Mathematical Methods of Lagrangian and Hamiltonian Mechanics

Bernd Wichmann

Bernd Wichmann, Kufstein, Austria, bernd47@kufnet.at, www.tensor-calculus.com

Text: \bigcirc Copyright by Bernd Wichmann Graphics: \bigcirc Copyright by Bernd Wichmann All rights reserved

2024

To Helga

Preface

This book is intended to help students of physics and other branches of science in the first semesters of their studies to better understand the applied mathematical methods of Lagrangian and Hamiltonian mechanics. The book has the benefit of learning, in addition to the physical processes of classical mechanics, with focus on Lagrangian and Hamiltonian mechanics, the mathematical methods that are equally needed in other branches of physics. These include: Vector calculus, matrix calculus, tensor calculus, differential equations, derivative chain rule, Taylor series, differential geometry, implicit function theorem, coordinate transformation (Jacobian), curvilinear coordinates, Legendre transformation, and much more.

Chapter 1 describes the basics of Newtonian mechanics in a review. In addition to Newton's laws, the two-body problem is dealt with in detail. Kepler's laws are a by-product of this.

Chapter 2 explains the origins of the variation technique with its historical origin in the brachistochrone problem. After introducing generalised coordinates and applying Newton's principle of determinacy, the Lagrangian approach for mechanical systems is derived. The conservation laws play an important role in this context. Applications are shown for motions in a central field. The Lagrangian dynamics for oscillations with the various modes is discussed in depth. The application of linear algebra (eigenvectors, normal coordinates) is treated in great detail.

Chapter 3 develops the Hamiltonian dynamics for mechanical systems. The transition from the configuration space of Lagrangian mechanics to the symplectic phase space of Hamiltonian mechanics (Legendre transformation) is discussed. An additional section deals with Routh's procedure, which can be described as a mixture of Lagrangian and Hamiltonian mechanics.

The extension of the permissible transformations of the variables (q^i, p_i) of Hamiltonian mechanics in comparison to Lagrangian approach leads us to the canonical transformations, Chapter 4. Here the generating functions of the canonical transformations are derived with the help of the Legendre transformation. The symplectic relationship of canonical transformations is clearly worked out.

In Chapter 5, the Hamiltonian equations of motion are described using the Poisson formalism, which provides the equations of motion with a symmetrical form. Further topics such as constants of motion, Jacobi identity, canonical invariance, Liouville's theorem, etc. are treated in detail.

Hamilton-Jacobi theory, Chapter 6, considers the interesting approach of finding a canonical transformation in which the phase space coordinates and the new Hamiltonian are all constant. This is discussed in depth and the student is given a procedure for solving a mechanical system.

A canonical transformation, the so-called action-angle variable, which is discussed in Chapter 7, is suitable for periodic phase orbits. The important field of adiabatic invariants with reference to quantum mechanics is also discussed.

The texts are supported with many graphics and help the student to grasp the current topic more intuitively. All chapters contain many exercises. The student is encouraged to first try to solve the exercises independently before consulting the solutions provided.

> Bernd Wichmann April 2024

Contents

1	\mathbf{Bas}	ics	1
	1.1	Gravitation	1
	1.2	Scalar field Φ	3
	1.3	Gravitational field of a spherical mass shell	7
	1.4	Gravitational field of a sphere	10
	1.5	Gravitational law	12
	1.6	Potential energy	14
	1.7	Potential field Φ near the earth surface	18
	1.8	Newton's laws	20
	1.9	Two body problem	26
2	Lag	rangian mechanics	37
	2.1	Excursus on the calculus of variations	37
	2.2	Generalised coordinates	43
	2.3	Lagrangian function and Lagrange's equation	48
2.4 Conserved quantities from the point of view of Lagrangian r			
		anics	57
		2.4.1 Conservation of canonical momentum based on symmetry	
		1 0	57
		2.4.2 Conservation of energy due to invariance with respect to	
			58
	2.5		60
		1	62
		J I	65
	2.6	Oscillations	67
			67
		2.6.2 Solution Ansatz and eigenvalue equation	71
		2.6.3 Normal coordinates	76
		2.6.4 Summary of the procedure for solving a oscillation problem	78
	2.7	Exercises with solutions	79

CONTENTS

3	Har	niltonian mechanics	119
	3.1	Why a Hamiltonian mechanics? Isn't the Lagrangian mechanics	
		already a sufficient tool?	119
	3.2	Legendre transformation	121
	3.3	Hamiltonian function and Hamilton's equations	123
	3.4	Derivation of Hamilton's equations from the extremal principle	126
	3.5	Routhian Procedure	127
	3.6	Exercises with solutions	130
4		nonical Transformations	141
	4.1	Phase Space	141
	4.2	The equations of canonical transformation	146
	4.3	The symplectic approach to canonical transformations	153
	4.4	Exercises with solutions	158
5	Pois	sson Formalism	175
	5.1	Definition and properties of the Poisson bracket	177
	5.2	Time evolution	184
	5.3	Canonical invariance of Poisson bracket	188
	5.4	Infinitesimal canonical transformations	190
	5.5	Constants of motion and conservation theorems	194
	5.6	Liouville's theorem	197
	5.7	Exercises with solutions	202
6	Har	nilton-Jacobi Theory	207
	6.1	The Hamilton-Jacobi equation	207
	6.2	Procedure for completely separable systems	213
	6.3	Exercises with solutions	219
7	Act	ion-Angle Variables	229
	7.1	Periodic Phase Orbits	229
	7.2	Systems of one degree of freedom	232
	7.3	Multiple periodic motions	238
	7.4	Adiabatic Invariants	242
	7.5	Exercises with solutions	246
\mathbf{A}	Son	ne mathematical terms	257
В	Cur	vilinear coordinates	261
	B.1	General approach to creating curvilinear coordinates	263
	B.2	Polar coordinates	266
	В.3	Cylindrical polar coordinates	268
		Spherical polar coordinates	270

CONTENTS

	B.5	Paraboloidal coordinates	272
	B.6	Prolate spheroidal coordinates	276
	B.7	$ \label{lem:def:Differential operators in curvilinear orthogonal coordinates } . .$	281
\mathbf{C}	Mat	trices	283
	C.1	Index notation	283
	C.2	Transposes	285
	C.3	Unit and Inverses	286
	C.4	Determinants	287
	C.5	Eigenvalues and Eigenvectors	289
	C.6	Similarity transformation	291
	C.7	Symmetric Matrices	292
D	Mul	ltivariable calculus	295
	D.1	Derivatives	295
	D.2	Partial derivatives	299
	D.3	Jacobian	305
	D.4	Implicit function theorem	309
	D.5	Integration by parts	318

List of Figures

1.1	The scalar field $\Phi(r)$ drawn as a function (left), and as a density	
	plot (right)	3
1.2	Contour lines and direction arrows of increasing values of grad Φ .	4
1.3	Gravitational field of a mass M with the contour lines of equal	
	field strength, equation (1.5)	6
1.4	Auxiliary figure for the calculation of the gravitational field of	
	a spherical mass shell	7
1.5	Magnitude of the gravitational field $ \vec{g} $ of a sphere as a func-	
	tion of the distance from the center of the sphere in figurative	
	representation	11
1.6	Masses M and m with their position vectors	12
1.7	Two wagons coupled to each other are pulled by a force F	24
1.8	Typical potential curve of a two-body problem with different	
	total energies drawn in	29
1.9	Position configuration of the masses M and m for the investig-	
	ation of the two-body problem	31
2.1	Two-step polygonal drawing according to Snell's law	38
2.2	The function $y(x)$ for which $I[y(x)]$ is extremal and, by way of	
	example, two variational functions $\tilde{y}(x)$	40
2.3	Illustration of a simple example (see text) for determining a	
	center of mass frame \mathcal{K}'	44
2.4	Relationship between the position vectors of a particle m_i in	
	the lab frame and CM frame if the origin of the CM frame is	
	identical to the center of mass	45
2.5	The left picture shows two circles $S^1(\theta)$ with the angular co-	
	ordinates $q^1 = \theta \in [0, 2\pi)$ and $q^2 = \theta \in [0, 2\pi)$, e.g. the domains	
	of the two angular coordinates of a plane double pendulum. The	
	direct product $S^1(q^1) \times S^1(q^2)$ forms the configuration space on	50
2.6	which the Lagrangian mechanical system moves (right picture).	50
2.6	Mass point in empty space	58

2.7	Mass point in a gravitational field $\vec{g} = g(x)\vec{e}_x$	58
2.8	The elliptical orbit of a mass particle m in a central potential	
	$U(r) = -\frac{\gamma}{r}$ located at the focus (origin of the polar coordinates)	
	of the ellipse.	65
2.9	The coordinate q^1 oscillates periodically in the respective eigen-	
	frequencies (upper two figures). In the general solution, a su-	
	perposition of the two eigenfrequencies happens (lower figure),	75
0.10	and q^1 executes a complicated motion pattern	75
	Plot of a rolling circle, cycloid, with radius k and rolling angle α .	
2.11		88
2.12		90
2.13		96
2.14		100
2.15		105
2.16		109
2.17		114
2.18	The motion pattern of the five masses for each normal mode.	
	Each column shows one normal mode	117
4.1	Typical phase space trajectory with phase space vector $\vec{\xi} = (q, p)$	
	for different values of the time parameter t . The vectors $\dot{\vec{\xi}}$ are	
	tangential vectors of the trajectory	144
4.2	Three phase space diagrams (from left to right): free particle,	
	a mass point in free fall under the influence of a gravitational	
	force and a harmonic oscillator	144
4.3	Phase space trajectories of a plane pendulum	145
4.4	Phase space curves of a one-dimensional harmonic oscillator be-	
	fore (left plot) and after (right plot) a canonical variable trans-	
	formation by the generating function $G = q q' \dots \dots$	148
4.5	The phase space curves of a free particle of mass m . The lower	
	trajectory of a particle with energy E , the upper trajectory for	
	an energy $2E$	159
4.6	The phase space curves of a mass point m for three different	
	conditions, according to the specifications from a), b) and c)	162
4.7	The phase space curves of a harmonic oscillator in the energy	
	states E and $2E$. The velocity vectors indicate that the oscillator	
	starts with a potential energy, $p(0) = 0$	165
4.8	Phase space curves of a one-dimensional harmonic oscillator be-	
	fore (left plot) and after (right plot) a canonical variable trans-	
	formation by the generating function $G = \frac{1}{2}m\omega q^2 \cot(q')$	169

5.1	An infinitesimal volume element ω is subjected to a canonical transformation $\omega \to \omega'$	197
5.2	Motion of volume in phase space	200
5.3		204
5.4		204
5.5	The phase space volume for two different times, $(t = t_0, t > t_0)$, of a Hamiltonian system of three free falling particles in the gravitational field. For the denotation of the trajectories, compare the Figure 4.6 from Section 4.4, Exercise 2	205
6.1		220
7.1	For a one-dimensional system, the left figure shows a closed phase space curve of a libration and the right figure shows a phase space curve of a rotation with period q_0 . The contour \mathcal{C}	990
7.2	in phase space is uniquely determined by the Hamiltonian H . Graphical visualisation of a one-dimensional libration in phase space and its canonical transformation using the action-angle variables.	230235
7.3	variables	$\frac{233}{241}$
7.4		241
7.5	The left figure shows a precessing ellipse that closes after six	271
1.0	revolutions, $\omega_r/\omega_\theta = 5/6$. The right figure shows a non-closing orbit, ratio ω_r/ω_θ is irrational	254
7.6	orbit, facto ω_r/ω_θ is irrational	254 255
B.1	Cartesian $r\theta$ -plane (left), $r\theta$ -coordinates in Cartesian xy -plane (right)	261
B.2	Polar coordinates in Cartesian coordinate system (x^1, x^2)	266
B.3	Cylindrical polar coordinates	268
B.4	Spherical coordinates	270
B.5	Paraboloidal coordinates in the yz-half-plane, $\theta = \pi/2$	272
B.6	Paraboloidal coordinates, $u = v = 1$, with azimuth angle $0 \le \theta \le 4\pi/3$	273
B.7	Parabolic coordinates in the yz -plane	274
B.8	Prolate spheroidal coordinates (u, v) in the yz -plane, $\theta = \pi/2$,	
2.0	or elliptic coordinates in the yz -plane	277
B.9	Ellipsoid and hyperboloid of revolution of prolate spheroidal coordinates	278
D.1	Differential df of a function f of one variable. The graph shows the function $f(x) = x^2$	301
D.2		312

Chapter 1

Basics

1.1 Gravitation

Gravitation is one of the four basic forces, along with electromagnetism, strong nuclear force and weak nuclear force. Until today we don't know *what* makes the planets revolve around the sun, but only *how* they revolve. This how is united in the famous Newtonian¹ gravitation formula

$$F = G \frac{m M}{r^2}.$$

The gravitational force between two masses² is always attractive, never repulsive. Isaac Newton derived the law of gravitation from the three Kepler's³ laws (see Box 1.1). The gravitation formula describes that two masses attract each other with a force proportional to the masses of the objects and inversely proportional to the square of their distances. Established for the planetary motion around the sun, however, it has universal validity: Each object attracts all the others. The gravitational force has its validity in the whole universe observable until today. Even among galaxies, which are tens of millions of light years apart, it still seems to work. Although the gravitational force is far weaker than the electric force by a factor of 4.17×10^{42} (comparison between the electric repulsion of two electrons and their attraction by gravitation), it creates planets, stars and galaxies with its almost infinite range.

¹Isaac Newton (1643-1727), English mathematician and physicist

²Each mass distribution can be assigned to a center of mass, at which the forces, here the gravitational force, act, just as if the entire mass were concentrated at this point. r is the distance between the two centers of mass of m and M.

³Johannes Kepler (1571-1630), German mathematician and astronomer

Remark 1.1

In this chapter, the masses should be given an index G for gravity. However, we will omit this for the sake of clarity. The gravitational mass is responsible for the gravitational force. In Section 1.8 where we deal with Newton's laws, the mass is given the index I to clarify the principle of inertia, the mass resists a change in its position. However, since the two masses do not differ in their scalar value $m_G = m_I$ according to the present state of knowledge, we omit the indices in the further course of the text.

Box 1.1

Kepler's laws

The astronomer Tycho Brahe a of the 16th century observed the course of the planets. He recorded with high accuracy their position in the night sky and compiled the data in extensive tables. The astronomer and mathematician Johannes Kepler sifted and analysed the data Brahe had collected. He summarized the result in three laws .

- 1. Each planet moves around the sun on an ellipse, in one focus of which is the sun.
- 2. The radius vector from the sun to the planet passes over equal areas in equal time intervals.
- 3. The squares of the orbital periods of any two planets behave like the cubes of the semimajor axes of their orbits:

$$\frac{{T_1}^2}{{T_2}^2} = \frac{{a_1}^3}{{a_2}^3}.$$

^aTycho Brahe (1546-1601), Danish astronomer

1.2 Scalar field Φ

We imagine an empty universe. Now we insert a point-like object with the property mass and his magnitude M into this empty space at an arbitrary position. This mass creates a $number\ field\ \Phi$, around itself. This scalar field is also called $potential\ field$, or just $potential\ for\ short$. How will these numbers arrange themselves? Since we assume an isotropic space which contains no preferred direction, this scalar field has a spherical symmetry. Since we want to develop gravitational forces from this number field, we introduce a minus sign and the gravitational constant G. Let this scalar field now be described mathematically as follows

$$\Phi(r) = -G\frac{M}{r},\tag{1.1}$$

where r is the distance of any point of the space to the mass M.

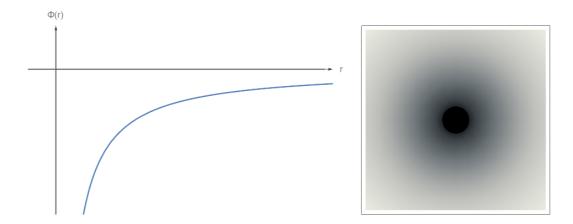


Figure 1.1 The scalar field $\Phi(r)$ drawn as a function (left), and as a density plot (right).

Figure 1.1 shows us graphically the behaviour of this central scalar field⁴ of equation (1.1). Once plotted as a function, and secondly as a colouring of the numbers. The blue area corresponds to high negative numbers. In the red area

⁴A scalar field f(P) is called a central field if there is a point O where f(P) depends only on the distance r between the point P and O, i.e. $f(P) = \Phi(r)$.

the numbers approach zero.

The best way to analyse a scalar field is to form the *gradient* of the number field. A gradient shows the *contour lines*, lines of constant value, and the *direction* in which the number field takes on higher values. The gradient of a scalar field can be compared to a topographical map with its contours of equal elevation. The narrower the contour lines, the steeper the terrain. And the greater the magnitude of the gradient. The gradient of a scalar field is a *one-form*, a *covector* (see [Wic21]). Applied to (1.1) we get

$$\operatorname{grad} \Phi = \tilde{\mathrm{d}} \Phi = \partial_i \Phi \, \tilde{e}^i, \tag{1.2}$$

with the covariant components $\partial_i \Phi$, represented as stacked contour lines, surfaces etc. and the dual space basis vectors \tilde{e}^i .

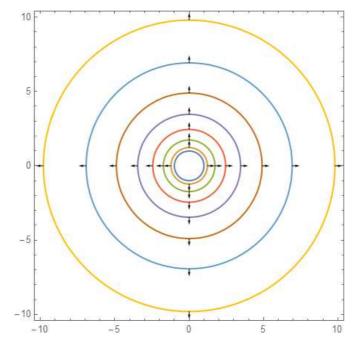


Figure 1.2 Contour lines and direction arrows of increasing values of grad Φ .

Figure 1.2 shows the gradient field $\tilde{\mathbf{d}} \Phi$ of the scalar field Φ of equation (1.1). It displays the contour lines of the same value and the directional arrows to indicate ascending values. The higher magnitudes of the gradient field $\tilde{\mathbf{d}} \Phi$ can be recognised by the denser contour lines as r becomes smaller.

We want to transform the covariant components $\partial_i \Phi$ into contravariant vector components by means of the metric \mathbf{g} and index raising. Due to the spherical symmetric configuration of $\Phi(r)$ we use spherical coordinates (r, θ, ϕ) .

$$\partial^j \Phi = \partial_i \Phi g^{ij}, \tag{1.3}$$

with ∂^j as a symbol for a partial derivative of a scalar leading to a contravariant component of a vector. We use ∂^j only when it needs to be emphasised in the context for distinction. It should be noted that a gradient of a scalar field f, grad f, since it is a one-form, is always to be calculated with $\partial_i f$, and subsequently, if a vector notation of the gradient field ∇f is necessary, to be transferred into contravariant vector components with index raising. The following applies to the scalar field $\Phi(r)$ under consideration, (1.1):

$$\nabla \Phi(r) = \partial^{j} \Phi(r) \hat{e}_{j} = \partial_{i} \Phi(r) g^{ij} \hat{e}_{j}$$

$$= \partial_{r} \Phi(r) g^{rr} \hat{e}_{r} + \partial_{\theta} \Phi(r) g^{\theta\theta} \hat{e}_{\theta} + \partial_{\phi} \Phi(r) g^{\phi\phi} \hat{e}_{\phi}$$

$$= \partial_{r} \Phi(r) \cdot 1 \cdot \hat{e}_{r} + 0 \cdot \frac{1}{r} \cdot \hat{e}_{\theta} + 0 \cdot \frac{1}{r \sin \theta} \cdot \hat{e}_{\phi}$$

$$= \partial_{r} \Phi(r) \hat{e}_{r}$$

$$= G \frac{M}{r^{2}} \hat{e}_{r}.$$

$$(1.4)$$

The gravitational field \vec{g} of a mass M is a central vector field⁵ and is written as

$$\vec{g} = -\nabla \Phi(r) = -G\frac{M}{r^2}\,\hat{e}_r, \qquad (1.5)$$

⁵A vector field $\vec{g}(P)$ is called a central vector field if there is a point O such that all vectors $\vec{g}(P)$ lie on straight lines passing through O and their magnitude depends only on the distance r between the point P and O, i.e. $\vec{g}(P) = f(r)\hat{e}_r$, where \hat{e}_r is the unit vector of the straight line.

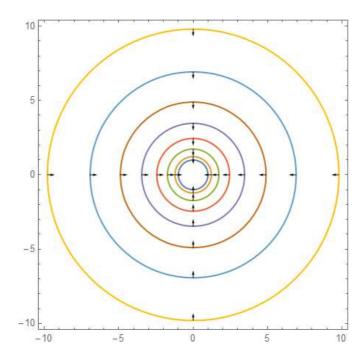


Figure 1.3 Gravitational field of a mass M with the contour lines of equal field strength, equation (1.5).

and shown again in Figure 1.3 with its contour lines of equal strength and the vectors \hat{e}_r directed towards the center of mass.