## **Contents**

| On the Extension of the Namioka-Klee Theorem and on the Fatou |                                                                |    |  |
|---------------------------------------------------------------|----------------------------------------------------------------|----|--|
| Pro                                                           | perty for Risk Measures                                        | 1  |  |
| Sara                                                          | Biagini and Marco Frittelli                                    |    |  |
| 1                                                             | Introduction                                                   | 1  |  |
| 2                                                             | The Extended Namioka Theorem                                   | 7  |  |
|                                                               | 2.1 The Current Literature                                     | 9  |  |
| 3                                                             | On Order Lower Semicontinuity in Riesz Spaces                  | 0  |  |
|                                                               | 3.1 Equivalent Formulations of Order l.s.c                     | 1  |  |
|                                                               | 3.2 The Order Continuous Dual $1_n^{\sim}$                     | 12 |  |
| 4                                                             | On the C-Property                                              | 13 |  |
|                                                               | 4.1 The <i>C</i> -Property in the Representation of Convex and |    |  |
|                                                               | Monotone Functionals                                           | 4  |  |
| 5                                                             | Orlicz Spaces and Applications to Risk Measures                | 16 |  |
|                                                               | 5.1 Orlicz Spaces Have the C-Property                          | 16 |  |
|                                                               | 5.2 New Insights on the Downside Risk and Risk Measures        |    |  |
|                                                               | Associated to a Utility Function u                             | 9  |  |
|                                                               | 5.3 Quadratic-Flat Utility                                     | 26 |  |
|                                                               | 5.4 Exponential Utility                                        | 27 |  |
|                                                               | References                                                     | 28 |  |
|                                                               | 8                                                              | 29 |  |
| Alex                                                          | ander Cherny and Bruno Dupire                                  |    |  |
| 1                                                             | Introduction                                                   | 29 |  |
| 2                                                             | Proofs                                                         | 33 |  |
| 3                                                             | Conclusion                                                     | 37 |  |
|                                                               | References                                                     | 38 |  |
|                                                               |                                                                | 39 |  |
| Fred                                                          | dy Delbaen                                                     |    |  |
| 1                                                             | Notation and Preliminaries                                     | 39 |  |
| 2                                                             | The Jouini-Schachermayer-Touzi Theorem                         | 12 |  |



хi

xii Contents

|      | 3     | A Consequence of Ekeland's Variational Principle and Other      |
|------|-------|-----------------------------------------------------------------|
|      |       | Family Members of Bishop-Phelps                                 |
|      | 4     | A Consequence of Automatic Continuity                           |
|      | 5     | The One-Sided Derivative                                        |
|      | 6     | An Example                                                      |
|      | 7     | The Example of an Incomplete Financial Market                   |
|      |       | References                                                      |
| Expe | onent | tial Utility Indifference Valuation in a General Semimartingale |
| •    | Mod   |                                                                 |
|      | Chris | stoph Frei and Martin Schweizer                                 |
|      | 1     | Introduction                                                    |
|      | 2     | Motivation and Definition of $FER(H)$                           |
|      | 3     | No-arbitrage and existence of $FER(H)$                          |
|      | 4     | Relating $FER^*(H)$ and $FER^*(0)$ to the Indifference Value 64 |
|      | 5     | A BSDE Characterization of the Indifference Value Process 73    |
|      | 6     | Application to a Brownian Setting                               |
|      | Ü     | References                                                      |
|      |       |                                                                 |
| The  |       | ected Number of Intersections of a Four Valued Bounded          |
|      |       | tingale with any Level May be Infinite                          |
|      |       | ander Gordon and Isaac M. Sonin                                 |
|      | 1     | Introduction                                                    |
|      | 2     | Proof of Theorem 2. Cases $N = 2$ and $N = 3 \dots 90$          |
|      | 3     | Proof of Theorem 2. Case $N > 3$ . An Example                   |
|      |       | References                                                      |
| Imm  | ersio | on Property and Credit Risk Modelling                           |
|      | Mon   | ique Jeanblanc and Yann Le Cam                                  |
|      | 1     | Introduction                                                    |
|      | 2     | Credit Modelling Framework                                      |
|      |       | 2.1 The Two Information Flows                                   |
|      |       | 2.2 Financial Interpretation of This Decomposition 103          |
|      |       | 2.3 Absence of Arbitrage                                        |
|      | 3     | Representation Theorem in the Enlarged Filtration 107           |
|      |       | 3.1 Representation of the G-Martingales 107                     |
|      |       | 3.2 Change of Probability                                       |
|      | 4     | Complete Reference Market                                       |
|      |       | 4.1 Description of the G-Martingale Probabilities 113           |
|      |       | 4.2 Completeness of the Full Market                             |
|      |       | 4.3 Immersion Property                                          |
|      | 5     | Incomplete Markets                                              |
|      | -     | 5.1 The Risk-Neutral Probabilities of the Full Market 122       |
|      |       | 5.2 Default-Free Pricing Invariance                             |
|      |       | 5.3 Immersion Property                                          |
|      | 6     | Conclusion                                                      |
|      | •     | References 120                                                  |
|      |       |                                                                 |

Contents xiii

|         |                  | Imption and Investment with Bounded Downside Risk for |
|---------|------------------|-------------------------------------------------------|
| Po      | wer Uti          | lity Functions                                        |
| Cl      | audia K          | lüppelberg and Serguei Pergamenchtchikov              |
| 1       | Intro            | duction                                               |
| 2       | Form             | pulating the Problem                                  |
|         | 2.1              | The Model                                             |
|         | 2.2              | The Control Processes                                 |
|         | 2.3              | The Cost Functions                                    |
|         | 2.4              | The Downside Risk Measures                            |
| 3       | Prob             | lems and Solutions                                    |
|         | 3.1              | The Unconstrained Problem                             |
|         | 3.2              | Value-at-Risk as Risk Measure                         |
|         | 3.3              | Expected Shortfall as Risk Measure                    |
| 4       | Proo             | fs                                                    |
|         | 4.1              | Proof of Theorem 1                                    |
|         | 4.2              | Proof of Theorem 2                                    |
|         | 4.3              | Proof of Theorem 3                                    |
|         | 4.4              | Proof of Theorem 4                                    |
|         | 4.5              | Proof of Theorem 5                                    |
|         | 4.6              | Proof of Lemma 1                                      |
|         | 4.7              | Proof of Theorem 7                                    |
|         | 4.8              | Proof of Theorem 8                                    |
|         | 4.9              | Proof of Theorem 9                                    |
|         | Appe             | endix                                                 |
|         | 5.1              | A Technical Lemma                                     |
|         | 5.2              | The Verification Theorem                              |
|         | 5.3              | A Special Version of Itô's Formula 165                |
|         | Refe             | rences                                                |
| _       |                  |                                                       |
|         | _                | n Theorem and its Applications to Finance             |
|         |                  | Y. Krasin and Alexander V. Melnikov                   |
| 1       |                  | duction                                               |
| 2       |                  | parison Theorem                                       |
| 3       |                  | ications to Mathematical Finance                      |
|         | Refe             | rences                                                |
| E       | lan a <b>f</b> F | CIT in Dondon Environment                             |
| -       |                  | CLT in Random Environment                             |
| K.<br>1 | Liptser          | duction                                               |
| 2       |                  | mptions, Notations and Main Result                    |
| 2       | 2.1              | Notations                                             |
|         | 2.1              |                                                       |
| 2       |                  |                                                       |
| 3       |                  |                                                       |
|         | 3.1<br>3.2       |                                                       |
| 4       |                  | The Proof of (2)                                      |
| 4       | טוווע            | sion in Random Environment                            |

xiv Contents

|             |       | $4.1 	 b(\omega, u) \equiv 0 	 \ldots 	 \ldots 	 \ldots 	 \ldots 	 \ldots 	 \ldots$        | 191  |
|-------------|-------|--------------------------------------------------------------------------------------------|------|
|             |       | $4.2 	 b(\omega, u) \neq 0 	 \ldots 	 \ldots 	 \ldots 	 \ldots 	 \ldots 	 \ldots 	 \ldots$ | 192  |
|             | 5     | Markov Chain as Random Environment                                                         | 192  |
|             | 6     | Langevin Random Environment                                                                | 193  |
|             |       |                                                                                            | 194  |
| Th          |       | timal Time to Exchange one Asset for Another on Finite Interval.                           | 197  |
|             | Yul   | iya Mishura and Georgiy Shevchenko                                                         |      |
|             | 1     |                                                                                            | 197  |
|             | 2     | 11 0                                                                                       | 198  |
|             | 3     | Integral Equations for the Premium Function and the Threshold Curve                        | 201  |
|             | 4     |                                                                                            |      |
|             | 4     | Approaching Solution of Integral Equation for Threshold Curve                              |      |
|             |       | References                                                                                 | 210  |
| Ar          | bitra | ge Under Transaction Costs Revisited                                                       | 211  |
|             |       | klós Rásonyi                                                                               |      |
|             | 1     | Introduction                                                                               |      |
|             | 2     | Arbitrage and Price Systems                                                                |      |
|             | 3     | Markets with One Risky Asset                                                               |      |
|             | 4     | Proofs                                                                                     |      |
|             | 5     | Conclusion                                                                                 |      |
|             |       | Appendix                                                                                   |      |
|             |       | References                                                                                 | 224  |
| On          | the l | Linear and Nonlinear Generalized Bayesian Disorder Problem                                 |      |
|             | (Di   | screte Time Case)                                                                          | 227  |
|             | Alb   | ert N. Shiryaev and Pavel Y. Zryumov                                                       |      |
|             | 1     | Linear Penalty Case                                                                        | 227  |
|             | 2     | Nonlinear Penalty Case                                                                     | 230  |
|             |       | References                                                                                 | 235  |
| Lo          | ng Ti | me Growth Optimal Portfolio with Transaction Costs                                         | 237  |
|             |       | asz Stettner                                                                               |      |
|             | 1     | Introduction                                                                               | 237  |
|             | 2     | Discrete Time Case                                                                         |      |
|             | 3     | Continuous Time Case                                                                       |      |
|             |       | References                                                                                 |      |
| Ωn          | the ' | Approximation of Geometric Fractional Brownian Motion                                      | 251  |
| <b>O</b> 1. |       | o Valkeila                                                                                 | 251  |
|             | 1     | Introduction                                                                               | 251  |
|             | •     | 1.1 Geometric Fractional Brownian Motion                                                   | 25 I |
|             |       | 1.2 Motivation                                                                             |      |
|             |       | 1.3 The Structure of the Note                                                              |      |
|             | 2     | Approximation of fRm                                                                       |      |
|             |       |                                                                                            |      |

Contents xv

|   | 2.1   | Construction of the Approximation             |
|---|-------|-----------------------------------------------|
|   | 2.2   | Further Properties of the Approximation       |
|   | 2.3   | Approximation to Geometric fBm                |
| 3 | Some  | Properties of the Approximation               |
|   | 3.1   | Set-Up                                        |
|   | 3.2   | Prelimit Market Models are Arbitrage-Free 258 |
|   | 3.3   | Prelimit Market Models are Complete 260       |
| 4 | Discu | ssion and Conclusion                          |
|   | Refer | rences                                        |