## **Contents**

|   | Forew  | ord                                                                           | XI          |
|---|--------|-------------------------------------------------------------------------------|-------------|
|   | Prefac | ce                                                                            | XIII        |
| 1 | Introd | luction                                                                       | 1           |
| 2 | Basic  | <b>Equations: Determination of the Coefficients of Emission in Nucleation</b> | 1           |
|   | Theor  | y                                                                             | 7           |
|   | 2.1    | Introduction                                                                  | 7           |
|   | 2.2    | Basic Kinetic Equations                                                       | 9           |
|   | 2.3    | Ratio of the Coefficients of Absorption and Emission of Particles             | 10          |
|   | 2.3.1  | Traditional Approach                                                          | 11          |
|   | 2.3.2  | A New Method of Determination of the Coefficients of Emission                 | 16          |
|   | 2.3.3  | Applications                                                                  | 22          |
|   | 2.4    | Generalization to Multicomponent Systems                                      | 22          |
|   | 2.4.1  | Traditional Approach                                                          | 23          |
|   | 2.4.2  | New Approach                                                                  | 24          |
|   | 2.4.3  | Applications                                                                  | 25          |
|   | 2.5    | Generalization to Arbitrary Boundary Conditions                               | $2\epsilon$ |
|   | 2.6    | Initial Conditions for the Cluster-Size Distribution Function                 | 28          |
|   | 2.7    | Description of Cluster Ensemble Evolution along a Given Trajectory            | 30          |
|   | 2.7.1  | Motivation                                                                    | 30          |
|   | 2.7.2  | Effective Diffusion Coefficients                                              | 31          |
|   | 2.7.3  | Evolution of the Cluster-Size Distribution Functions                          | 36          |
|   | 2.8    | Conclusions                                                                   | 37          |
| 3 | Kineti | ics of Nucleation-Growth Processes: The First Stages                          | 39          |
|   | 3.1    | Introduction                                                                  | 39          |
|   | 3.2    | Basic Kinetic Equations                                                       | 41          |
|   | 3.3    | Nonsteady-State Effects in the Initial Stage of Nucleation                    | 46          |
|   | 3.3.1  | Approximative Solution in the Range $1 \lesssim n \lesssim n_c - \delta n_c$  | 47          |
|   | 3.3.2  | Time Scale of Establishment of Steady-State Cluster-Size Distributions in     |             |
|   |        | the Range $1 \lesssim n \lesssim n_c - \delta n_c$                            | 50          |
|   | 3.3.3  | Results for the Range $n_c - \delta n_c \le n \le n_c + \delta n_c$           | 51          |



VI Contents

|   | 3.3.4 | Steady-State Nucleation Rate and Steady-State Cluster-Size Distribution in   |     |
|---|-------|------------------------------------------------------------------------------|-----|
|   |       | the Range $1 \lesssim n \lesssim n_c + \delta n_c \dots$                     | 51  |
|   | 3.4   | Flux and Cluster Distributions in the Range of Supercritical Cluster Sizes   | 54  |
|   | 3.4.1 | Results in the Range $n_c \lesssim n \lesssim 8n_c$                          | 55  |
|   | 3.4.2 | Results in the Range $n \gtrsim 8n_c$                                        | 57  |
|   | 3.5   | Time Interval for Steady-State Nucleation                                    | 65  |
|   | 3.5.1 | Kinetically Limited Growth                                                   | 66  |
|   | 3.5.2 | Diffusion-Limited Growth                                                     | 68  |
|   | 3.5.3 | Nonsteady-State Time Lag and the Time Scale of Steady-State Nucleation       | 68  |
|   | 3.6   | Further Basic Characteristics of Nucleation-Growth Processes                 | 69  |
|   | 3.6.1 | Number of Clusters Formed by Nucleation                                      | 69  |
|   | 3.6.2 | Average Size of the Clusters                                                 | 70  |
|   | 3.6.3 | Time Interval of Independent Growth                                          | 71  |
|   | 3.7   | Time of Steady-State Nucleation and Induction Time                           | 73  |
|   | 3.8   | Formation of a New Phase with a Given Stoichiometric Composition             | 76  |
|   | 3.8.1 | The Model                                                                    | 76  |
|   | 3.8.2 | Basic Equations                                                              | 76  |
|   | 3.8.3 | Applications                                                                 | 81  |
|   | 3.9   | Summary of Results                                                           | 86  |
|   | 3.9.1 | Results for the Range of Cluster Sizes $n \lesssim n_c \dots \dots$          | 86  |
|   | 3.9.2 | Results for the Range of Cluster Sizes $n \gtrsim n_c \dots \dots$           | 87  |
|   | 3.9.3 | Integral Characteristics of the Nucleation–Growth Process                    | 89  |
|   | 3.10  | Conclusions                                                                  | 91  |
|   |       |                                                                              |     |
| 4 |       | y of the Late Stages of Nucleation-Growth Processes: Ostwald Ripening        | 93  |
|   | 4.1   | Coarsening                                                                   | 93  |
|   | 4.1.1 | Introduction: Formulation of the Problem                                     | 93  |
|   | 4.1.2 | Asymptotic Behavior of the Critical Cluster Size                             | 96  |
|   | 4.1.3 | Asymptotic Behavior of the Distribution Function                             | 100 |
|   | 4.1.4 | Boundary Effects and Theory of Sintering                                     | 105 |
|   | 4.1.5 | Diffusive Decomposition Involving Different Mass-transfer Mechanisms         | 109 |
|   | 4.1.6 | Effects of Competition of Several Mass-Transfer Mechanisms                   | 113 |
|   | 4.1.7 | Asymptotic Stability of Solid Solutions                                      | 119 |
|   | 4.2   | Rigorous Analysis of the Transformation of an Arbitrary Initial Distribution |     |
|   |       | Function into a Universal One                                                | 125 |
|   | 4.2.1 | Introduction                                                                 | 125 |
|   | 4.2.2 | Canonical Form of the Basic System of Equations                              | 125 |
|   | 4.2.3 | Coarsening in the Case of Power-Dependent Initial Cluster Size Distribu-     |     |
|   |       | tions                                                                        | 131 |
|   | 4.2.4 | Coarsening in the Case of Exponentially Decaying Initial Cluster-Size Dis-   |     |
|   |       | tributions                                                                   | 135 |
|   | 4.2.5 | Generalizations                                                              | 141 |
|   | 4.3   | Theory of Diffusive Decomposition of Multicomponent Solutions                | 143 |
|   | 4.3.1 | Introduction                                                                 | 143 |
|   | 432   | Basic Equations and Their Solution                                           | 144 |

Contents

|   | 4.3.3                                                                         | Regions of Phase Coexistence in Composition Space                                                                                   | 152 |
|---|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | 4.3.4                                                                         | Competition of Different Phases in Coarsening                                                                                       | 156 |
|   | 4.3.5                                                                         | Formation of Precipitates of Nonstoichiometric Composition                                                                          | 161 |
|   | 4.3.6                                                                         | Comparison with Experimental Data                                                                                                   | 163 |
|   | 4.3.7                                                                         | Conclusions                                                                                                                         | 165 |
| 5 | Shapes of Cluster-Size Distributions Evolving in Nucleation and Growth        |                                                                                                                                     |     |
|   | Proces                                                                        | sses                                                                                                                                | 171 |
|   | 5.1                                                                           | Introduction                                                                                                                        | 171 |
|   | 5.2                                                                           | Analysis of Statistical Approaches: "Equilibrium Distribution" of Classical Nucleation Theory, Fisher's Droplet, and Similar Models | 172 |
|   | 5.3                                                                           | Thermodynamic Approach: On the Possibility of Evolution of Monodis-                                                                 |     |
|   |                                                                               | perse Cluster-Size Distributions                                                                                                    | 175 |
|   | 5.4                                                                           | Dynamical Approach                                                                                                                  | 178 |
|   | 5.4.1                                                                         | Basic Kinetic Equations: General Expression                                                                                         | 178 |
|   | 5.4.2                                                                         | Determination of the Coefficients of Emission                                                                                       | 179 |
|   | 5.4.3                                                                         | Determination of the Coefficients of Aggregation                                                                                    | 181 |
|   | 5.4.4                                                                         | Description of Growth Processes of Clusters                                                                                         | 181 |
|   | 5.4.5                                                                         | Application to the Description of Nucleation                                                                                        | 184 |
|   | 5.4.6                                                                         | Basic Kinetic Equations for Different Important Growth Mechanisms                                                                   | 185 |
|   | 5.5                                                                           | Numerical Solution of the Kinetic Equations                                                                                         | 187 |
|   | 5.5.1                                                                         | Precipitation in a Perfect Solution                                                                                                 | 187 |
|   | 5.5.2                                                                         | Effect of Nonlinear Inhibition of Cluster Growth on the Shape of the                                                                |     |
|   |                                                                               | Cluster-Size Distributions                                                                                                          | 192 |
|   | 5.5.3                                                                         | Application of Fisher's Expression for the Work of Cluster Formation                                                                | 196 |
|   | 5.6                                                                           | Selected Applications and Conclusions                                                                                               | 198 |
|   | 5.7                                                                           | Discussion                                                                                                                          | 201 |
| 6 | Coarsening Under the Influence of Elastic Stresses and in Porous Materials 20 |                                                                                                                                     |     |
|   | 6.1                                                                           | Introduction                                                                                                                        | 203 |
|   | 6.2                                                                           | Cluster Growth and Coarsening Under the Influence of Elastic Stresses Due                                                           |     |
|   |                                                                               | to Cluster-Matrix Interactions                                                                                                      | 205 |
|   | 6.2.1                                                                         | Models of Elastic Stress in Cluster Growth and Coarsening                                                                           | 205 |
|   | 6.2.2                                                                         | Theoretical Description of Coarsening at a Nonlinear Increase of the Energy                                                         |     |
|   |                                                                               | of Elastic Deformations with Cluster Volume: A First Approach                                                                       | 206 |
|   | 6.3                                                                           | Ostwald Ripening in a System of Nondeformable Pores of Equal Size $R_0$                                                             | 208 |
|   | 6.3.1                                                                         | Mathematical Formulation of the Problem and General Solution                                                                        | 208 |
|   | 6.3.2                                                                         | Approximations and Numerical Results                                                                                                | 211 |
|   | 6.4                                                                           | Coarsening in a System of Weak Pores                                                                                                | 216 |
|   | 6.5                                                                           | Coarsening in a System of Nondeformable Pores with a Given Pore-Size                                                                |     |
|   |                                                                               | Distribution                                                                                                                        | 219 |
|   | 6.5.1                                                                         | A First Approximation                                                                                                               | 219 |
|   | 6.5.2                                                                         | General Approach: Description of the Method                                                                                         | 221 |
|   | 6.5.3                                                                         | Results                                                                                                                             | 223 |

VIII Contents

|   | 6.6                                                                         | Influence of Stochastic Effects on Coarsening in Porous Materials         | 224 |  |
|---|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----|--|
|   | 6.7                                                                         | Discussion                                                                | 225 |  |
| 7 | Cluster Formation and Growth in Segregation Processes at Given Input Fluxes |                                                                           |     |  |
|   |                                                                             | nomers and Under the Influence of Radiation                               | 227 |  |
|   | 7.1                                                                         | Introduction                                                              | 227 |  |
|   | 7.2                                                                         | Coarsening with Input Fluxes of Raw Material                              | 228 |  |
|   | 7.2.1                                                                       | Preliminary Estimates                                                     | 228 |  |
|   | 7.2.2                                                                       | Basic Kinetic Equations                                                   | 230 |  |
|   | 7.2.3                                                                       | Results of the Numerical Solution of the Kinetic Equations                | 232 |  |
|   | 7.2.4                                                                       | Discussion                                                                | 235 |  |
|   | 7.3                                                                         | Void Ripening in the Presence of Bulk Vacancy Sources                     | 237 |  |
|   | 7.3.1                                                                       | Introduction                                                              | 237 |  |
|   | 7.3.2                                                                       | Basic Equations                                                           | 237 |  |
|   | 7.3.3                                                                       | Damped Sources                                                            | 239 |  |
|   | 7.3.4                                                                       | Undamped Sources                                                          | 243 |  |
|   | 7.3.5                                                                       | Conclusions                                                               | 247 |  |
|   | 7.4                                                                         | Growth and Shrinkage of Precipitates under Irradiation                    | 247 |  |
|   | 7.4.1                                                                       | Introduction                                                              | 247 |  |
|   | 7.4.2                                                                       | Diffusion Mechanism of Radiation-Induced Shrinkage of the Precipitates    | 248 |  |
|   | 7.4.3                                                                       | Effect of the Precipitate Incoherence and the Solute Atom Transition into |     |  |
|   |                                                                             | the Interstitial Sites and Back in the Lattice Sites                      | 251 |  |
|   | 7.4.4                                                                       | The Case of Incoherent Precipitation                                      | 255 |  |
|   | 7.4.5                                                                       | Conclusion                                                                | 256 |  |
| 8 | Formation of a Newly Evolving Phase with a Given Stoichiometric Composition |                                                                           |     |  |
|   | 8.1                                                                         | Introduction                                                              | 257 |  |
|   | 8.2                                                                         | Basic Set of Equations                                                    | 259 |  |
|   | 8.3                                                                         | The Stage of Nucleation of Clusters of the Newly Evolving Phase           | 264 |  |
|   | 8.4                                                                         | The Transient Stage                                                       | 272 |  |
|   | 8.5                                                                         | Kinetic Equations and Thermodynamic Relationships Accounting for          |     |  |
|   |                                                                             | Solute–Solute Interactions                                                | 275 |  |
|   | 8.6                                                                         | Rate of Change of the Number of Structural Elements of an Aggregate of    |     |  |
|   |                                                                             | the New Phase                                                             | 280 |  |
|   | 8.7                                                                         | The Coefficient of Components Mass Transfer                               | 282 |  |
|   | 8.8                                                                         | Steady-State Nucleation Rate                                              | 285 |  |
|   | 8.9                                                                         | Influence of Interaction of the Solute Components on Coarsening Processes | 288 |  |
|   | 8.10                                                                        | Discussion and Conclusion                                                 | 289 |  |
| 9 | Nucles                                                                      | ation and Growth of Gas-Filled Bubbles in Liquids                         | 291 |  |
|   | 9.1                                                                         | Introduction                                                              | 291 |  |
|   | 9.2                                                                         | Nucleation in a Low-Viscosity Liquid                                      | 292 |  |
|   | 9.2.1                                                                       | Reduced Equations Describing the Process of Bubble Nucleation             | 292 |  |
|   | 9.2.2                                                                       | Time of Establishment of Steady-State Nucleation                          | 296 |  |
|   | 9.2.3                                                                       | Quasistationary Distribution of Subcritical Bubbles                       | 299 |  |

Contents

|    | 9.2.4  | Distribution Function of Bubbles in the Range $N_c < N < \widetilde{N}$                            | 300  |
|----|--------|----------------------------------------------------------------------------------------------------|------|
|    | 9.2.5  | Distribution Function of Bubbles in the Range $N > \widetilde{N} \dots \dots$                      | 302  |
|    | 9.3    | The Intermediate Stage                                                                             | 307  |
|    | 9.4    | The Late Stage                                                                                     | 314  |
|    | 9.5    | Results of Numerical Computations                                                                  | 322  |
|    | 9.6    | Conclusions                                                                                        | 325  |
|    | 9.A    | Appendices                                                                                         | 326  |
|    | 9.A.1  | Some Mathematical Transformations                                                                  | 326  |
|    | 9.A.2  | Estimation of the Conditions when Merging of Colliding Bubbles can be                              |      |
|    |        | Neglected                                                                                          | 327  |
| 10 | Dhaca  | Separation in Solid <sup>3</sup> He <sup>4</sup> He Mixtures                                       | 329  |
| IU | 10.1   | Introduction                                                                                       | 329  |
|    | 10.1   | Homogeneous Nucleation in Mixtures: Theory                                                         | 331  |
|    | 10.2   | Homogeneous Nucleation in <sup>3</sup> He- <sup>4</sup> He Solid Solutions: Experiment and         | 331  |
|    | 10.5   | Comparison with Theory                                                                             | 334  |
|    | 10.3.1 | Spin Echoes in Restricted Geometry and Cluster Sizes                                               | 334  |
|    |        | Experimental Details                                                                               | 335  |
|    |        | Results and Discussion                                                                             | 337  |
|    |        | Conclusion                                                                                         | 339  |
|    | 10.3.4 | Kinetics of Phase Transition in Solid Solutions of <sup>4</sup> He in <sup>3</sup> He at Different | 337  |
|    | 10.4   | Degrees of Supersaturation                                                                         | 339  |
|    | 10.4.1 | Experimental Results                                                                               | 339  |
|    |        | Discussion                                                                                         | 340  |
|    |        | Conclusion                                                                                         | 345  |
|    | 10.5   | Influence of the Degree of Supercooling on the Kinetics of Phase Separation                        | 5 15 |
|    | 10.5   | in Solid Mixtures of <sup>4</sup> He in <sup>3</sup> He                                            | 346  |
|    | 10.6   | Comparison between Experiments and Conclusions                                                     | 349  |
|    |        | •                                                                                                  |      |
| 11 |        | tion versus Spinodal Decomposition in Confined Binary Solutions                                    | 353  |
|    | 11.1   | Introduction                                                                                       | 353  |
|    | 11.2   | Spinodal Decomposition in Adiabatically Isolated Systems                                           | 355  |
|    | 11.2.1 | The Cahn-Hilliard-Cook Equation                                                                    | 355  |
|    | 11.2.2 |                                                                                                    | 357  |
|    |        | Results of Numerical Calculations                                                                  | 359  |
|    | 11.2.4 |                                                                                                    | 362  |
|    | 11.2.5 |                                                                                                    | 364  |
|    | 11.3   | Generalized Cluster Model Approach to the Description of Phase Separa-                             |      |
|    |        | tion: The Model System                                                                             | 365  |
|    | 11.4   | Phase Separation in Infinite Domains                                                               | 368  |
|    | 11.4.1 | Thermodynamic Analysis                                                                             | 368  |
|    |        | Kinetics versus Thermodynamics in Phase Separation                                                 | 373  |
|    | 11.5   | Phase Separation in Finite Domains                                                                 | 376  |
|    | 11.5.1 | Thermodynamic Analysis                                                                             | 376  |
|    | 11.5.2 | Kinetics                                                                                           | 384  |

|            | Transition from Independent Cluster Growth to Coarsening |     |
|------------|----------------------------------------------------------|-----|
| References |                                                          | 399 |
| Index      |                                                          | 413 |