYPEI .vivireieieiieiieieeteetetest ettt ettt ettt st
4.4.3 Schachtelung von Strukturencoccveeeererininenienieieeeeneeene e
Unions und Bitfelder.......c..coeoiiiiiiiiiniiicicc et e
451 UIHODS c.vetitiietetet ettt ettt ettt bbbttt ettt bbb e nen
4.5.2 BIFRLACT ..ttt
Selbstdefinierte Wert- und Typnamencccceceeerererienienenceineneneneneneeneeeeeens
4.6.1 AUFZANIUNZSTYPEI c..ueviiiriiniiriiictctctetett ettt e
4.6.2 Der typedef-Operator.......c..cceieiriririenienieieiniente ettt st nes
UDUNESAUFZADEN.........oocvoeeie e

Zeiger
Java-Objektvariablen vs. C-Zeigervariablen............ccecevivvieneiienesienieeiee e
Grundlegende Begriffe und Operatoren............ccoceeeecveriercienenienieeiesieeeesie e
5.2.1 Speicheradressen und Zeigervariablencccccoevveeieeieciinienienieieeeee e
5.2.2 Adress- und Dereferenzierungsoperator..........c.oovveeverreereeeveeeerienreerieseenennns
5.2.3 Zwei ProgrammbeiSpiCleccuevvirieiiniieienieeieeeiese e
5.2.4 UNGELYPLE ZEIZET «oovvivveniieieieetieieeteeereeteetesteseeessesssessesssessaessessessaessesssessennes
AdressarithmeEtiKc..eoveiiiiiiiree e e
5.3.1 OPCIAtIONEN......covieiieniieiieieetieteetteteeteesae e estesreessesseessesseesseeseessesseensesseessesees
5.3.2 Adressarithmetik Dei ATTAYSc.ccvveeeriieieriieiieiieeiece et
5.3.3 Exkurs: Zeichenkettenvariablen und -konstanten
Dynamische Speicherverwalting............c.covveieriieieriinienie et se e
LR B 11T 1 Lo 1< USRI

5.4.1.1 Objekterzeugung in Java vs. Speicherbelegung in C......................

5.5

5.6
5.7

6.1
6.2

6.3

6.4
6.5

6.6

6.7

6.8

7.1

5.4.1.2 Definition von Malloc().......cccveveriirieriirieieieeieieeiee e 76
I SN (! () TSR P USRI 77
5.4.3 Zwei ProgrammbeiSpiCleccuevvivieiiinieieiieeieeciese e 78
71T AUTL STIUKIUICIL ..ottt ettt sae et be et e sbeessesbeesnenseens 79
5.5.1 Arrays mit Zeigern auf Strukturen...........ccoecvevveciiieninienieeeeeeee e 80
5.5.2 Strukturen mit Zeigern auf Strukturen.............ceevvvveeieeieciinieneeeeeeeee e 81
ZRIZET AUE ZICIZET . veveevieiieeieeie ettt ste ettt et e ste e s e steebesseessesseessesseesseessensesseensenns 82
UbUNGSAUTZADEN.........voveieieeecececeeeeee ettt seeees 83
Funktionen 87
Java-Methoden vs. C-FUnKtionenc.ccoceeveiieiiiniiienieereeeeee e 87
SCRNTESTEIIET ...t 89
6.2.1 PrOtOTYPOI ..cuieniiitieiiitiee ettt sttt 89
6.2.2 Weitere Besonderheiten von Cccooieiiiieiininieienieeeecee e 91
AUSTURIUNGttt st 93
6.3.1 ADIAUL ..o 93
6.3.2 ParameteriiDergabe.co.eeiiiiiiiiriieieeee e e 94

6.3.2.1 WertaufTufcoiieiiiiece e 94

6.3.2.2 Referenzaufruf.........c..cooeoviiiiiiiiiiicce e 95

6.3.2.3 Ubergabe VON AITAYSc.coevveveeverrriereesnssesessesee s sssssnes 97
6.3.3 ErgebniSrlick@abe.cocoiiiiiiiiiiiieieieeee e e 98
Das Hauptprogramm mMain()cceeeeeruereeerieseeienieienee e seeeeeseeeeeseeeseesseeneesseenes 100
Sichtbarkeiten und Lebensdauernccceevieviiiieniieniicciecee e 101
6.5.1 Lokale Variablen..........ccc.coouieiiiiiiiiiieie ettt e 102

6.5.1.1 Automatische Variablen............cccceveviiiiienienieiieeceecee e 102

6.5.1.2 Statische Variablen...........cccccveviieiiieniiiiiececee e 102

6.5.1.3 Registervariablen..........ccccveveiieierieiere e 103
6.5.2 Globale Variablencccuecuieierieieieiere e 104

6.5.2.1 Programme in einer einzelnen Datei.......c..ccccveverecvcincncnennenn. 104

6.5.2.2 Programme in mehreren Dateienc.cocceeveveniceecnencncncnnenn 105
6.5.3 Tabellarische Zusammenfassung.........c.cccceceeererineieinienenenenesesenenaens 107
FunktionsbibliotheKen...........ccoviiieiiiieiciec e 107
6.6.1 Definition und BenutZung........c.ccceeoveiriririninenienieicieeceesese e 107
6.6.2 Die Standardbibliothekcccovieiiirieiiiiieeeeee e 108

6.6.2.1 Funktionen fiir Zeichen und Zeichenkettenccccvvveernenne. 109

6.6.2.2 Mathematische FUnKtionencccceeevvenereenienceneeiee e 111

6.6.2.3 Betriebssystemnahe Dienste...........ceccvrvevierierienesieneeieeeeeeene 112
Techniken fiir FOrtgesChritteneccevvieieriirienecieeieee e 114
6.7.1 Zeiger auf FUNKtIONEN.........cceeieriieieiieiee e 114
6.7.2 Funktionen als Parameter............coovveouerieieininiininiceeeieeeeceeee e 116
6.7.3 Funktionen mit variabler Anzahl von Parametern.............ccccceeevevvvrvennnnnen. 116
UbUNGSAULZADEN.........cooveieeieeeeeeeee et e e eeeneen 118
Ein-/Ausgabe und Dateizugriffe 123
Grundlegende KONZEPLe........cuevieieriieieiieieie ettt ve e eeeas 123

7.1.1 Datenstrome in Java und 1N C........ccoeiviiiiiiiiiiieieie e 123

Vil

7.2

7.3

7.4
7.5

8.1
8.2

83

7.1.2 StandardsStrome/-dateienccceceeeeuiririninieneneeeee e 125
7.1.3 Klassen von E/A-FUNKHONEN......c.coceririnieniiieeieeeie e 125
Funktionen fiir die Standardein-/-ausgabeccceceverrerierieienieieciee e 127
7.2.1 printf(): formatierte AUSZADE......c.cccvevviriirrieriieieieeee e 127
7.2.1.1 Grundidee......ccceouevuenienieieieieeeeeieete ettt 127
7.2.1.2 Allgemeine FOrmccocvvveviieieniieieniecce e 128
7.2.1.3 Weitere BeiSpiClecccvevuirieriieieiiieiesie ettt 128
7.2.2 scanf(): formatierte Eingabecccoevveviiiieiiiinieiecieieeee e 129
7.2.2.1 Grundidee......ccceoevueienienieieieeeeeieete ettt 129
7.2.2.2 Allgemeine FOrmcccccevvevieiiniieieeicicce e 130
7.2.2.3 Pufferung der Eingabedaten...........ccccoeveveevieiecienienieeieieeeee 131
7.2.2.4 Weitere BeiSPIClecccvevvirieriieiiiiieiesii ettt 131
7.2.3 Weitere Funktionen fiir Zeichen und Zeichenkettenccccveevvrvennnnen. 134
Funktionen fiir beliebige Datenstrome..........ccveveerieieeiereenieieeieeeeie e enns 135
7.3.1 Offnen und SChIEBENc.oveveiveieiieiiieiceeieie e 135
7.3.2 Ein-/Ausgabe einzelner Zeichen..........cccoevevirieeieiiieieiieienieeeeie e 138
7.3.3 Ein-/Ausgabe von Zeichenketten...........ccooeiveviinieienieiineeie e 138
7.3.4 Formatierte Ein-/AUSZabe........ccccveieviiiieriiiieietieieeteeeesre e 139
7.3.5 Ein-/Ausgabe beliebiger Bytefolgen...........ccovecvivieienieiinieiececieseeeeen 140
7.3.6 Wahlfreier Zugriff.........c.occoiviieieiieieiiceee e 141
7.3.7 Spezielle FUNKtONEN.........cccovieieiieieiiieeie ettt 143
Operationen auf dem DateiSYSteMc.ccueeieviiiierieiiieietieieete e 145
UbUNGSAUTZADEN..........ooveeeeieeeeeeeeee et 145
Dynamische Datenstrukturen 149
Dynamische Datenhaltung in Java und in Cccccoeveieniiniecininnnncnceenenene 149
| 53] 1< § PO OO O U SO U PO PUUPPRUPPPUUR 150
8.2.1 Eigenschaften........coccociiiriiiiiniiiieiccesee e 150
8.2.2 Einfach verkettete LiStenccccccuiiviievieeiieeieeieeeie et 151
8.2.2.1 Typ der KNOtencoevveviriiniiiiieicicecceeeeerececeeeeeeee e 151
8.2.2.2 Durchlaufen einer LiSte..........cceevieeiieiiieieeiieciie e 152
8.2.2.3 Suchen von Eintragenccccccecevininenincnenicccincncecsese e 153
8.2.2.4 Einfligen von Knotenc.occoecevieiiininieiieeeeee e 153
8.2.2.5 Entfernen von Knotenccoecveveiieiinieiieieeceeeeeee e 156
8.2.3 Doppelt verkettete LiSten........cocevererierierieiieininineneseetceceeieeeseneeeee e 159
8.2.3.1 Typ der KNOten ...c.coevveriiiiiniiiiicicececceiceeeeeeeeeeeeeie e 159
8.2.3.2 Durchlaufen einer LiSte........ccecveieviirieieiieieieee e 160
8.2.3.3 Suchen von Eintrgencccccvevveviirieriieieeieeeeee e 160
8.2.3.4 Einfligen von Knotenc.occoeeveeieiinincienieeeeeeeee e 161
8.2.3.5 Entfernen von KNotenc.ccceeveererieneninenenieicieencecee e 163
8.2.4 Queues UNA StACKScccviiiiiiiiieiieciie ettt et eve e e 165
8.2.4.1 QUEUES ...cccuvieeeeiiieeiie et teeetee e ette e et e e e e e st e e e tb e e e araeestbeeenreeenaneas 165
B.2.4.2 StACKS .eouieeieuieiietieie ettt 166
)3 BT 1171011 1 3 s DRSSPSR 166
8.3.1 EigensSchaften........ccoooiiieiiiiieiiie ettt e 167

8.3.2 Realisierung in Java und in Ccoocoeiiiiniiiinieee e 167

8.4

8.5

8.6

Al

A2
A3

B.1
B.2

C.1

C2

C3
C4

BEUINIE ..ottt et s
8.4.1 EigensSchaften........ccccciiiiiiiiiieiiii ettt
8.4.2 BINAIDAUMEcoueitiiiiiitiieieee ettt
8.4.2.1 Eigenschaften und Beispielecccccevvevierienieniieienieeiee e,
8.4.2.2 Realisierung in C.......ccoccvevieiiiieie et se e
8.4.2.3 Durchlaufen eines Bindrbaumscccccevvevieniieienieneeieneeieeenn
8.4.2.4 Loschen eines Bindrbaums............cccevvveierieieniieienieeiee e
8.4.2.5 Suchen eines Werts in einem Suchbaumccccoeeveevevivrvennennen.
8.4.2.6 Einfiigen eines Werts in einen Suchbaum............ccccoeevevvvrvennnnen.
8.4.2.7 Loschen eines Werts aus einem Suchbaumcccoeevvvevennen.
1Y (S5 1120 DO OO PO TP UPPRTRTPIO
8.5.1 Realisierung durch Listen und BAume............cccccveviievevieieecienieiesecienens
8.5.1.1 Grundlegende Mengenoperationen auf C-Listen............c..c.c........
8.5.1.2 Bilden der Vereinigungsmenge..........c.oceeverreevenreerueseereeseessennnns
8.5.1.3 Bilden der Differenzmenge..........ccccceveevieriierienieniesieeeeeeeeeieeeen
8.5.1.4 Bilden der Schnittmengeccceecvevvieierieieerieieeiese e
8.5.2 Realisierung durch Bitmaps..........ccceoveiiviieiiriieieieseeee e
UbUNGSAUTZADEN.........vveeieeiceieeeeee ettt
Auswertung von Ausdriicken
Implizite TYPKONVETSIONENocuveivieieiieiieiieieeit ettt enes
A.1.1 Konversionen in Rechenausdriicken............ccccoeviivieeciieniieniieciecieeeeen
A.1.2 Konversionen bei ZUWEISUNZEI.........ccueeveruiereereeiereeeiieiesseeeeseeeneeeeeseeenes
SEQUENZPUNKLEcoueeiiiriiriitirierteteete ettt eb e
Bindungsstirken und Auswertungsreihenfolgen...........cocevvvieiinieninienceeee
Vordefinierte Konstanten
Wertebereiche der skalaren TYPen........cocvecvevieiirieiiene et
Mathematische KONStantenccccceevveriieienieienieiee e
Standardbibliothek
Dateizugriffe und Ein-/AUSZabecceovveiiiiiiiniiie e
C.1.1 Thematische Ubersicht {iber die Funktionencccocoevverivevrenennnn.
C.1.2 Funktionen in alphabetischer Reithenfolgeccccceveiieniinciienienieeieens
Zeichen, Zeichenketten und Bytefolgenccovveviiiciiiiienciieiiecieceee e
C.2.1 Test einzelner ZEICheNcccueeiieiiienieeiiesieie et eve et sae e
C.2.2 Umwandlung von ZeiChenN..........c.eecveeriiiiienieeieesieesiesieesteeveesiee e e
C.2.3 ZeichenKettenc.covuiiiiiiiiieiieiieiceecee et
C.2.4 ByYtefOlZEN/ATTAYS ..cccueerurieiieriieeieerieeeeeeteesteesteesteesseessseesseesssessseesssessseenes
C.2.5 KONVEISIONENcuviiniiiieniieiieiieiieie ettt sttt sttt st s
Mathematische Funktionencoccooeiiiieiiniininii e
Betriebssystemnahe DIenste..........cccuevieeciierieiiieriieiieee e sre et sve e s
C.4.1 Dynamische Speicherverwaltungcccceevveeeiienieniieeciienieeieenee e
C.4.2 ZettfunKtioNeNoouiiiiiiiiieiieieie et
C.4.3 Weitere FUNKHONEN.eoiiiiiiiiiieieiceieccceeeeee e

D Hiufig bendtigte Tabellen 215
DT ASCIL ettt ettt et 215
D.2 Variablengroflen und Wertebereiche..........vevvivveriiieeieniieienicieeeeie e 216
D.3 Bindungsstarke vOn OPeratoren..........ccooieeeriieeeneseeiresieieseeseseesseseessesssessesnnes 217
D.4 Optionen flr fOPEN()ccveririeriieieiieieriiee ettt e seesaesaeenees 218
D.5 Konversionsangaben fiir die Ein-/Ausgabe..........cccecevirierierveiinienieienieeiesee e 219

DS PN ctiiieiieiieieeee ettt sb et beesa et e erseeae s 219

D.5.2 SCANT() viovieiieiieiieiee ettt ettt e rseeae s 221
Literatur und Internet 223
BUCRET .. ettt st et 223
StandardisierungSAOKUMENTE.cc.eiiiriiiirieieieee et 223
INteTNEt-QUEILEN....c..ei ettt e sreebe e stbeeaeeesaeenbaesaeeneas 224

Index 225

XI

Vorwort

Dieses Buch gibt eine Einfiihrung in die Programmiersprache C und setzt dabei Kenntnisse
in der Sprache Java voraus. Auf den ersten Blick mag das ungew6hnlich erscheinen, ist doch
C ein Vorlaufer von Java und nicht umgekehrt. Der Ansatz ist dennoch sinnvoll, da in vielen
Studiengéngen Java als erste Programmiersprache gelehrt wird. In weiterfiihrenden Fachern
und der darauf aufbauenden Berufspraxis werden jedoch auch C-Kenntnisse bendtigt, bei-
spielsweise zur hardwarenahen Programmierung oder zur Programmierung an der Schnitt-
stelle eines Betriebssystems. C muss also ,,nachgelernt* werden.

Das Buch wendet sich daher an Studentinnen, Studenten und andere Interessierte, die bereits
Erfahrung mit Java haben und C als weitere Programmiersprache lernen wollen oder miis-
sen. Es ist keine grundstiandige Darstellung von C, sondern konzentriert sich auf die Beson-
derheiten der Sprache im Vergleich zu Java. Damit bietet es eine zwar vergleichsweise
kurze, aber doch recht detaillierte und tiefgingige Einfiihrung in C. Profitieren wird man
auch, wenn man schon einmal mit C in Berithrung gekommen ist und nun seine Kenntnisse
vertiefen mochte.

Leserinnen und Leser lernen zunichst die grundlegenden Unterschiede in den Sprachansit-
zen von C und Java, aber auch die vielféltigen Gemeinsamkeiten beider Sprachen kennen.
Sie werden dann mit den Besonderheiten von C vertraut gemacht und lernen, die C-spezifi-
schen Konzepte praktisch anzuwenden. Insbesondere werden sie dazu beféhigt, sicher mit
Zeigern/Pointern (einem fundamentalen Sprachkonstrukt, das es in Java so nicht gibt) um-
zugehen und dynamische Datenstrukturen, die in Java durch vordefinierte Klassen bereitge-
stellt werden, in C selbst auszuprogrammieren.

Das Buch kann man auf drei Arten nutzen:

» Wenn man sich rasch einen Uberblick iiber C verschaffen mochte, so sollte man die acht
,»Schnelleinstiege® zu Beginn der einzelnen Kapitel lesen. Sie ermdglichen den unmit-
telbaren Einstieg in die praktische C-Programmierung.

* Wenn man C im Detail kennenlernen mdochte, so sollte man die Kapitel des Buchs suk-
zessive durcharbeiten und die Beispielprogramme praktisch ausprobieren. Man lernt da-
bei nicht nur die sprachlichen Mdoglichkeiten von C, sondern auch typische Program-
miertricks und -fallen kennen.

* Wenn man bei der spiteren praktischen Arbeit bestimmte Details nachschlagen mdchte,
so sollte man dazu die Anhinge benutzen. Insbesondere findet man ganz am Ende des
Buchs eine tabellarische Darstellung von Informationen, die man bei der C-Program-
mierung héufig benotigt.

Viele Beispiele und Grafiken verdeutlichen den Stoff und Verweise innerhalb des Buchs
zeigen Zusammenhinge zwischen den Teilbereichen auf. Tricks, Fallen und Informationen
fiir Fortgeschrittene sind typografisch hervorgehoben. Ubungsaufgaben dienen zur Uber-
priifung des Lernerfolgs.

X

Die erste Auflage des Buchs erschien unter dem Titel ,,C fiir Java-Programmierer. Diese
zweite Auflage mit dem Titel ,,Von Java zu C* wurde beziiglich einiger weniger technischer
Details aktualisiert. Die Anderungen halten sich aber in engen Grenzen, da C eine sehr sta-
bile Programmiersprache ist. Zudem wurden die Quellenhinweise und die Empfehlungen zu
Programmierwerkzeugen aufgefrischt sowie Fehler korrigiert. SchlieBlich wurde der Text
im Hinblick auf eine geschlechtergerechte Sprache iiberarbeitet, was auch der Grund fiir die
Anderung des Buchtitels war. Sterne * treten aber nach wie vor nur als Operatoren der Pro-
grammiersprache C auf.

KélIn/Bergisch Gladbach, im Sommer 2024 Carsten Vogt

X

Zusatzmaterial zum Buch

Zu diesem Buch stehen IThnen weitere Inhalte digital zur Verfiigung:

* die Beispielprogramme,

+ die Losungen der Ubungsaufgaben,

 die nach Drucklegung entdeckten Fehler

Gehen Sie dazu einfach auf
https://plus.hanser-fachbuch.de

und geben Sie dort diesen Code ein:
plus-12abc-8xyz9

Hinweise auf Dokumentationen und Werkzeuge, die im Internet frei verfligbar sind, gibt der
Literaturteil auf Seite 223.

63

5 Zeiger

Das Zeiger-/Pointerkonzept ist eine charakteristische Eigenschaft der Programmierspra-
che C: Zeigervariablen enthalten Adressen von Speicherzellen. Sie ,,zeigen somit auf diese
Speicherzellen und ermdglichen dadurch den Zugriff auf die dort gespeicherten Werte. Im
Zeigerkonzept wird also die grundlegende Eigenschaft von C deutlich, nicht nur eine an-
wendungsorientierte, sondern auch eine hardwarenahe Sprache zu sein.

Speicher

Zeiger-/Pointervariable: enthalt eine Speicheradresse
< ——]

> = Zeiger-/Pointervariable ,zeigt auf eine Speicherzelle®
Wert

Speicherzelle: enthalt einen Wert

Abbildung 5.1 Speicheradresse in einer Zeiger-/Pointervariablen

Zeiger erlauben eine sehr flexible Programmierung: Mit ihnen kann ein Programm wéhrend
seiner Ausfiihrung, also ,,dynamisch®, bestimmen, auf welchen Speicherzellen es arbeitet,
und dabei auf beliebige Bereiche seines Speichers zugreifen. Zeiger sind aber auch geféhr-
lich: Bitmuster in Zellen sind ohne eine zwingende Typpriifung oder andere Schutzmecha-
nismen zugénglich, so dass die Fehlergefahr hoch ist. In Java hat man daher auf ein
allgemeines Zeigerkonzept verzichtet und sich auf typsichere Objektreferenzen beschrankt.

5.1 Java-Objektvariablen vs. C-Zeigervariablen

Die von Java her bekannten Objektreferenzen sind Verweise auf Objekte. Objektreferen-
zen werden in Objektvariablen gespeichert, iiber die man auf die Objekte zugreifen kann.
Objekte und Objektvariablen sind typisiert, gehoren also Klassen an, und bei jeder Opera-
tion auf einer Objektvariablen findet eine strenge Typpriifung statt.

Ein einfaches Java-Programm mit einem Objekt, das Informationen iiber eine Person in ei-
ner Firma enthilt, konnte beispielsweise wie folgt aussehen:

class AngestelltenInfo {
) Java ...
String name;
int personalnummer;

float gehalt;
}i

AngestelltenInfo a = new AngestelltenInfol();

Das Programm definiert die Klasse AngestelltenInfo (wobei, um einen unmittelbaren
Vergleich mit einer C-Struktur ziehen zu kdnnen, keine Methoden vereinbart werden, ins-

64 5 Zeiger

besondere auch keine get- und set-Methoden und kein Konstruktor). Es erzeugt dann ein
Objekt dieser Klasse und legt in der Variablen a eine Referenz darauf ab. Abbildung 5.2 il-
lustriert die zugrunde liegende Sichtweise: Eine typisierte Objektvariable verweist auf ein
typisiertes Objekt. Davon, dass das Objekt und auch die Variable durch Bitmuster in Spei-
cherzellen realisiert werden, wird vollstdndig abstrahiert.

Java-Objektvariable a Java-Objekt der Klasse AngestelltenInfo
E Schmitz a.name
1234 a.personalnummer
2752.44 a.gehalt

Abbildung 5.2 Objektvariable und Objekt in Java

Ein C-Programm, das diesem Java-Beispiel entspricht, konnte die folgende Form haben:
typedef struct { -
... C
char name[41]; -
int personalnummer;

float gehalt;
} angestellten info;

angestellten info as;

angestellten info *a;

a = &as;
Wie aus — 4.4 her bekannt, wird zunéchst ein Strukturtyp angestellten info definiert
und eine Variable as dieses Typs vereinbart. Neu sind die letzten beiden Zeilen des Pro-
gramms: Hier wird eine Zeiger-/Pointervariable a definiert, die Speicheradressen von Va-
riablen des Typs angestellten info aufnehmen kann. Dies wird durch die Typangabe
angestellten info * (sprich ,,Zeiger/Pointer auf angestellten info“) festgelegt.
AnschlieBend wird durch den Adressoperator & die Speicheradresse von as ermittelt und
in a gespeichert. Die Zeigervariable a zeigt jetzt also auf die Strukturvariable as.

Abbildung 5.3 verdeutlicht die Sichtweise von C: Variablen und deren Werte werden durch
Speicherzellen mit den darin enthaltenen Bitmustern realisiert. Auf die Variablen kann man
wahlweise liber Namen oder {iber Speicheradressen zugreifen.

Beim Vergleich der beiden Beispiele fillt iibrigens auf, dass im Java-Programm nur die Ob-
jektvariable einen Namen hat, nicht jedoch das Objekt selbst, wahrend im C-Programm so-
wohl die Strukturvariable selbst als auch die Zeigervariable benannt sind. Es ist jedoch auch
in C moglich, unbenannte Variablen zu erzeugen, auf die dann nur {iber (benannte) Zeiger-
variablen zugegriffen wird. Details dazu findet man in — 5.4.

5.2 Grundlegende Begriffe und Operatoren 65

Variablen ... werden Speicherzellen
mit Werten und Namen reprasentiert mit Adressen und binéren Inhalten
durch ...
a: Zeigervariable 0...0100 0. 1000 J
as: Strukturvariable 0...1000 [00000100 |
Schmitz as.name 0...1001 L 11010010 J
1234 as.personalnummer
2752.44 as.gehalt i i
Variablensicht Speichersicht
(relativ abstrakt) (hardwarenah)

Abbildung 5.3 Zeiger und Zeigervariablen in C — Variablensicht vs. Speichersicht

5.2 Grundlegende Begriffe und Operatoren

5.2.1 Speicheradressen und Zeigervariablen

Variablen in C haben Adressen: Die Adresse einer Variablen ist die Nummer der Speicher-
zelle, in der ihr Wert steht (oder, wenn die Variable mehrere Zellen belegt, die Nummer ih-
rer ersten Zelle, — Abbildung 5.3). Adressen kdénnen in benannten Zeigervariablen
abgelegt werden. Enthélt eine Zeigervariable pt die Adresse einer Variablen var, so sagt
man, dass pt var referenziert oder dass pt auf var zeigt (— Abbildung 5.4 links). Zei-
gervariablen werden auch kurz Zeiger oder Pointer genannt.

Zeigervariablen sind der Ausgangspunkt indirekter Variablenzugriffe: Der Zugriff auf die
Zeigervariable liefert eine Adresse, liber die dann im zweiten Schritt auf die referenzierte
(also die ,,eigentliche*) Variable zugegriffen wird. Man kann so iiber die Zeigervariable den
Wert der referenzierten Variablen auslesen oder man kann ihn iiberschreiben. Dabei sind
auch mehrstufig indirekte Zugriffe moglich: Eine Zeigervariable kann auf eine zweite Zei-
gervariable zeigen, diese moglicherweise auf eine dritte und so weiter (— Abbildung 5.4
rechts).

Eine Zeigervariable ist meist typisiert und kann dann nur Variablen eines bestimmten Typs
referenzieren (siche aber — 5.2.4). Der Typ wird bei der Deklaration der Zeigervariablen
angegeben. Der Zugriff auf eine referenzierte Variable benétigt diese Typinformation, da
dann der Wertebereich dieser Variablen und die auf ihr zuldssigen Operationen bekannt sein
miissen. Zudem ergibt sich aus der Typangabe, wie viele Speicherzellen (ab der durch die
Zeigervariable angegebenen Zelle) zur referenzierten Variablen gehdren. So verweist bei-
spielsweise ein char-Zeiger auf eine einzelne Speicherzelle, ein double-Zeiger auf eine
Gruppe von (meist) acht Speicherzellen (— 4.1.1).

66 5 Zeiger

Einstufige Indirektion: Mehrstufige Indirektion:

Zeigervariable pt:

enthalt Speicheradresse von var
| < — i

,pt zeigt auf var®

referenzierte Variable var:
enthalt Wert >

Abbildung 5.4 Indirektion mit Zeigervariablen

Wert

Um eine Zeigervariable von einer ,,normalen* Variablen zu unterscheiden, wird ihrem Na-
men bei der Deklaration ein * vorangestellt. Beispiele fiir Deklarationen von Zeigervaria-
blen sind die folgenden:
¢ char *cpt;
deklariert eine Variable cpt, die Adressen von Variablen des Typs char aufnehmen
kann.

* angestellten info *apt;
deklariert eine Variable apt, die Adressen von Strukturvariablen des Typs angestell-
ten_info aufnehmen kann.

¢ float **fppt;
deklariert eine Variable fppt, die Adressen von Variablen aufnehmen kann, in denen
wiederum Adressen von Variablen des Typs f1loat stehen konnen. Hier wird also eine
zweistufige Indirektion realisiert (— Abbildung 5.4, — 5.6).

Die Sprechweise ist dann beispielsweise: ,,cpt ist ein Zeiger/Pointer auf char® oder ,,fppt
ist ein Zeiger auf Zeiger auf float™.

, Der Stern bei der Variablendeklaration gehort stets zu einem Variablennamen. Will
/B\ man also zwei Zeiger deklarieren, so muss man int *a, *b schreiben; int *a, b
wiirde eine Zeigervariable a und eine ,,normale® int-Variable b deklarieren.

Dass hier kein Beispiel fiir einen Zeiger auf Arrays angegeben wird, hat einen besonderen
Grund: In C ist ein Array nichts anderes als ein Zeiger, ndmlich ein Zeiger auf den Anfang
der Folge von Speicherzellen, in denen der Inhalt des Arrays steht. Naheres zu diesem The-
ma findet man in — 5.3.2.

Zeigervariablen konnen, auBer Adressen anderer Variablen, den Wert NULL enthalten. NULL
ist der Nullzeiger, der angibt, dass die Zeigervariable zur Zeit auf keine andere Variable
verweist. Die Konstante NULL ist in den Header-Dateien stdio.h und stdlib.h definiert;
man kann daher in Zuweisungen und Vergleichen statt NULL auch den numerischen Wert 0
verwenden.

Eine Zeigervariable, die zwar definiert, aber noch nicht initialisiert wurde, verweist
auf irgendeine Zelle des Speichers. Ein Zugriff auf diese Speicherzelle ist kritisch,
denn dabei kdnnte der Wert der Variablen, die zuféllig an dieser Stelle steht, iiber-

5.2 Grundlegende Begriffe und Operatoren 67

schrieben werden. Da hier weder vom C-Compiler noch beim Programmablauf
eine Fehlermeldung geliefert wird, muss man bei der Programmierung selbst darauf
achten, dass Zeigervariablen zuerst initialisiert und erst danach benutzt werden. Ei-
ner Zeigervariablen kann insbesondere auf die folgenden beiden Arten ein An-
fangswert zugewiesen werden:

* Durch Zuweisung der Adresse einer existierenden Variablen (— 5.2.2) oder des
Nullzeigers.

* Durch Belegung eines zuvor freien Speicherbereichs und Zuweisung von des-
sen Adresse (— 5.4.1).

Ubrigens konnen Zeigervariablen nicht nur auf andere Variablen, sondern auch auf Funk-
tionen verweisen. Mit Zeigern auf Funktionen beschéftigt sich — 6.7.

5.2.2 Adress- und Dereferenzierungsoperator

Zur Arbeit mit Zeigern gibt es in C zwei grundlegende Operatoren (siche hierzu auch — Ab-
bildung 5.5 unten):
* Der Adressoperator & liefert zu einer Variablen deren Adresse. Man kann diese Adres-
se in einer Zeigervariablen speichern:
int 1i;
int *ipt;
ipt = &1i;
Auch kann man mit so ermittelten Adressen ,,rechnen®, also beispielsweise die Adresse
der im Speicher vorangehenden oder folgenden Variablen ermitteln (— 5.3).

e Der Dereferenzierungsoperator * liefert zu einem Zeiger die Variable, auf die dieser
Zeiger verweist. Beispielsweise wird durch
int 1i;
int *ipt;
ipt = &i;

*ipt = 1;

der Variablen i der Wert 1 zugewiesen. Durch
*ipt = *ipt + 1;

oder auch

(*ipt) ++;

wird der Wert von i um 1 erhdht.

ipt = &i; *ipt = 1; (*ipt) ++;
int *ipt

e s]

Abbildung 5.5 Basisoperationen auf Zeigervariablen

68

5 Zeiger

B

Bei der Programmierung mit Zeigern muss man stets gut {iberlegen, mit welcher
Variablen das Programm arbeiten soll — mit der Zeigervariablen selbst oder mit der
Variablen, auf die die Zeigervariable verweist. Beispielsweise besteht ein erhebli-
cher Unterschied zwischen den Zuweisungen pt2 = pt1 und *pt2 = *pt1 (wobei
ptl und pt2 zwei Zeigervariablen sind, — Abbildung 5.6):

ptl ptl
pt2=ptl;
789 789 ptl @)
rptorpt; pt2 E)

123

Abbildung 5.6 Zuweisung an Zeigervariable versus Zuweisung an referenzierte Variable

* Durch pt2 = pt1 wird der Inhalt der Zeigervariablen pt1 (eine Adresse) in die
Zeigervariable pt2 kopiert. Beide Zeigervariablen referenzieren also anschlie-
Bend dieselbe Variable; die Inhalte der referenzierten Variablen selbst bleiben
dagegen unveréindert.

e Durch *pt2 = *pt1 wird der Inhalt der Variablen, auf die pt 1 verweist, in die
Variable kopiert, auf die pt2 verweist. Der Inhalt einer referenzierten Variab-
len &ndert sich also, die Inhalte der Zeigervariablen bleiben aber unveréndert.

Ubrigens sind direkte Zuweisungen zwischen Zeigervariablen nur dann méglich,
wenn beide Variablen vom selben Typ sind. Anderenfalls muss eine explizite Typ-
umwandlung vorgenommen werden:

pt2 = (t2 *) ptl; (wobeipt2 vom Typ t2 * ist)

5.2.3 Zwei Programmbeispiele
Das erste Programmbeispiel demonstriert die Effekte verschiedener Adress- und Dereferen-
zierungsoperationen:

int *ptl, *pt2;

int varl = 100, var2 = 200;

ptl = &varl; /* ptl zeigt nun auf varl */

*ptl = *ptl + 1; /* entspricht varl = varl + 1 */

pt2 = ptl; /* pt2 zeigt nun auch auf varl */

ptl = &var2; /* ptl zeigt nun auf var2 */

5.2 Grundlegende Begriffe und Operatoren 69

(*ptl) ++; /* entspricht var2 = var2 + 1; */
pt2 = 150; / entspricht varl = 150 */

ptl = &varl; /* ptl zeigt nun wieder auf varl */
pt2 = &var2; /* pt2 zeigt nun auf var2 */

*pt2 = *ptl; /* entspricht var2 = varl; */

Das zweite Programmbeispiel zeigt die Verwendung des Adress- und des Dereferenzie-
rungsoperators in einem konkreten Anwendungsproblem, ndmlich bei der Verwaltung von
Bankkonten. Hier kann man durch eine Eingabe eines von zwei Konten auswéhlen und dann
auf das gewihlte Konto einen bestimmten Betrag einzahlen:

float kontostand 1 = 0.0,
kontostand 2 = 0.0,

*kontozeiger,
einzahlung;
int wahl;
printf ("Bitte waehlen: 1 = Konto 1, 2 = Konto 2 ");
scanf ("%d", &wahl) ;
if (wahl==1)
kontozeiger = &kontostand 1;
else
kontozeiger = &kontostand 2;
printf ("Bitte Einzahlungsbetrag eingeben: ");

scanf ("$f", &einzahlung) ;

*kontozeiger = *kontozeiger + einzahlung;
Nach der i f-else-Anweisung verweist die Zeigervariable kontozeiger auf die Variable,
die den Stand des ausgewéhlten Kontos angibt — also entweder auf kontostand 1 oder auf
kontostand 2. Diese Variable wird dann in der letzten Anweisung um den Einzahlungs-
betrag erhoht. Hier ergibt sich also erst wihrend des Programmablaufs (also ,,dynamisch*
bei der Programmausfiihrung), mit welcher Variablen gearbeitet wird; zur Zeit der Pro-
grammiibersetzung liegt das noch nicht fest.

Man koénnte einwenden, dass der gewiinschte Effekt genauso gut durch die Anweisung

if (wahl==1)

kontostand 1 = kontostand 1 + einzahlung;
else

kontostand 2 = kontostand 2 + einzahlung;

erzielt wiirde — also ganz ohne Zeigervariable. Fiir das einfache Beispiel hier ist das sicher
richtig. Sollen aber auf der gewéhlten Variablen mehrere Operationen ausgefiihrt werden,
wiirde das Programm ohne Zeigervariable deutlich komplexer, da dann jede Operation eine
neue i f-else-Fallunterscheidung erfordert.

In diesem Beispiel wird iibrigens auch die Bedeutung des & vor dem Variablennamen im
scanf () -Aufrufklar: Es liefert die Adresse der Variablen — also die Information, in welche
Speicherzelle(n) der eingelesene Wert gebracht werden soll.

70 5 Zeiger

5.2.4 Ungetypte Zeiger
getyp g <@%

Zeigervariablen werden meist beziiglich eines bestimmten Typs deklariert und
konnen damit nur Variablen dieses Typs referenzieren. Dies ist aber nicht zwingend not-
wendig:

void *pt;
deklariert eine Variable pt, die Adressen von Variablen eines beliebigen Typs speichern
kann. Man kann pt also im Laufe ihres ,,Lebens* Adressen von Variablen unterschiedlicher
Typen zuweisen:

int 1 = 1234;

float £ = 1.2345;

pt = &i;
printf ("Wert von *pt: %d\n",* ((int *)pt));
pt = &f;

printf ("Wert von *pt: $f\n",* ((float *)pt));
Wie das Beispiel zeigt, muss hier jeweils eine explizite Typumwandlung des Werts der Zei-
gervariablen stattfinden, wenn auf die referenzierte Variable zugegriffen werden soll.

5.3 Adressarithmetik

5.3.1 Operationen

Zeigervariablen enthalten Speicheradressen, also ganzzahlige Nummern von Speicherzel-
len. Mit Zeigervariablen lésst es sich daher rechnen oder, wie man auch sagt, Adressarith-
metik betreiben. Beispielsweise kann man einen Speicherbereich durchlaufen, indem man
eine Adresse schrittweise erhoht: Ist pt eine Zeigervariable, die eine Variable im Speicher
referenziert, so ist pt+1 die Adresse der ndchsten Variablen, pt+2 der iiberndchsten und so
weiter. So kann man mit Anweisungen wie

(pt+1) = 10;

*
*(pt+2) *(pt+l) + 10;
*(pt+i) = 100; // mit einer ganzzahligen Variablen i

auf verschiedenen referenzierten Variablen arbeiten (— Abbildung 5.7).

pt Speicherzustand nach:
* (pt+l) = 10;
* (pt+2) = *(pt+l) + 10;
*pt * (pt+i) = 100;
10 | *(pt+l)
20 | *(pt+2)

100 | * (pt+i) (fureini>2)
Abbildung 5.7 Zeigerarithmetik — Rechnen mit Adressen

5.3 Adressarithmetik 71

Durch Zuweisungen der Form

pt++;
pt = pt + 2;
pt += 1i;

lasst sich der Wert der Zeigervariablen selbst dndern (— Abbildung 5.8).

pt pt pt
pt++;

pt=pt+2;

Abbildung 5.8 Zeigerarithmetik — Rechnen mit Adressen und Zuweisung an Zeigervariablen

Zahlenwerte, die in Ausdriicken der Adressarithmetik auftreten, stehen nicht fiir eine An-
zahl von Bytes, sondern fiir eine Anzahl von Variablen. So wird beispielsweise durch
pt=pt+1 (oder pt++) der Adresswert in pt um so viele Bytenummern erhoht, dass pt nun
auf die ndchste Variable im Speicher verweist. Wie viele Bytes das sind, hingt vom Typ ab,
fiir den pt deklariert ist (— 5.2.1): Beispielsweise betrdgt die Schrittweite bei Zeigern auf
char ein Byte, bei Zeigern auf double aber z.B. acht Byte (abhéngig von der konkreten
Plattform). Allgemein gilt: Referenziert pt Variablen des Typs T, so entspricht ein Zahlen-
wert n, der in einem Ausdruck mit pt auftritt, n*sizeof (T) Speicherbytes.

Kombiniert man die Adressarithmetik mit dem Dereferenzierungsoperator, so
i\ muss man die Regeln zur Auswertungsreihenfolge der Operatoren beachten (—
Anhang D.3): So wird bei *pt++ zuerst die Adresse in pt inkrementiert und dann
die resultierende Adresse dereferenziert, denn Postfixoperationen werden vor Pri-
fixoperationen ausgefiihrt. Mochte man dagegen den Inhalt der Speicherzelle, auf

die pt zeigt, inkrementieren, so muss man Klammern setzen: (*pt) ++.

Neben der Addition ganzer Zahlen auf Zeigervariablen ist auch die Subtraktion ganzer Zah-
len wie pt-- oder pt=pt-2 zuléssig. Auch kann man zwei Zeigervariablen per == und !=
auf Gleichheit priifen, sofern sie vom selben Typ sind; ein Vergleich mit NULL ist immer
moglich. Zeigen zwei Zeigervariablen auf Komponenten desselben Arrays, so kann man sie
durch <, >, <= und >= miteinander vergleichen und ihre Werte voneinander subtrahieren.
Andere Operationen, wie beispielsweise die Multiplikation zweier Zeigervariablen, sind da-
gegen nicht sinnvoll und daher unzuléssig.

Mit Hilfe der Adressarithmetik kann man also sehr flexibel programmieren. Die Adress-
arithmetik ist aber auch gefahrlich, da weder vom C-Compiler noch beim Programmablauf
hinreichend gepriift wird, ob sie sinnvolle Resultate liefert. So kann eine Zeigervariable
nach der Adressrechnung durchaus auf einen Speicherbereich mit Variablen verweisen, de-

72 5 Zeiger

ren Typ nicht zum Typ der Zeigervariablen passt. Die Bitmuster in diesem Bereich werden
dann fehlinterpretiert.

Man sollte daher nur dann mit Adressarithmetik arbeiten, wenn einem die Organisation des
Speichers fiir das Programm genau bekannt ist. Das ist nicht so ohne Weiteres der Fall:
Selbst bei skalaren Variablen, die unmittelbar hintereinander definiert wurden, kann man
nicht unbesehen davon ausgehen, dass sie im Speicher in derselben Reihenfolge zusammen-
hiangend abgelegt sind. In zwei Fillen lésst sich jedoch auch ohne tiefere Systemkenntnisse
die Adressarithmetik sicher benutzen:

* Bei Arrays, also zusammengesetzten Variablen, die eine Folge von Werten desselben
Typs enthalten (— 5.3.2).

* Bei Speicherblocken, die das Programm vom Betriebssystem angefordert hat und deren
Verwaltung es dann selbst ibernimmt (— 5.4).

5.3.2 Adressarithmetik bei Arrays

Arrays sind das ideale Anwendungsgebiet der Adressarithmetik: Sie bestehen aus mehreren
Komponenten desselben Typs, auf die man {iber einen ganzzahligen Index zugreift (— 4.3).
Da zudem die Komponenten eines Arrays im Speicher aufeinanderfolgend abgelegt sind,
lasst sich die Arrayindizierung unmittelbar durch Adressarithmetik realisieren.

Fiir ein C-Programm ist ein Arrayname a nichts anderes als eine Zeigerkonstante, die auf
die Speicherzelle verweist, ab der die Arrayeintrage abgelegt sind. Eine Zuweisung an die
i-te Komponente von a lisst sich dann wahlweise schreiben als a [1]1=0 oder als * (a+1i) =0
(— Abbildung 5.9). Die Indexschreibweise, die fiir die Programmierung meist bequemer
ist, wird dabei intern stets auf die Adressarithmetik zuriickgefiihrt.

‘ (3—‘—» a[0] oder *a

a a[l] oder *(a+l)

a[2] oder *(a+2)

Abbildung 5.9 Adressierung von Arrays mit Index- oder mit Zeigerschreibweise

Das Programmstiick, das in 4.3.1 folgendermalfien lautete:

unsigned int fibonacci[20];

fibonacci[0] = 1;

fibonacci[l] = 1;

for (int i=2; 1<20; i++)

fibonacci[i] = fibonacci[i-1] + fibonacci[i-2];

sieht in Zeigerschreibweise beispielsweise wie folgt aus:

unsigned int fibonacci[20];

*fibonacci =1

* (fibonacci+l) = 1;

for (int i=2; 1<20; 1i++)

* (fibonacci+i) = * (fibonacci+i-1) + * (fibonacci+i-2);

225

Index
#Hdefinecoeevvveeiieieieee e, 26,27
Hendif.....oooeeeeee 29
F e 29
FFAE .o 29
HINCIUAC ..o 25
& 43, 67
K& 43
ettt ettt 67
.. 43
| ettt 43
[ettt 43
Adressarithmetikccocveeverieciennnne, 70
Adressoperator...........cceevereeeeeeneeeeennene 67
AgEregatc.oovveviienieeeeieeeee 49,53
AlgNMEnt........ccoevveveeeienieieeieeeee e 53
ANSI-Cooeeeeee e 2
Anweisung, bedingte............ccevervenennen. 34
ATGUMENLeiiiieiieieeiieeeeeiee e 94
ATTAY .ttt 46
Adressarithmetikcccoovvevennnne. 72
eindimensionalerccccoevenenne. 46
Initialisierungccoceevennenne. 49, 50
Linearisierungccecveeveevvervennnnne. 50
mehrdimensionaler.......................... 49
als Parameter..........cccoeevveene... 92,97
mit Strukturen...........ceceeeveeienennnne, 53
Mit ZEIZEIN ..ovveeveniieereieeerereeereeenes 80
PR o13100 1<) () SR 212
ASSEMDIETccuveieiieieeieie e 20
ASSETE() vvenvreereeiieereeieesreenee et e sree e 35
F211> 411 () SO 114,214
ALOX() cvevevereieierieiee e 110,210
Aufzahlungstypccoeevvevevierieeieeieene 58
Ausgabe, formatiertec.ocevvvevennn. 127
Ausnahmebehandlung.............ccoccvenenee. 35
Auswertung
von Ausdriicken 42,189,217
partielle.......ccooveeercieieieeceeee 43
Baumooovviiii e 169
DINATET .vvevvevieieieeie e 170

Datentyp in C.....ccoeevevvvevenrreienene, 172
Standardoperationen....................... 173
Betriebssystem
DiIenstecooovvveeveeeiieeeeeeeens 112,212
Kommandocccveeeuneennen. 113,214
Bibliothek.........cccceveviieieiinnnn, 19, 20, 107
Standardbibliothek................. 108, 193
binédr vs. formatiert........................ 127,129
Bindrbaum..........ccooeeveviiniiiieeeenen, 170
AUSZEDEN ..o 174
Durchlaufencccoeevevvenieennnns 173
Einfligen......c.ccooevvvieniieiiieieceens 176
Entfernen.........ccoevevevvienieeneennnns 177
Loschen......cccoevevieeveniieieieeeee 175
Suchen.....ccoveveeiieieicieeceeien 176
Bindrcodeoeovevieiiieieeiieieeeeee 21
Bindrmodus.........coovvevevviieeieenen, 136, 140
Binder......cccoooiiiiieiieieeee e 20
Bindungsstérke..........cccooeverveeieennen. 42,217
Bitfeld ..o 56
Bitoperatoren..........cceecveevvereieniiienieeieens 43
BloCK .uiiiiieiieieee e 33
boolean........ccvevieeciieiieeieeee e 41
G e 3
C-Standards........coecveeeveenveecieeiie e 2
Call
by referencecccoeceeveveecieniencneenns 95
by value.....cccoevieiiieiieieceeeeeee 94
CallOC() vevveerreerieie et 112,212
CaST e 46, 187
Char.......ooviiiiieee e, 39, 40, 44
Charl6 to....occoiiiniiiiieee e 40
char32 tooiiiiee e 40
clearerr()....oovevveereeeieeieeeie e 144, 195
CLION ettt 24
Clock TicK...oiereieieieieeecveene 113,212
ClOCK() vveeeveeiieiiieieee e 113,212
Codesegment..........cccuevueerieneeeeneeneennen. 107
(0101011031 1<) USRS 20
[o70) 1 1] RSP 44

226 Index
CYZWIN .ot 22 FIFO .o 165

File Pointer..........coocvvvvvveveeneeennnn. 124, 137
Datel ...ocveeieieiee e 123,135 FIag covooieeeceeeeeeeceeeeee e 57

OFfEN oo 135 lOAL eeeeeeeeeeeeeee e 41,44

Positionszeiger 136, 141 fopen()....cccevveveerrerreieeieieeeeennene 135, 197

Puffer......ccocevvveineinnne. 131,136, 144 fOT.iiiiiiiiieeeeee e 34

SchlieBen........ccoocveveervecienieienee 137 Formatangabe/

Zugriffsfunktionen 125,193 -element/-string 128, 129, 201, 204
Dateizeiger......covvvveeeiereeeieieseenene 124,137 fprintf().eeeveeeeeieieecieeeeeeeee, 139, 198
Datensegment..........cccceeeeveiienenne 75,107 APULC()eerreeeeeieiieeieeree e 138, 198
Datenstromcccceeveerieeneennee. 123,135 fPutSO) ceeeeeveereeeeeeieeieeee e 139, 198
Datenstruktur fread()...cooveeeereiieeeieeeee e, 140, 198

dynamische.......c.ccceeerienierveienen. 149 free().cevinieiecieeeceeeee e 77,212

TEKUISIVE ..ot 172 £reopen()..ceeceeeeereeieeeeiecieeieie e 137
Datentypen (siche auch Typen).............. 39 fscanf() .ooovvevieieeeeeeeee 139, 199
Definition........cceeeeeieniieciereeiene e, 33 £5€EK() cievrieieieeieeeeee e 142, 199
Deklarationceeceeevvevereeceeneeeennennnnn 33 £SetPOS()veerieierieiieieee et 142
Dereferenzierungsoperator 67 ftell() coeeeeeeeeeeeeeee e 141, 199
Dev-CHt e 24 Funktioncccooeneiienenienenieneeieneene 87
Aifftime() .ovevveeeeeieeeeeeee s 213 ATgUMENt ...ocvvivieeiicrieieeeeie e 94
dOubleooviiiieiieeee e 41, 44 Aufruf .o, 93
do-While.....coevienieiiiieecc 34 Definition......c.coueeeeeeieincreneene 89
Downcast......ccoveeeeeecinveeeeeeireeeeeen, 46, 187 Deklarationcccoovvveeeieeicnneneenn. 89

Kopf nach Kernighan/Ritchie.......... 93
ECHPSE c.vveiieieeiieieeteeeeee e 24 mathematischecc........ 111,210
Ein-/Ausgabe.......cccccovvevvinienieiieienns 123 als Parameter............cccoeeveeveennenenn. 116

Standardfunktionen................ 125,193 Prototyp ..eceeeveeeevieeeeieciesieeiens 18, 89
Eingabe, formatiertecccoceeeveruennns 129 Riickgabewertcccccoevveveiieenennen. 98
EIPSE..cveieieieieeeeececeeece 117 Zeiger darauf..........ccoceerininennnn 114
EISE ittt 34 Funktionsbibliothekcccccocenenene. 107
Endlosschleifecc.coooveveviiiicnieinnen. 35 Standardbibliothek................. 108, 193
153110100 SR SUPRPRRRRRRINE 58 Funktionsparameter..........c..cccceveeeenuennee. 94
Enumerationstyp......cccceeeverveecvenneseennennnnn 58 ATTAY .o 92,97
EITOT ..ot 20 Funktion......cccooceviiiiniiiniieee 116
Escape-Sequenzen.........ccceeeeevveeneeennnnn. 44 Strukturoocveeieeieceeeeee e 91
EXI() cvvvreieeeeeeee e 114,214 Ubergabe.......c.oeveeeveeeeeieieeeeea 94

variable Anzahl............cccoceeiei. 116
1161 (01! () ORI T 137, 195 VA 115 SR 92,95
Fehlerausgabe.........cccocevvvevernennne 125,144 fWrite() coovveeerereeieceeeeereeee e 141, 200
FEOT() cvereeeeieeeeee 143, 196
ferror() covvvveeeeeeeeeeeeeeee 144,196 ganze Zahlen.........cccooeveneieineneeeee 39
fITush() ceveeveeieeeeeeeee, 143,196 Ganzzahlkonstanteccceceevveereennnnne. 44
fEELC() vovveerrerieeiere e 138,196 Garbage Collectioncccceecveveeeuenene. 77
fEEtPOS().eeveerieierieeiere et 142 GCC (Compiler)......ccceveeveneerieiieeienns 22
17411 () RSP 138,197 gee (Kommando)eceeveeeeieeieneenieeenne 23

Index 227
EEC()eemvenreneeneriinienie e 138,196 1iDC..coieieiiiiiiciceeeeececee e 108
getchar()....ooeveeeeeieieeeeee e 134,200 Library.......cccoceeeeveeceenieereseeeesieeveeneenns 19
Gleitkommakonstante..............ccccceeneenee. 44 LIFO.oiiiiiiiiiieeeeeeeee 166
Gleitkommazahlen............ccccoeeervennen. 41 LINKET eiieiieieieeeiee e 20
GOT0 ettt 35 LiNUX .tooiierieiiienieeieeiee e e eaee s 108
LiSte...ooeeieiieicneeeecceee 150
Hashfunktionccoecevvvevenenvenennnnns 167 Datentyp.....ccceeeevvereerreereennnn, 151, 159
Hashtabelleccoeveieiiiieiiieen, 166 doppelt verkettete..........cocveernnnne. 150
Hauptprogramm............ccccevvveneennenne. 100 Durchlaufencccceuvennnne. 152, 160
Header-Dateiccoeeveuveeennnne.. 17, 25,90 einfach verkettete.........cccooevvvrenn... 150
Heapsegmentcoeceeeveeniennnnne 75,107 Einfiigen........cccocovvvvveieennnnnne. 153, 161
Entfernen.......c.ccccccovvvvviiiennnns 156, 163
T 34 lINAreccooevevieieieececeee e 150
Indirektionccooevvvveevieeciiiceece, 65 Suchen.....ccoccovvvvveviiicieene. 153, 160
Initialisierung.................. 45,102, 103, 104 zyklisch verketteteccoevnneeee. 151
VON AITAYS c.oveeeeeeieeieeriieeeeenane 49,50 localtime()ccccceerveeueerreenvenreenne 113,213
von Stringvariablenc.c.......... 5T 1ONZ oot 39,44
von Strukturen..........ceecvecveeeveieennne, 53 long double......ccoccvveririeiiiiiinieeienee, 41,44
VON UNIONS ...vveveniieeieieeeieie e 56 1oNGlONEG c.eviiiiiieiieieeiieeeee e 44
Inordercovevveienenciiiiicen 173 Ivalue oo 46
TNt 39, 44
Integrated Development Environment 11011 DO USRI 100
(IDE)..24 MaKIO....ccveereerieiieeieeiee e 27
Interpretationcceeeevveeveceeneeieeeeennn. 11 malloc() .oeveeiieieieeieieeeeeeene, 75,76, 212
J1S5:0.0: () IS OSSR 109,207 Maschinensprache..........cccccceeevvervennennee. 10
Memory LeaK......cooeevvvenvenciienieeieeeens 77
Java ..o RIS 11153110:0.0:(() FSSSS USRS 112,209
im Vergleichzu Cc.ocooevevvenennn. 8 MENEE oo 180
Realisierung durch Bitmap 183
Kalenderzeit..........cceoeveneiennncne 113,213 Realisierung durch Liste................ 180
Keller....ooviiiiiiiiieeieeeieeeeeeee, 151, 166) 48 =) 4 (=TT 151
Kernighan-Ritchie-Cc..ccocvenvrerennnnne. 2 MINGW .o 22
komplexe Zahlenccoveevenreevenennen. 41 ModifiKatorccooveerivieieieeieeieereeene 40
Konstante........cocuveeeeeevvveeieeiiieeeeeeeeinee. 44 Modul....ccovviiiiiii e 18, 21
benanntecocoeeverenienienienne 26,44 Modularisierung........ccoceeeeveevenieneennenne. 21
mathematische........c.ccocevevenecencne 192
symbolische........ccccoeveeieincnncns 26,58 NUllZIger.....coooirireiiiriieieeeeceee 66
VOrdefiniertecocevvereeneeeeencnene 191
Zeichenketteoccecevereeneennene 51,74 Objektmodulcccooeieiiiiiiieee 20
KontrollStrukturc..ccveveeeeeencncnennne 33 objektorientiert..........cccceoeeieeieieinieennen 9
Konversionsangabe 128, 129,201,204 Offnen einer Datei.........oeueeeeeeeeeeenn. 135
(0315162 1(0) (<) | FOO SO 42
Label....cooieee 35 aussagenlogische.........ccccoeevenee 42,43
Lademodul.......ccccoevieiiinininininiene 21 Bindungsstirkecccooueneeee 42,217
Laufzeitsystem........cccovevvereeeenieeerennenenn 21 relationaleccocceeveeeciieiiecieeees 42

228 Index
Padbyte ...ccveeeeieeeeeeeee e 53 ShOTteiiicieiicieeeceee e 39, 40
Parameter.........coccvevevieeienieeieeeeeenn 94 SIGNEd oo 41
PEITOT()neeeieieiieie e 144,200 SIZ€ T.icvieveeieiiieeiesieeieeieere et 76
Pointer (siche auch Zeiger)..................... 65 SIZEOT i 40
Pointervariable...........ccocerircieniiieenen. 64 Speicherbelegung, dynamische75, 112,212
Positionszeiger.........oocvevveevereeenns 136, 141 Speicherklasse.........ccooevverrieeeniireennenen. 101
PoOStOrder.......ccecuevvenceiiinininenencee 174 AULO oottt 102
Praprozessorccoceevieviieniieniennnen, 20, 24 [9U1S) 4 1 SRR 104
ANWEISUNGEN....eveveeeieiieiieieereeeans 17 1024 11 1) SR 103
Preorder ... 173 SEALIC ..veevieeeeeeeie e 102
Printf() ooeveeeeeieeee e, 127,200 sprintf() ..ccocevevrveieneeieieeieieeeeenne, 140, 206
Programmentwicklungsumgebung......... 24 SprunganweiSung.........ccocceeeeerveerveenneens 35
Programmiersprache SSCANT() .vveereeie et 140, 206
objektorientierteccoecveevereenennene 9 StacK....coccevieieeeeeeee e 151, 166
prozedurale...........ocoeveeiiecierieienn, 10 Stacksegmentcccceevenenen. 75,94, 107
Prototyp .eeeveevveerieeeeieeeeeeeeee, 18,89 Standardbibliothek.............coccue.. 108, 193
prozedural.........cccccoeeevienieniieieeeee 10 Standardstrome/-dateien 125
Prozessorzeit.......c.cecceeveevcncncncncnnenne. 113 stdin/stdout/stderr........ccccceeevenveienncnne 125
Pufferung der Eingabe...........cccoennee. 131 StCAt() coveeveereeereeie e 51, 208
Punktnotation...........ceceevveevereeenennen. 52,55 Stremp() cceeeeeeeeeiieeeeeeee e 51, 208
PULC() veenreeieeiieeieeeee et 138 SCPY() eerereereeireeieeiie e 51, 208
putchar()oeeveeeerieeieeieeieeeeenee, 135,203 String (siehe auch Zeichenkette)............. 50
PULSO) et 135,203 strlen() .ccceeveeeeeeereenieeieeee e 51, 208
Struktur (Struct)eeeeeveveereenieeeeeee e, 52
QUEUE.....ccovieeciiiceiiee e 151, 165 als Funktionswert..............ccccceuneee. 99
Initialisierung..........cccecvevveerivenneennnn. 53
1€Al10C() vveviererieieee e 112 als Parameter..........ccoceevvevveevenneennnns 91
Referenzaufruf........c.ccoooevvvcieniiiennen. 95 Typdefinitioncccoceveveneenennenns 54
ReKursion.........coceveverieniencecncncncnee, 172 Zeiger darauf..........cccoeeriiiiininnnnn. 79
wechselSeitige ...ovvverenieeecncnenne, 90 mit Zeigern auf Strukturen............... 81
TEMOVE() wveeevrerereeieeriieeieesreeieeens 145,203 Strukturbaum.........ccceeeveevveervenieesieennnenn 171
TENAME().eeeevveenerenereeieenireeieeeeenenes 145,203 SXXX() eeerrrrerrrerrrerreerreeneeeveenaeens 109, 208
TELUITL ceeveiieciieiceeeect e 98 Suchbaum.........ccoconviiiininiiiiiiice 171
TEWINA() ceveevreererieienee e 142,204 Einfligen......ccoooveneneneiiicee e 176
Entfernen.........ccocoviiiiiininnnncnn 177
SCANT() covveeeieiieiee e 129, 204 Suchen.......cooeveciieieiicieeceeeen 176
Schachtelung SWILCH oot 34
von Blockencceeevevieiiniieiene, 33 SySteM().eoeeieeeieieeee e 113,214

von Strukturenccoceeeeceeeencnnenne. 55
Schleife......ooovvivieiiiiiiieeeeceeeee e, 34 Textmodus.......cccooevevoeveivenieeiiienns 136, 140
eNdlOSe.....ooveeieriieiieieie e 35 timMe().cvieeiiieieeeeeeeee e 113,213
SchlieBen einer Datei..........c.ccoevvenenne. 137 tmpfile() oo 145, 206
Sequenzpunktccooeveeverierieennnns 42,189 toloWer()...coveeveerecreenreereeeeereeieeaas 109, 207
SEtVOUT().evveiieieicieeceeee 144,206 tOUPPEI()eveeemeereereareriereenieseeneeneeneas 109, 207
Shift .o 43 Type Cast .ccceeeeeeieeeieiieeeeeeene 46, 187

Index 229
typedef ..o 59 WahrheitSwerteccoovveeverieeeneeiennenen, 41
TYPON ettt 39 WaImning.....ccoceveeeieneeieeeereee e 20
fiir Aufzéhlungencccoevenennene. 58 Warteschlange...........cccccvevevennnnnn. 151, 165
global definierteccoccveveenenee. 105 Wehar teeieeeee e 40
skalareccoevveeieiiee e 39 Wertaufruf.......ccoooiveiirieiiieeceee, 94
fiir Strukturenoccoevecvvnveienne, 54 Wertzuweisungc.cceeeeeeveeevennenne 45,188
Umwandlung..........cccoevevevevrvennnne. 46 While..oooieiieieiiciecccee 34
Wertebereiche 39,41,191,216 WhiteSpace.......cecevevverveereeereererreeneennenes 109
Typumwandlung............ccoccvvvererniennnnns 187 WSL ot 22
Uberlaufcoooveveeeeeeeeeeeeeeeenns 133 Zeichen.........ccooooeveeeeeeeeeeeeeeeee. 39
UDEISELZET ... 20 Konstantencocceevvevveenveneennne. 44
Ubersetzung..............ccvveveevevereennenn. 11,20 Standardfunktionen................ 109, 207
bedingte......ceovvveerieieiieeeeee 29 Zeichenkette (String)cccecveervevennne. 50
Umwandlungsfunktionen 110, 210 Initialisierung........cccoeeeveererenennne. 51
UNZEEC()nveeerereeereeiieeeeeeereeee e eeneeeeenns 138 konstante.........cceevvevrireenneeeennns 51,74
UNION e 55 Standardfunktionen................ 109, 208
UNIX it 108 ZEIGET vt 65
UNSIZNEd.....veiieiiiieieeiiee e 40, 44 als Funktionswert..........ccccceevevenns 99
als Parameter.........coevveeeeeennnnn.. 92,95
Variablecoovvverieeieieeieeeee e 39 auf Funktionen...........cccoceeevevennnn. 114
automatische........c.ooveeveveeecvernennnnns 102 AUF ZEIZeT ..o 82
globale......ccoovveierieieiieieis 45,104 UNZELYPLET evevriveenriereeere e see e 70
Initialisierung 45,102,103, 104 Zeigervariablecccevveeevieveniieienenns 64
lokale.......oooevveveveieieiieeeiieeen, 45,102 Zeitfunktionen..........c.ccooovveeennnnnne. 113,212
StatiSChC ...vveveeie e 102 ZUWeISUNG...c.vecveeeveerienieceeeie e 45,188
Variable Length Arrays (VLAS)............. 47
Variablenzugriff, indirekter.................... 65
Vektoroperationen.............coeceeeevennennen. 97
Verdeckungccoocvevvveievieneeneiieienen, 33
Visual Studioccceeevevrieieriieieneeieieeenn 24

	Deckblatt_Leseprobe
	Inhalt
	Vorwort
	Zusatzmaterial
	Leseprobe
	Index

