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1  Einleitung 
  

In Zeiten von raschen Produktentwicklungen und verkürzten Produktionsdauern, gerade im Bereich der 

Spezialchemie, ändern sich die Anforderungen an die einzelnen verfahrenstechnischen Grundoperati-

onen in Richtung flexibler, modularer Mehrzweck- und Mehrproduktanlagen. Bei der thermischen Auf-

reinigung von Medien mit herausfordernden Stoffeigenschaften, wie thermischer Instabilität oder ho-

her Viskosität, kommt dem Dünnschichtverdampfer eine besondere Bedeutung zu. Die für eine effizi-

ente Verdampfung notwendige und erforderliche vollständige Benetzung der Wärmeübertragungsflä-

che ist von einer Vielzahl stofflicher, betrieblicher und apparativer Faktoren abhängig. Der adaptive 

Betrieb dieser Apparate soll durch eine übergreifende, segmentweise Methodik gesichert werden, die 

im Rahmen dieser Arbeit etabliert und an unterschiedlichen Apparateskalen validiert wird. 



1. Einleitung 
  

2 

Der Forderung nach produktschonenden Prozessbedingungen, um beispielsweise Wirkstoffe, Vita-

mine, Aromaten oder Öle vor der thermischen Zersetzung zu schützen, wird oft durch das Herabsetzen 

des Prozessdrucks, und damit einhergehend der Siedetemperatur, nachgekommen. Ist außerdem eine 

möglichst kurze Verweilzeit erforderlich, kann dies durch einen geringen Flüssigkeitsinhalt, wie er bei 

Fallfilmverdampfern vorkommt, realisiert werden. Herausfordernde Produkteigenschaften, wie eine 

vergleichsweise hohe Viskosität oder eine Neigung zum Fouling oder Schäumen, führen dazu, dass der 

Flüssigkeitsfilm ergänzend mechanisch beeinflusst werden muss.  

Dünnschichtverdampfer (DSV) sind Spezialapparate der thermischen Verfahrenstechnik, die den oben 

genannten Umständen gerecht werden. Das Alleinstellungsmerkmal ist der mechanisch beeinflusste 

Flüssigkeitsfilm, der auf der Innenseite eines beheizten Rohres hinabströmt und durch ein in den Film 

eingreifendes Wischersystem erzeugt und möglichst lange aufrechterhalten wird. Durch zugeführte 

Wärme verdampft ein Teil des Zulaufs und wird am Kopf des Apparats als Brüden abgeführt, extern 

kondensiert und als Destillat gewonnen. Durch das Funktionsprinzip und die damit verbundenen Vor-

teile – vor allem bei der Verarbeitung von höchst problematischen Produkten – werden DSV bei An-

wendungen mit o.g. Rahmenbedingungen, gegenüber den meisten anderen Verdampfern bevorzugt 

oder stellen die einzige Option dar (Glover and Hyde, 1997; Goedecke, 2006; Kaiser and Kranz, 1999).  

Eine vollständige Benetzung der Verdampferfläche ist sicherzustellen, um die Verdampfungsleistung 

dieser Apparate bestmöglich auszunutzen. Dazu ist die Kenntnis von Mindestberieselungsdichten, also 

der ausreichenden lokalen Flüssigkeitsbelastung pro Umfang, essenziell. Ist diese zu gering, besteht die 

Gefahr der Entnetzung und des Filmaufrisses. Ist diese zu hoch kann es zu einem Fluten des Apparats 

kommen. Es existieren zahlreiche stoffliche, apparative und operative Einflussfaktoren, die sich auf das 

Benetzungsverhalten und die Verdampferkapazität auswirken. Die Einflussfaktoren führen zu Verände-

rungen des Verweilzeitverhaltens, der Filmdicken und -zonen, der erreichbaren Trennleistung oder des 

lokalen Wärmeübergangs. Diese Bereiche werden seit den 1950er Jahren erforscht (Dieter, 1958; 

Schneider, 1955). Allerdings unterliegen die Erkenntnisse stets einer begrenzten Übertragbarkeit oder 

sind widersprüchlich (Kaiser and Kranz, 1999; Schaal et al., 2008; Skoczylas and Dziak, 1990). 

Eine rein rechnerische Auslegung der Apparate ist aufgrund von unbekannten Stoffeigenschaften neuer 

Produkte häufig nicht möglich und belastbare Wärmedurchgangskoeffizienten sind unbekannt. Werden 

sie zu konservativ angenommen, sind überdimensionierte Apparate und eine Verschlechterung der Be-

netzbarkeit die Folge. Die Umstellung von klassischen Batch-Verfahren auf eine kontinuierliche Be-

triebsweise für eine energie- und ressourceneffiziente Produktion trägt dazu bei, dass die Nachfrage 

nach modularen, flexiblen Mehrzweck- und Mehrproduktanlagen steigt (Hohmann et al., 2018). Hinzu 

kommt, dass die Übertragbarkeit der bekannten Einstellungen auf neue Produktgruppen gesichert sein 

muss. Im Bereich der Spezialchemie handelt es sich um innovative Produktgruppen mit teils unzu-

reichend erforschten Eigenschaften. Nichtsdestotrotz muss das Produkt in den Markt eingeführt wer-

den. Die Produktionszyklen und Prozessrouten sind vergleichsweise kurz. Zudem führt die Forderung 

nach verkürzten time-to-market Zeiten dazu, dass zeitintensive Labor- und Technikumsversuche, z. B. 

bei Lohndestillateuren, reduziert werden müssen (Riese et al., 2020).  

Oft sind Dünnschichtverdampfer aber auch schon seit Jahrzenten in Labor-, Technikums- und Produkti-

onshallen in Betrieb und werden in einem engen Prozessfenster betrieben, da kaum Berechnungs-

grundlagen bekannt oder vorhanden sind. Bei einem Produktwechsel liegt unter Umständen der neue 

Betriebspunkt sowohl aus operativer, aber auch aus wirtschaftlicher Sicht in einem ungünstigen Be-

triebsbereich und die Leistungsfähigkeit des Apparats wird nicht voll ausgenutzt (Lopez-Toledo, 2006).  
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Eine zusammenhängende und übertragbare Charakterisierungsgrundlage, die eine Bewertung und 

Übertragung bestehender Dünnschichtverdampfer ermöglicht, liegt in der Literatur bisher nicht vor. 

Hier setzt die vorliegende wissenschaftliche Abhandlung an.  

An verschiedenen Verdampferausführungen werden der Einfluss von Feedzustand, Verdampfergröße, 

Wandmaterial, Wischersystem und Beheizungsart, auf das Benetzungsverhalten und die Verdamp-

fungsleistung analysiert. Die genannten Umstände werfen die Frage auf, was spezifische Betriebscha-

rakteristiken, aber auch verbindende Elemente zwischen verschiedenen Apparateausführungen sind, 

wie diese beschrieben werden können und inwiefern diese den Last- und Betriebsbereich, gerade im 

Hinblick auf die Benetzbarkeit und die Verdampfungsleistung, eingrenzen.  

Im Rahmen der vorliegenden Arbeit wird das Hauptaugenmerk auf einen dampfbeheizten Dünn-

schichtverdampfer mit zwei verschiedenen Wischersystemen im Technikumsmaßstab gelegt. Dieser 

wird stofflich und energetisch bilanziert und anhand der Flüssigkeitsbeaufschlagung, Wischerdrehzahl 

beziehungsweise -art, Feedvorwärmung sowie Heizmanteltemperatur charakterisiert. Als Bewertungs-

werkzeug wird eine segmentweise Methodik entwickelt, die es ermöglicht, verschiedene Benetzungs-

zonen entlang des Verdampfungsweges aus den experimentellen Daten zu extrahieren. Ebenfalls wird 

untersucht, wie sich die Benetzungszonen und die Verdampfungsleistung beim Scale-Up auf verschie-

dene Apparatedesigns verschieben. Unterstützt werden die Erkenntnisse durch eine Fließbildsimula-

tion, die nach dem Prinzip der offenen Verdampfung arbeitet. Damit wird unterstrichen, bis wohin die 

segmentweise Methodik genug Aufschluss über das Apparateverhalten gibt und ab wann ein tiefergrei-

fender Blick nur über Modell und Simulation funktionieren kann, vgl. Abbildung 1-1. 

 

Abbildung 1-1: Übersicht über den strukturellen Aufbau der vorliegenden Arbeit. 

Die verschiedenen Benetzungssituationen können aus den experimentellen Datensätzen bestimmt, de-

ren Effekte gewichtet und die auftretenden Charakteristiken an unterschiedlichen Apparategrößen und 

Wischersystemen verglichen werden. Dabei spielt vor allem die Änderung der Umfangsbelastung im 

Dünnschichtverdampfer mit fortschreitender Fließrichtung in Richtung Sumpfaustritt eine entschei-

dende Rolle. Anhand der sich einstellenden Brüdenleistung können der Benetzungszustand und die 

Position der Teilentnetzung bestimmt werden. Bekanntermaßen liegen bei Fallfilmen die Verdamp-

fungsmechanismen Oberflächensieden oder Blasensieden vor (Scholl, 2010; Stephan, 1992). Ein Ver-

gleich mit der wirkenden Wärmestromdichte hilft dabei, die Verdampfungsmechanismen und deren 
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Auswirkungen auf die Benetzbarkeit zu quantifizieren. Unterstützt durch Aufnahmen mit einer Hoch-

geschwindigkeitskamera bei geöffnetem Sumpfaustrag werden Entnetzungsphänomene beschrieben 

und die Unterschiede bei Verwendung verschiedener Wischer herausgestellt. 

Neben der für eine vollständige Benetzung erforderlichen Mindestberieselungsdichte und der sich ein-

stellenden Fluiddynamik des gewischten Films sind die Verdampfungsleistung und die erzielbaren Wär-

medurchgangskoeffizienten in den einzelnen Teilbereichen von Interesse. Um dies nicht nur aus den 

experimentellen Daten abzuleiten, sondern auch modellieren zu können, wird der Apparat im Fließ-

bildmodell höhendiskretisiert. Mit bekannten Korrelationen für Heiz- und Produktseite werden die Bei-

träge am Wärmewiderstand bestimmt. Schlussendlich liefern die Erkenntnisse dieser Arbeit eine be-

darfsgerechte Berechnungs- und Bewertungsmethodik, die im Hinblick auf modularisierte Grundope-

rationen innerhalb der Verfahrenstechnik die Anforderungen der produzierenden Industrie bei richti-

ger Anwendung ermöglicht.  




