CONTENTS

	Contents of Basic Algebra				
	Preface				
	List	of Figures	XV		
	Dep	endence among Chapters	xvi		
	Gui	de for the Reader	xvii		
	Note	ation and Terminology	xxi		
I.	TRA	ANSITION TO MODERN NUMBER THEORY	1		
	1.	Historical Background	1		
	2.	Quadratic Reciprocity	8		
	3.	Equivalence and Reduction of Quadratic Forms	12		
	4.	Composition of Forms, Class Group	24		
	5.	Genera	31		
	6.	Quadratic Number Fields and Their Units	35		
	7.	Relationship of Quadratic Forms to Ideals	38		
	8.	Primes in the Progressions $4n + 1$ and $4n + 3$	50		
	9.	Dirichlet Series and Euler Products	56		
	10.	Dirichlet's Theorem on Primes in Arithmetic Progressions	61		
	11.	Problems	67		
II.	WE	DDERBURN-ARTIN RING THEORY	76		
	1.	Historical Motivation	77		
	2.	Semisimple Rings and Wedderburn's Theorem	81		
	3.	Rings with Chain Condition and Artin's Theorem	87		
	4.	Wedderburn-Artin Radical	89		
	5.	Wedderburn's Main Theorem	94		
	6.	Semisimplicity and Tensor Products	104		
	7.	Skolem-Noether Theorem	111		
	8.	Double Centralizer Theorem	114		
	9.	Wedderburn's Theorem about Finite Division Rings	117		
	10.	Frobenius's Theorem about Division Algebras over the Reals	118		
	11.	Problems	120		

viii Contents

III.	BRA	AUER GROUP	123
	1.	Definition and Examples, Relative Brauer Group	124
	2.	Factor Sets	132
	3.	Crossed Products	135
	4.	Hilbert's Theorem 90	145
	5.	Digression on Cohomology of Groups	147
	6.	Relative Brauer Group when the Galois Group Is Cyclic	158
	7.	Problems	162
IV.	HO	MOLOGICAL ALGEBRA	166
	1.	Overview	167
	2.	Complexes and Additive Functors	171
	3.	Long Exact Sequences	184
	4.	Projectives and Injectives	192
	5.	Derived Functors	202
	6.	Long Exact Sequences of Derived Functors	210
	7.	Ext and Tor	223
	8.	Abelian Categories	232
	9.	Problems	250
V.	TH	REE THEOREMS IN ALGEBRAIC NUMBER THEORY	262
	1.	Setting	262
	2.	Discriminant	266
	3.	Dedekind Discriminant Theorem	274
	4.	Cubic Number Fields as Examples	279
	5.	Dirichlet Unit Theorem	288
	6.	Finiteness of the Class Number	298
	7.	Problems	307
VI.	REI	NTERPRETATION WITH ADELES AND IDELES	313
	1.	p-adic Numbers	314
	2.	Discrete Valuations	320
	3.	Absolute Values	331
	4.	Completions	342
	5.	Hensel's Lemma	349
	6.	Ramification Indices and Residue Class Degrees	353
	7.	Special Features of Galois Extensions	368
	8.	Different and Discriminant	371
	9.	Global and Local Fields	382
	10.	Adeles and Ideles	388
	11.	Problems	397

Contents	ix
Comens	,

VII.	INF	INITE FIELD EXTENSIONS	403
	1.	Nullstellensatz	404
	2.	408	
	3.	Transcendence Degree Separable and Purely Inseparable Extensions	414
	4.	423	
	5.	428	
	6.	Infinite Galois Groups	434
	7.	Problems	445
VIII	. BAC	CKGROUND FOR ALGEBRAIC GEOMETRY	447
	1.	Historical Origins and Overview	448
	2.	Resultant and Bezout's Theorem	451
	3.	456	
	4.	466	
	5.	Intersection Multiplicity for Two Curves	473
	6.	General Form of Bezout's Theorem for Plane Curves	488
	7.	491	
	8.	499	
	9.	Uniqueness of Reduced Gröbner Bases	508
	10.	Simultaneous Systems of Polynomial Equations	510
	11.	Problems	516
IX.	THI	E NUMBER THEORY OF ALGEBRAIC CURVES	520
	1.	Historical Origins and Overview	520
	2.	Divisors	531
	3.	Genus	534
	4.	Riemann-Roch Theorem	540
	5.	Applications of the Riemann–Roch Theorem	552
	6.	Problems	554
X.	ME	THODS OF ALGEBRAIC GEOMETRY	558
	1.	Affine Algebraic Sets and Affine Varieties	559
	2.	Geometric Dimension	563
	3.	Projective Algebraic Sets and Projective Varieties	570
	4.	Rational Functions and Regular Functions	579
	5.	Morphisms	590
	6.	595	
	7.	Zariski's Theorem about Nonsingular Points	600
	8.	Classification Questions about Irreducible Curves	604
	9.	Affine Algebraic Sets for Monomial Ideals	618
	10.	Hilbert Polynomial in the Affine Case	626

x Contents

Χ.	METHODS OF ALGEBRAIC GEOMETRY (Continued)			
	11. Hilbert Polynomial in the Projective Case	633		
	12. Intersections in Projective Space	635		
	13. Schemes	638		
	14. Problems	644		
	Hints for Solutions of Problems	649		
	Selected References			
	Index of Notation			
	Index	721		

CONTENTS OF BASIC ALGEBRA

I.	Preliminarie	es about	the Int	egers, Poly	ynomials,	and Matrices

- II. Vector Spaces over \mathbb{Q} , \mathbb{R} , and \mathbb{C}
- III. Inner-Product Spaces
- IV. Groups and Group Actions
- V. Theory of a Single Linear Transformation
- VI. Multilinear Algebra
- VII. Advanced Group Theory
- VIII. Commutative Rings and Their Modules
- IX. Fields and Galois Theory
- X. Modules over Noncommutative Rings