

Leseprobe

zu

Software-Metriken

von Richard Seidl, Manfred Baumgartner und Harry M.

Sneed

Print-ISBN: 978-3-446-47687-5
E-Book-ISBN: 978-3-446-47853-4
E-Pub-ISBN: 978-3-446-48058-2

Weitere Informationen und Bestellungen unter

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446476875

sowie im Buchhandel

© Carl Hanser Verlag, München

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446476875

Vorwort . . 	 XV

Geleitwort zur 1. Auflage . . 	XVII

Die Autoren . . 	 XIX

1	 Softwaremessung . . 	 1
1.1	 Das Wesen von Software . . 	 1
1.2	 Sinn und Zweck der Softwaremessung . . 	 6

1.2.1	 Zum Verständnis (Comprehension) der Software 	 7
1.2.2	 Zum Vergleich der Software . . 	 7
1.2.3	 Zur Vorhersage . . 	 7
1.2.4	 Zur Projektsteuerung . . 	 8
1.2.5	 Zur zwischenmenschlichen Verständigung . . 	 8

1.3	 Dimensionen der Substanz Software . . 	 8
1.3.1	 Quantitätsmetrik von Software . . 	 9
1.3.2	 Komplexitätsmetrik von Software . . 	 9
1.3.3	 Qualitätsmetrik von Software . 	 10

1.4	 Sichten auf die Substanz Software . . 	 10
1.5	 Objekte der Softwaremessung . . 	 12
1.6	 Ziele einer Softwaremessung . . 	 14
1.7	 Zur Gliederung dieses Buches . . 	 17

2	 Softwarequantität . . 	 19
2.1	 Quantitätsmaße . . 	 19
2.2	 Codegrößen . . 	 21

2.2.1	 Codedateien . 	 23
2.2.2	 Codezeilen . . 	 23
2.2.3	 Anweisungen . . 	 23
2.2.4	 Prozeduren bzw. Methoden . . 	 23
2.2.5	 Module bzw. Klassen . . 	 24
2.2.6	 Entscheidungen . . 	 24
2.2.7	 Logikzweige . . 	 24

Inhalt

VI �Inhalt

2.2.8	 Aufrufe . . 	 24
2.2.9	 Vereinbarte Datenelemente . . 	 24
2.2.10	 Benutzte Datenelemente bzw. Operanden . . 	 25
2.2.11	 Datenobjekte . . 	 25
2.2.12	 Datenzugriffe . . 	 25
2.2.13	 Benutzeroberflächen . . 	 25
2.2.14	 Systemnachrichten . . 	 26

2.3	 Entwurfsgrößen . . 	 26
2.3.1	 Strukturierte Entwurfsgrößen . . 	 26
2.3.2	 Datenmodellgrößen . . 	 26
2.3.3	 Objektmodellgrößen . . 	 27

2.3.3.1	 Komponenten . . 	 28
2.3.3.2	 Klassen . . 	 28
2.3.3.3	 Klassenmethoden . . 	 28
2.3.3.4	 Klassenattribute . . 	 28
2.3.3.5	 Klasseninteraktionen . . 	 28
2.3.3.6	 Objekte . . 	 28
2.3.3.7	 Objektzustände . . 	 29
2.3.3.8	 Objektinteraktionen . . 	 29
2.3.3.9	 Aktivitäten . . 	 29
2.3.3.10	 Entscheidungen . . 	 29
2.3.3.11	 Verarbeitungsregel . . 	 29
2.3.3.12	 Systemschnittstellen . . 	 29
2.3.3.13	 Anwendungsfälle und Systemakteure 	 30

2.4	 Anforderungsgrößen . . 	 30
2.4.1	 Anforderungen . . 	 32
2.4.2	 Abnahmekriterien . . 	 32
2.4.3	 Anwendungsfälle . . 	 32
2.4.4	 Verarbeitungsschritte . . 	 33
2.4.5	 Oberflächen . . 	 33
2.4.6	 Systemschnittstellen . . 	 33
2.4.7	 Systemakteure . . 	 33
2.4.8	 Relevante Objekte . . 	 33
2.4.9	 Objektzustände . . 	 34
2.4.10	 Bedingungen . . 	 34
2.4.11	 Aktionen . . 	 34
2.4.12	 Testfälle . . 	 34

2.5	 Testgrößen . . 	 35
2.5.1	 Testfälle . . 	 36
2.5.2	 Testfallattribute . . 	 36
2.5.3	 Testläufe . . 	 36
2.5.4	 Testskripte bzw. Testprozeduren . . 	 36
2.5.5	 Testskriptzeilen . . 	 37
2.5.6	 Testskriptanweisungen . . 	 37
2.5.7	 Fehlermeldungen . . 	 37

VIIInhalt

2.6	 Abgeleitete Größenmaße . . 	 38
2.6.1	 Function-Points . . 	 38
2.6.2	 Data-Points . . 	 39
2.6.3	 Object-Points . . 	 40
2.6.4	 Use-Case-Points . . 	 41
2.6.5	 Testfall-Points . . 	 41

3	 Softwarekomplexität . . 	 43
3.1.1	 Softwarekomplexität nach dem IEEE-Standard 	 46
3.1.2	 Softwarekomplexität aus der Sicht von Zuse . . 	 47
3.1.3	 Softwarekomplexität nach Fenton . . 	 47
3.1.4	 Komplexität als Krankheit der Softwareentwicklung 	 48
3.1.5	 Komplexitätsmessung nach Ebert und Dumke 	 50
3.1.6	 Die Alpha-Komplexitätsmetrik . . 	 51

3.2	 Steigende Softwarekomplexität . . 	 54
3.2.1	 Codekomplexität – Warum Java komplexer als COBOL ist 	 55
3.2.2	 Entwurfskomplexität – warum verschiedene Entwurfsansätze im

Endeffekt gleich komplex sind . . 	 58
3.2.3	 Anforderungskomplexität – warum die zu lösenden Aufgaben immer

komplexer werden . . 	 60
3.3	 Allgemeingültige Maße für die Softwarekomplexität . . 	 61

3.3.1	 Sprachkomplexität . 	 61
3.3.2	 Strukturkomplexität . . 	 62
3.3.3	 Algorithmische Komplexität . . 	 62

4	 Die Messung der Softwarequalität . . 	 63
4.1	 Qualitätseigenschaften nach Boehm . . 	 64

4.1.1	 Verständlichkeit nach Boehm . 	 65
4.1.2	 Vollständigkeit nach Boehm . . 	 66
4.1.3	 Portabilität nach Boehm . . 	 66
4.1.4	 Änderbarkeit nach Boehm . . 	 66
4.1.5	 Testbarkeit nach Boehm . . 	 66
4.1.6	 Benutzbarkeit nach Boehm . . 	 67
4.1.7	 Zuverlässigkeit nach Boehm . . 	 67
4.1.8	 Effizienz nach Boehm . . 	 68

4.2	 Gilb und die Quantifizierung der Qualität . . 	 68
4.2.1	 Funktionalitätsmessung nach Gilb . . 	 69
4.2.2	 Performanz-Messung nach Gilb . . 	 69
4.2.3	 Zuverlässigkeitsmessung nach Gilb . . 	 70
4.2.4	 Datensicherungsmessung nach Gilb . . 	 70
4.2.5	 Effizienzmessung nach Gilb . . 	 70
4.2.6	 Verfügbarkeitsmessung nach Gilb . . 	 71
4.2.7	 Wartbarkeitsmessung nach Gilb . . 	 71

4.3	 McCalls Qualitätsbaum . . 	 71
4.4	 Eine deutsche Sicht auf Softwarequalität . . 	 74

4.4.1	 Qualitätsbegriff . . 	 74

VIII �Inhalt

4.4.2	 Qualitätsklassifizierung . . 	 74
4.4.3	 Qualitätsmaße . . 	 75
4.4.4	 Qualitätsgrößen . . 	 75

4.5	 IEEE- und ISO/IEC-Standards für Softwarequalität . . 	 76
4.5.1	 Funktionalität nach ISO 25010 . . 	 77
4.5.2	 Effiziente Performanz nach ISO 25010 . . 	 77
4.5.3	 Kompatibilität nach ISO 25010 . . 	 77
4.5.4	 Benutzbarkeit nach ISO 25010 . . 	 77
4.5.5	 Zuverlässigkeit nach ISO 25010 . . 	 78
4.5.6	 Sicherheit nach ISO 25010 . . 	 78
4.5.7	 Wartbarkeit nach ISO 25010 . . 	 78
4.5.8	 Portabilität nach ISO 25010 . . 	 79

4.6	 Zielgerichtete Softwarequalitätssicherung . . 	 79
4.6.1	 Qualitätszielbestimmung . . 	 79
4.6.2	 Qualitätszielbefragung . . 	 80
4.6.3	 Qualitätszielbemessung . . 	 80

4.7	 Automatisierte Softwarequalitätssicherung . . 	 81
4.7.1	 Automatisierte Messung der Anforderungsqualität 	 82
4.7.2	 Automatisierte Messung der Entwurfsqualität 	 83
4.7.3	 Automatisierte Messung der Codequalität . . 	 84
4.7.4	 Automatisierte Messung der Testqualität . . 	 86

4.8	 Folgen fehlender Qualitätsmessung . . 	 87

5	 Anforderungsmessung . . 	 89
5.1	 Tom Gilbs Anstoß der Anforderungsmessung . . 	 91
5.2	 Weitere Ansätze zur Anforderungsmessung . . 	 93

5.2.1	 Der Boehm-Ansatz . . 	 93
5.2.1.1	 Vollständigkeit . . 	 93
5.2.1.2	 Konsistenz . . 	 94
5.2.1.3	 Machbarkeit . . 	 94
5.2.1.4	 Testbarkeit . . 	 94

5.2.2	 N-Fold Inspektion . . 	 95
5.2.3	 Parnas & Weis Anforderungsprüfung . . 	 95
5.2.4	 Abgleich der Anforderungen nach Fraser und Vaishnavi

(Anforderungsprüfung) . . 	 96
5.2.5	 Verfolgung der Anforderungen nach Hayes . . 	 96
5.2.6	 Bewertung der Anforderungen nach Glinz . . 	 98
5.2.7	 ISO-Standard 25030 . . 	 99
5.2.8	 Das V-Modell-XT als Referenzmodell für die Anforderungsmessung . . 	 99

5.3	 Eine Metrik für Anforderungen von C. Ebert . . 	 100
5.3.1	 Zahl aller Anforderungen in einem Projekt . . 	 101
5.3.2	 Fertigstellungsgrad der Anforderungen . . 	 101
5.3.3	 Änderungsrate der Anforderungen . . 	 102
5.3.4	 Zahl der Änderungsursachen . . 	 102
5.3.5	 Vollständigkeit des Anforderungsmodells . . 	 102
5.3.6	 Anzahl der Anforderungsmängel . . 	 102

IXInhalt

5.3.7	 Anzahl der Mängelarten . . 	 103
5.3.8	 Nutzwert der Anforderungen . . 	 103

5.4	 Die Sophist-Anforderungsmetrik . 	 103
5.4.1	 Eindeutigkeit der Anforderungen . . 	 104
5.4.2	 Ausschluss der Passivform bei den Anforderungen 	 104
5.4.3	 Klassifizierbarkeit der Anforderungen . . 	 105
5.4.4	 Identifizierbarkeit der Anforderungen . . 	 105
5.4.5	 Lesbarkeit . . 	 105
5.4.6	 Selektierbarkeit . . 	 105

5.5	 Agile Anforderungsmetrik . . 	 106
5.6	 Werkzeuge für die Anforderungsmessung . . 	 107

5.6.1	 Anforderungsmessung in den früheren CASE-Werkzeugen 	 107
5.6.2	 Anforderungsmessung im CASE-Tool SoftSpec 	 107
5.6.3	 Anforderungsmessung in den gegenwärtigen Requirements

Management Tools . . 	 109
5.6.4	 Anforderungsmetrik aus dem Werkzeug TextAudit 	 109

5.6.4.1	 Anforderungsgrößen . . 	 110
5.6.4.2	 Anforderungskomplexitäten . . 	 111
5.6.4.3	 Anforderungsqualitäten . . 	 111
5.6.4.4	 Prüfung der Rupp-Regeln . . 	 111
5.6.4.5	 Implementierung der Sophist-Metrik 	 112

5.6.5	 Darstellung der Anforderungsmetrik . . 	 112
5.7	 Gründe für die Anforderungsmessung . . 	 113

6	 Entwurfsmessung . . 	 115
6.1	 Erste Ansätze zu einer Entwurfsmetrik . . 	 116

6.1.1	 Der MECCA-Ansatz von Tom Gilb . . 	 116
6.1.2	 Der Structured-Design-Ansatz von Yourdon und Constantine 	 116
6.1.3	 Der Datenflussansatz von Henry und Kafura . . 	 118
6.1.4	 Der Systemgliederungsansatz von Belady und Evangelisti 	 119

6.2	 Entwurfsmessung nach Card und Glass . . 	 120
6.2.1	 Entwurfsqualitätsmaße . . 	 121

6.2.1.1	 Modulgröße . . 	 122
6.2.1.2	 Modulkohäsion . . 	 122
6.2.1.3	 Modulkopplung . . 	 122
6.2.1.4	 Modulkontrollspanne . . 	 122
6.2.1.5	 Konsequenzen der Modularisierung . . 	 123

6.2.2	 Entwurfskomplexitätsmaße . . 	 123
6.2.2.1	 Relative Systemkomplexität . . 	 123
6.2.2.2	 Strukturelle Systemkomplexität . . 	 124
6.2.2.3	 Verarbeitungskomplexität . . 	 125
6.2.2.4	 Entscheidungskomplexität . . 	 125
6.2.2.5	 Prozedurale Komplexität . . 	 126

6.2.3	 Erfahrung mit der ersten Entwurfsmetrik . . 	 126
6.3	 Die SOFTCON Entwurfsmetrik . . 	 127

6.3.1	 Formale Vollständigkeits- und Konsistenzprüfung 	 128

X �Inhalt

6.3.2	 Technische Qualitätsmaße für den Systementwurf 	 129
6.3.2.1	 Modularitätsmessung . . 	 129
6.3.2.2	 Wiederverwendbarkeitsmessung . . 	 130
6.3.2.3	 Portabilitätsmessung . . 	 130
6.3.2.4	 Entwurfskomplexitätsmessung . . 	 130
6.3.2.5	 Systemintegritätsmessung . . 	 131
6.3.2.6	 Zeiteffizienz . . 	 131
6.3.2.7	 Speichereffizienzmessung . . 	 131

6.4	 Objektorientierte Entwurfsmetrik . . 	 132
6.4.1	 Die OO-Metrik von Chidamer und Kemerer . . 	 133

6.4.1.1	 Anzahl gewichteter Methoden pro Klasse (WMC) 	 134
6.4.1.2	 Tiefe der Vererbungshierarchie (DIH) 	 134
6.4.1.3	 Anzahl der Unterklassen (SUB) . . 	 134
6.4.1.4	 Kopplung der Klassen (CBO) . . 	 135
6.4.1.5	 Anzahl potenzieller Zielmethoden (RFC) 	 135
6.4.1.6	 Zusammenhalt der Methoden (CBO) . . 	 135
6.4.1.7	 Kritik der Chidamer/Kemerer-Metrik 	 136

6.4.2	 MOOD-Entwurfsmetrik . . 	 136
6.4.2.1	 Messung des Kapselungsgrades . . 	 137
6.4.2.2	 Messung des Vererbungsgrades . . 	 138
6.4.2.3	 Messung des Kopplungsgrades . . 	 138
6.4.2.4	 Messung des Bindungsgrades . . 	 138

6.5	 Entwurfsmetrik in UMLAudit . . 	 139
6.5.1	 Entwurfsquantitätsmetrik . . 	 140
6.5.2	 Entwurfskomplexitätsmetrik . . 	 142

6.5.2.1	 Objektinteraktionskomplexität . . 	 143
6.5.2.2	 Klassenhierarchiekomplexität . . 	 143
6.5.2.3	 Klassen/Attributskomplexität . . 	 143
6.5.2.4	 Klassen/Methodenkomplexität . . 	 143
6.5.2.5	 Objektzustandskomplexität . . 	 144
6.5.2.6	 Zustandsübergangskomplexität . . 	 144
6.5.2.7	 Aktivitätenflusskomplexität . . 	 145
6.5.2.8	 Anwendungsfallkomplexität . . 	 145
6.5.2.9	 Akteurinteraktionskomplexität . . 	 145
6.5.2.10	 Allgemeine Entwurfskomplexität . . 	 146
6.5.2.11	 Mittlere Entwurfskomplexität . . 	 146

6.5.3	 Entwurfsqualitätsmetrik . . 	 146
6.5.3.1	 Klassenkopplungsgrad . . 	 147
6.5.3.2	 Klassenkohäsionsgrad . . 	 147
6.5.3.3	 Modularitätsgrad . . 	 148
6.5.3.4	 Portabilitätsgrad . . 	 148
6.5.3.5	 Wiederverwendbarkeitsgrad . . 	 149
6.5.3.6	 Testbarkeitsgrad . . 	 149
6.5.3.7	 Konformitätsgrad . . 	 149
6.5.3.8	 Konsistenzgrad . . 	 150
6.5.3.9	 Vollständigkeitsgrad . . 	 150

XIInhalt

6.5.3.10	 Erfüllungsgrad . . 	 151
6.5.3.11	 Mittlere Entwurfsqualität . . 	 151

6.5.4	 Entwurfsgrößenmetrik . . 	 152
6.5.4.1	 Data-Points . . 	 153
6.5.4.2	 Function-Points . . 	 153
6.5.4.3	 Object-Points . . 	 153
6.5.4.4	 Use-Case-Points . . 	 154
6.5.4.5	 Test-Points . . 	 154

6.6	 Entwurfsmetrik für Webapplikationen . . 	 155

7	 Codemetrik . . 	 157
7.1	 Programmaufbau . . 	 157
7.2	 Ansätze zur Messung von Codekomplexität . . 	 160

7.2.1	 Halsteads Software Science . . 	 160
7.2.2	 McCabes Zyklomatische Komplexität . . 	 162
7.2.3	 Chapins Q-Komplexität . . 	 164
7.2.4	 Elshofs Referenzkomplexität . . 	 165
7.2.5	 Prathers Verschachtelungskomplexität . . 	 166
7.2.6	 Weitere Codekomplexitätsmaße . . 	 167

7.3	 Ansätze zur Messung von Codequalität . . 	 168
7.3.1	 Der Codequalitätsindex von Simon . . 	 168
7.3.2	 Der Maintainability-Index von Oman . . 	 169
7.3.3	 Zielorientierte Codequalitätsmessung . . 	 171

7.3.3.1	 Codeverständlichkeit . . 	 171
7.3.3.2	 Codeportierbarkeit . . 	 172
7.3.3.3	 Codekonvertierbarkeit . . 	 174
7.3.3.4	 Codewiederverwendbarkeit . . 	 174
7.3.3.5	 Codesicherheit . . 	 175
7.3.3.6	 Codetestbarkeit . . 	 176
7.3.3.7	 Codewartbarkeit . . 	 178

7.4	 Codemetrik nach SoftAudit . . 	 179
7.4.1	 Codequantitätsmetrik . . 	 179
7.4.2	 Codekomplexität . . 	 180

7.4.2.1	 Datenkomplexität . . 	 180
7.4.2.2	 Datenflusskomplexität . . 	 180
7.4.2.3	 Zugriffskomplexität . . 	 180
7.4.2.4	 Schnittstellenkomplexität . . 	 181
7.4.2.5 Ablaufkomplexität . . 	 181
7.4.2.6	 Entscheidungskomplexität . . 	 181
7.4.2.7	 Verschachtelungskomplexität . . 	 182
7.4.2.8	 Sprachkomplexität . . 	 182
7.4.2.9	 Beziehungskomplexität . . 	 182

7.4.3	 Codequalität . . 	 183
7.4.3.1	 Sicherheit (Security) . . 	 183
7.4.3.2	 Konformität (Conformity) . . 	 183
7.4.3.3	 Datenunabhängigkeit (Data Independency) 	 184

XII �Inhalt

7.4.3.4	 Redundanzfreiheit (Non redundant) . . 	 184
7.4.3.5	 Testbarkeit (Testability) . . 	 184
7.4.3.6	 Wiederverwendbarkeit (Reusability) 	 185
7.4.3.7	 Konvertierbarkeit (Convertibility) . . 	 185
7.4.3.8	 Übertragbarkeit (Portability) . . 	 186
7.4.3.9	 Modularität (Modularity) . . 	 186
7.4.3.10	 Kommentierung (Commentation) . . 	 186
7.4.3.11	 Weitere Qualitätsmerkmale . . 	 187

7.5	 Beispiel einer Codemessung . . 	 187

8	 Testmetrik . . 	 191
8.1	 Testmessung in der früheren Projektpraxis . . 	 192

8.1.1	 Das ITS-Projekt bei Siemens . . 	 192
8.1.2	 Das Wella-Migrationsprojekt . . 	 193

8.2	 Testmetrik nach Hetzel . . 	 195
8.3	 Testmetrik bei IBM Rochester . . 	 197
8.4	 Maßzahlen für den Systemtest . . 	 200

8.4.1	 Testzeit . . 	 201
8.4.2	 Testkosten . . 	 201
8.4.3	 Testfälle . . 	 201
8.4.4	 Fehlermeldungen . . 	 202
8.4.5	 Systemtestüberdeckung . . 	 202
8.4.6	 Empfehlungen von Hutcheson . . 	 203
8.4.7	 Test-Points . . 	 203

8.5	 Testmetrik im GEOS-Projekt . . 	 205
8.5.1	 Messung der Testfälle . . 	 205
8.5.2	 Messung der Testüberdeckung . . 	 208
8.5.3	 Messung der Fehlerfindung . . 	 208
8.5.4	 Auswertung der Testmetrik . . 	 210

8.6	 Testmetrik nach Sneed und Jungmayr . . 	 211
8.6.1	 Testbarkeitsmetrik . . 	 211

8.6.1.1	 Testbarkeit auf der Unit-Test-Ebene . 	 212
8.6.1.2	 Testbarkeit auf der Integrationstestebene 	 212
8.6.1.3	 Testbarkeit auf Systemtestebene . . 	 213

8.6.2	 Testplanungsmetrik . . 	 214
8.6.3	 Testfortschrittsmetrik . . 	 217
8.6.4	 Testqualitätsmetrik . . 	 218

8.6.4.1	 Testeffektivität . . 	 218
8.6.4.2	 Testvertrauen . . 	 219
8.6.4.3	 Testeffizienz . . 	 220
8.6.4.4	 Restfehlerwahrscheinlichkeit . . 	 220

9	 Produktivitätsmessung von Software . . 	 223
9.1	 Produktivitätsmessung – Ein umstrittenes Thema . . 	 226
9.2	 Softwareproduktivität im Rückblick . . 	 227

XIIIInhalt

9.2.1	 Dokumentenmessung mit dem Fog-Index . . 	 227
9.2.2	 Produktivitätsmessung bei der Standard Bank of South Africa 	 228
9.2.3	 Die Entstehung der Function-Point-Methode . . 	 229
9.2.4	 Das COCOMO-I-Modell von Boehm . . 	 231
9.2.5	 Putnams Softwaregleichung . . 	 233
9.2.6	 Die Data-Point-Methode . . 	 235
9.2.7	 Die Object-Point-Methode . . 	 237
9.2.8	 Die Use-Case-Point-Methode . . 	 240

9.3	 Alternative Produktivitätsmaße . . 	 242
9.4	 Produktivitätsberechnung anhand der Softwaregröße . . 	 244
9.5	 Aufwandserfassung . . 	 245
9.6	 Arten von Softwareproduktivität . . 	 246

9.6.1	 Programmierproduktivität . . 	 246
9.6.2	 Designproduktivität . . 	 247
9.6.3	 Analyseproduktivität . . 	 247
9.6.4	 Testproduktivität . . 	 248
9.6.5	 Gesamtproduktivität . . 	 248

9.7	 Produktivitätsstudien . . 	 249
9.7.1	 Studien über Softwareproduktivität in den USA 	 249
9.7.2	 Studien über Softwareproduktivität in Europa 	 251
9.7.3	 Probleme beim Produktivitätsvergleich . . 	 253

9.8	 Produktivitätsmessung nach Wertbeitrag . . 	 254
9.9	 Velocity – Produktivität in agilen Projekten . . 	 255

10	 Die Messung der Wartungsproduktivität . . 	 257
10.1	 Frühere Ansätze zur Messung der Wartbarkeit von Software 	 258

10.1.1	 Stabilitätsmaße von Yau und Collofello . . 	 259
10.1.2	 Maintenance-Umfrage bei der U. S. Air Force . . 	 260
10.1.3	 Die Wartbarkeitsstudie von Vessey und Weber 	 262
10.1.4	 Bewertung der Softwarewartbarkeit nach Berns 	 263
10.1.5	 Die Wartungsuntersuchung von Gremillion . . 	 264
10.1.6	 Wartungsmetrik bei Hewlett-Packard . . 	 264
10.1.7	 Wartungsmessung nach Rombach . . 	 266
10.1.8	 Messung der Wartbarkeit kommerzieller COBOL Systeme 	 267
10.1.9	 Der Wartbarkeitsindex von Oman . . 	 268

10.2	 Ansätze zur Messung der Wartbarkeit objektorientierter Software 	 271
10.2.1	 Erste Untersuchung der Wartbarkeit objektorientierter Programme . . 	 271
10.2.2	 Chidamer/Kemerers OO-Metrik für Wartbarkeit 	 272
10.2.3	 MOOD-Metrik als Indikator der Wartbarkeit . . 	 273
10.2.4	 Eine empirische Validation der OO-Metrik für die Schätzung des

Wartungsaufwands . . 	 274
102.5	 Der Einfluss einer zentralen Steuerung auf die Wartbarkeit eines

OO-Systems . . 	 275
10.2.6	 Kalkulation des Wartungsaufwands aufgrund der Programm-

komplexität . . 	 275

XIV �Inhalt

10.2.7	 Vergleich der Wartbarkeit objektorientierter und prozeduraler
Software . . 	 276

10.2.8	 Zur Änderung der Wartbarkeit im Laufe der Softwareevolution 	 278
10.3	 Wartungsproduktivitätsmessung . . 	 280

10.3.1	 Erste Ansätze zur Messung von Wartungsproduktivität 	 280
10.3.2	 Messung von Programmwartbarkeit im ESPRIT-Projekt MetKit 	 283
10.3.3	 Wartungsproduktivitätsmessung in der US-Marine 	 285
10.3.4	 Messung der Wartungsproduktivität bei Martin-Marietta 	 287
10.3.5	 Vergleich der Wartungsproduktivität repräsentativer Schweizer

Anwender . . 	 288

11	 Softwaremessung in der Praxis . . 	 293
11.1	 Dauerhafte Messverfahren . . 	 295

11.1.1	 Beteiligung der Betroffenen . . 	 295
11.1.2	 Aufbauen auf vorhandener Metrik . . 	 296
11.1.3	 Transparenz des Verfahrens . . 	 296

11.2	 Beispiele dauerhafter Messverfahren . . 	 297
11.2.1	 Die Initiative von Hewlett-Packard zur Softwaremessung 	 297
11.2.2	 Prozess- und Produktmessung in der Siemens AG 	 300

11.3	 Einmalige Messverfahren . . 	 305
11.3.1	 Vereinbarung der Messziele . 	 306
11.3.2	 Auswahl der Metrik . 	 307
11.3.3	 Bereitstellung der Messwerkzeuge . . 	 307
11.3.4	 Übernahme der Messobjekte . . 	 307
11.3.5	 Durchführung der Messung . . 	 308
11.3.6	 Auswertung der Messergebnisse . . 	 308

11.4	 Beispiel einer einmaligen Messung . . 	 310

Literatur . . 	 313

Index . . 	 329

Dieses Buch „Software-Metriken“ ist das Ergebnis langjähriger Forschung und Entwick-
lung, die auf das ESPRIT-METKIT-Projekt im Jahre 1989 zurückgeht. Parallel zu dieser For-
schungstätigkeit wurden über 30 Jahre lang Erfahrungen mit der Messung und Bewertung
von Softwaresystemen in der industriellen Praxis gesammelt. Keiner hat sich in der Praxis
so lange und so intensiv mit diesem Thema befasst wie der Autor Harry Sneed. Eine Er-
kenntnis, die er aus jener Erfahrung gezogen hat, ist die Bedeutung der Zahlen für die
Softwarequalitätssicherung. Es ist nicht möglich, über Qualität zu reden, ohne auf Maßzah-
len einzugehen. Es genügt nicht zu behaupten, System A sei viel schlechter als System B.
Der Qualitätsgutachter muss erklären warum, denn Qualität ist relativ, und um die Qualität
eines Softwareproduktes mit der Qualität eines anderen zu vergleichen, müssen beide Qua-
litäten in Zahlen ausgedrückt werden. Nur so kann man den Abstand zwischen den beiden
Produktqualitäten erklären. Das Gleiche gilt für die Größe und die Komplexität eines Soft-
waresystems. Eine Aussage wie „Das System ist zu groß“ ist inhaltslos, ohne zu wissen, was
„zu groß“ bedeutet. Auch Größe ist relativ zu den Vorstellungen des Menschen, die das
System zu beurteilen haben. Sie müssen in der Lage sein, den Größenmaß mit einem Soll-
maßstab für Softwaresysteme zu vergleichen. Voraussetzung dafür ist eine messbare und
vergleichbare Zahl. Wer seine Aussagen nicht mit Zahlen belegen kann, wird nicht ernst
genommen.
Es gibt zahlreiche Verwendungszwecke für die Zahlen, die wir aus der Software gewinnen:

	� Wir können damit den Aufwand für ein Projekt kalkulieren.
	� Wir können damit ein Projekt planen und steuern.
	� Wir können damit Rückschlüsse auf die Qualität eines Produktes ziehen.
	� Wir können damit die Produktivität unserer Mitarbeiter verfolgen.
	� Wir können damit Ziele für die Produkt- und Prozessverbesserung setzen.
	� Wir können damit Projekte und Produkte miteinander vergleichen.

Das sind auch längst nicht alle Zwecke. Zahlen sind eine unentbehrliche Voraussetzung für
ein professionelles Projekt- und Produktmanagement. Dass wir bisher mit so wenig Zahlen-
material ausgekommen sind, zeigt nur, wie unterentwickelt unsere Branche ist. Wenn wir
weiterkommen wollen, müssen wir mehr mit Zahlen arbeiten.
An dieser Stelle möchten wir auf die Arbeit des Deutschen Zentrums für Softwaremetrik an
der Universität Magdeburg unter der Leitung von Professor Dr. Reiner Dumke hinweisen.
Diese Institution ist bemüht, in Zusammenarbeit mit der DASMA und der GI-Fachgruppe
für Softwaremetrik Zahlen aus dem ganzen deutschsprachigen Raum zu sammeln und allen

Vorwort

XVI �Vorwort

interessierten Anwender bereitzustellen. Das Zentrum für Softwaremessung hat neben den
vielen Tagungen und Workshops, die sie jährlich veranstaltet, und dem Rundbrief, den sie
zwei Mal jährlich versendet, auch zahlreiche Veröffentlichungen zum Thema Softwaremes-
sung herausgebracht, darunter:

	� Dumke, R., Lehner, F.: Software-Metriken, Deutscher Universitätsverlag, Wiesbaden 2000
	� Dumke, R., Abran, A.: New Approaches in Software Measurement, Springer-Verlag, Berlin

Heidelberg, 2001
	� Dumke, R., Rombach, D.: Software-Messung und -Bewertung, Deutscher Universitäts-Verlag,

Wiesbaden 2002
	� Dumke, R., Abran, A.: Investigations in Software Measurement, Shaker-Verlag, Aachen, 2003
	� Abran, A., Dumke, R.: Innovations in Software Measurement, Shaker-Verlag, Aachen, 2005
	� Ebert, C., Dumke, R., Bundschuh, M., Schmietendorf, A.: Best Practices in Software Measu-

rement, Springer-Verlag, Berlin Heidelberg, 2005
	� Dumke, R., Büren, G., Abran, A., Cuadrado-Gallego, J.: Software Process and Product Mea-

surement, Springer-Verlag, Berlin Heidelberg, 2008
	� Büren, G., Dumke, R.: Praxis der Software-Messung, Shaker-Verlag, Aachen, 2009

Leser dieses Buches, die ihre Metrikkenntnisse vertiefen wollen, werden auf diese Veröf-
fentlichungen hingewiesen. Wenn Sie auch noch bei der Weiterentwicklung der Software
metrik mitwirken wollen, möchten wir Sie ermutigen, der GI-Fachgruppe und/oder der
DASMA beizutreten. Auf jeden Fall sollten Sie sich der deutschen Metrik Community an-
schließen, um auf diese Weise auf dem Laufenden zu bleiben. Dieses Buch wäre dann nur
als Einstieg in die Welt der Softwarezahlen zu betrachten. Sie ist eine faszinierende Welt
mit vielen Facetten.
Warum eine Neuauflage? Auch wenn die vorgestellten Konzepte und Metriken heute immer
noch ihre Gültigkeit haben, hat sich die Welt des Software Engineerings weiterentwickelt.
Und dieser Weiterentwicklung wollen wir Rechnung tragen. Gerade die agile Arbeitsweise
erlaubt noch einmal einen neuen Blick auf Softwaremetriken, den wir gerne mit Ihnen hier
teilen. Auch hat sich die Werkzeuglandschaft seit der ersten Auflage massiv verändert. Der
Markt ist hier sehr dynamisch. Es entstehen ständig neue Tools, und ebenso verschwinden
einige wieder oder werden nicht weiterentwickelt. Wir haben daher entschieden, konkrete
Tools nur mehr punktuell zu nennen, wo sie dem Verständnis des dahinterliegenden Kon-
zeptes dienlich sind.

Wien und Essen, im Januar 2024
Richard Seidl und Manfred Baumgartner

Zahlen sind aus unserem täglichen Leben nicht mehr wegzudenken. Wir planen Treffen zu
bestimmten Zeitpunkten, kontrollieren die Gewichtsangaben von Produkten bezüglich
möglicher Preisveränderungen, kalkulieren den Spritverbrauch für gefahrene Kilometer,
klassifizieren Wohnungen nach ihren Quadratmetern, prüfen genau die Veränderungen des
Kontostandes hinsichtlich der Buchungen, zählen die Häufigkeit auftretender Fehler bei der
Nutzung von Haushaltsgeräten, mögen oder meiden die Zahl 13 für ein Hotelzimmer und
vieles andere mehr. Wie sieht es aber bei Softwaresystemen aus? Kann man Software auch
quantifizieren und Systemeigenschaften – insbesondere Qualität – genau bewerten oder
gar exakt nachweisen? Was ist überhaupt Software?
Für die Beantwortung dieser und anderer Fragen hat sich eine Disziplin etabliert: das Soft-
ware Engineering. Das bedeutet, dass Software etwas Reales ist, ein Artefakt als Softwaresys-
tem, welches an eine (reale) Hardware gebunden ist und mit ingenieurtechnischen Metho-
den erstellt, gepflegt und somit auch analysiert und bewertet werden kann. Andererseits
besteht Software nicht einfach nur aus (Computer-)Programmen, sondern umfasst alle da-
bei involvierten Entwicklungs-, Darstellungs- und Beschreibungsformen (also Dokumenta-
tionen). Für die Erstellung von Software wünscht man sich eigentlich
1.	 Beschreibungen von Methoden, die genau spezifizieren, was mit dieser Methode an Soft-

warequalität erreicht werden kann und was nicht,
2.	 Dokumentationen zu Entwicklungswerkzeugen, die zeigen, wie die Software mit all ihren

Artefakten (entwicklungsbegleitend) an Komplexität, Performanz usw. zu- bzw. abnimmt,
3.	 Komponenten- bzw. Softwarebibliothekenbeschreibungen, die – analog zu einem elekt-

ronischen Handbuch – die genauen (Qualitäts-)Eigenschaften dieser Komponenten aus-
weisen,

4.	 schließlich: Softwaremaße, die einheitlich definiert und angewandt werden und damit
eine generelle Vergleichbarkeit von Softwareeigenschaften gestatten.

Genau diesem komplexen Thema widmet sich das vorliegende Buch von Sneed, Seidl und
Baumgartner, welches den eigentlichen Kern des Software Engineering (die Softwaremes-
sung und -bewertung) behandelt, die die grundlegenden Eigenschaften eines Softwarepro-
duktes quantifiziert darstellt, alle Artefakte der Entwicklung, Anwendung und Wartung
einbezieht und die jeweilige Systemausprägung berücksichtigt. Das ist heute leider noch
keine Selbstverständlichkeit. Es gibt immer noch zahlreiche Bücher zur Software bzw. zum
Software Engineering, die

	� die Softwarequalität vornehmlich bzw. nur auf die Qualitätsbestimmung von Program-
men einschränken,

Geleitwort
zur 1. Auflage

XVIII �Geleitwort zur 1. Auflage

	� die Verifikation von Softwaremodellen für eine Qualitätssicherung als hinreichend pos-
tulieren,

	� die Darstellung von Softwaremetriken ausschließlich auf die ersten Denkansätze von
McCabe und Halstead reduzieren,

	� die Definition und Anwendung von Metriken nicht im Kontext eines Messprozesses und
damit von Softwareprozessen überhaupt verstehen.

Auch und vor allem in dieser Hinsicht stellt das vorliegende Buch eine besondere Bereiche-
rung der Literatur zum Software Engineering dar. Die Softwaremessung wird stets in den
Kontext einer zielgerichteten Vorgehensweise innerhalb realer Softwareprojekte und -entwick-
lungen gestellt. Als Kern der Bewertung wird die Softwarequalität unter Verwendung der
Softwaremerkmale wie Umfang und Komplexität betrachtet. Auch wenn die oben genann-
ten vier Punkte immer noch eine Wunschliste darstellen, zeigen die Autoren sehr anschau-
lich, wie in der jeweiligen konkreten Situation mit Anforderungsanalyse, Modellierung,
Design, Codierung und Test einerseits und vor allem der weiteren Wartung der Softwaresys-
teme andererseits jeweils Messmethoden und Maße auszuwählen und anzuwenden sind,
um die jeweiligen (Qualitäts-)Ziele zu erreichen.
Der besondere Wert des Buches besteht aber auch vor allem im immensen Erfahrungshinter-
grund der Autoren, der nicht nur in der Kenntnis verschiedenster Entwicklungsmethoden
und Softwaresystemarten, sondern vor allem in den über Jahrzehnte hinweg miterlebten
und mitgestalteten Methoden-, Technologie-, Paradigmen- und vor allem Anwendungsbe-
reichswechseln besteht. Das versetzt die Autoren auch in die Lage, scheinbar spielerisch
den komplexen Prozess der Softwareentwicklung mit Zahlen zu unterlegen, die genau die
jeweils zu bewertenden Softwaremerkmale charakterisieren. Das abschließende Kapitel zur
Softwaremessung in der Praxis zeigt noch einmal die noch offenen Fragen in diesem Be-
reich, denen sich auch vor allem die nationalen und internationalen Communities zu die-
sem Thema widmen, wie das Common Software Measurement International Consortium
(COSMIC), das Metrics Association’s International Network (MAIN), die Deutschsprachige
Anwendergruppe für Software-Metrik und Aufwandschätzung (DASMA) und nicht zuletzt
die Fachgruppe für Softwaremessung und -bewertung der Gesellschaft für Informatik (GI
FG 2.1.20), in denen auch die Autoren dieses Buches aktiv mitarbeiten.
Das vorliegende Buch von Harry Sneed, Richard Seidl und Manfred Baumgartner ist sehr
anschaulich geschrieben, sehr gut lesbar und kann von seiner Themenbreite als Handbuch
des Software Engineering angesehen werden. Es ist vornehmlich für den im IT-Bereich prak-
tisch Tätigen, aber vor allem auch als Ergänzungsliteratur für den Hochschulbereich her-
vorragend geeignet.

Reiner Dumke
Professor für Softwaretechnik, Otto-von-Guericke-Universität Magdeburg

Harry M. Sneed
Harry M. Sneed ist seit 1969 Magister der Informations-
wissenschaften der University of Maryland. Seit 1977,
als er für das Siemens ITS-Projekt die Rolle des Test
managers übernommen hat, arbeitet er im Testbereich.
Damals entwickelte er die erste europäische Komponen-
tentestumgebung namens PrüfStand und gründete ge-
meinsam mit Dr. Ed Miller das erste kommerzielle Test-
labor in Budapest. Seit dieser Zeit hat Harry M. Sneed
mehr als 20 verschiedene Testwerkzeuge für unterschied-
liche Umgebungen entwickelt – von Embedded-Echtzeit-
systemen über integrierte Informationssysteme auf Groß-
rechnern bis hin zu Webapplikationen.

Am Beginn seiner Karriere hat er als Testprojektleiter gearbeitet; am Ende seiner langen
Karriere war er für die ANECON GmbH in Wien in die Rolle eines Softwaretesters zurück-
gekehrt. Parallel zu seiner Projekttätigkeit hat Harry Sneed über 200 technische Artikel
und 18 Bücher (davon vier über das Thema Test) verfasst. Er unterrichtete zudem Soft-
wareentwicklung an der Universität von Regensburg, Softwarewartung an der technischen
Hochschule in Linz sowie Softwaremessung, Reengineering und Test an den Universitäten
von Koblenz und Szeged. 2005 wurde Sneed von der Deutschen Gesellschaft für Informatik
zum „GI Fellow“ berufen und übte die Funktion des „general chair“ der Internationalen
Konferenz für Softwarewartung in Budapest aus. 1996 wurde Sneed vom IEEE für seine
Errungenschaften im Bereich des Software Reengineerings ausgezeichnet, und 2008 erhielt
er den Stevens Award für seine Pionierarbeit in der Disziplin der Softwarewartung. 2011
wurde er für sein Lebenswerk mit dem renommierten Deutschen Preis für Softwarequalität
(DPSQ) ausgezeichnet.

Die Autoren

XX �Die Autoren

Richard Seidl
Richard Seidl ist Agile Quality Coach und Softwaretest-
experte. In seiner abwechslungsreichen beruflichen
Laufbahn hat er schon viel Software gesehen und getes-
tet: gute und schlechte, große kleine, alte und neue.
Seine Erfahrungen bündelt er nun zu einem ganzheit
lichen Ansatz, denn Entwicklungs- und Testprozesse
können nur dann erfolgreich sein, wenn die unter-
schiedlichsten Kräfte sowie Stärken und Schwächen
ausbalanciert sind. So wie ein Ökosystem nur mit allen
Aspekten in seiner ganzen Qualität harmonisch existie-
ren kann, müssen die Prozesse im Testumfeld als ein
Netzwerk verschiedener Akteure betrachtet werden.

Agilität und Qualität wird dann zu einer Haltung, die wir wirklich leben können, anstatt sie
nur abzuarbeiten. Als Autor und Co-Autor hat er verschiedene Fachbücher und Artikel ver-
öffentlicht, darunter „Der Systemtest – Von den Anforderungen zum Qualitätsnachweis“
(2006, 2008, 2011), „Der Integrationstest – Von Entwurf und Architektur zur Komponenten-
und Systemintegration“ (2012) und „Basiswissen Testautomatisierung“ (2012, 2015, 2021).
Seit April 2023 betreibt er zudem den Podcast „Software-Testing“.

Manfred Baumgartner
Manfred Baumgartner verfügt über mehr als 30 Jahre
Erfahrung in der Softwareentwicklung, insbesondere in
der Softwarequalitätssicherung und im Softwaretest.
Nach dem Studium der Informatik an der Technischen
Universität Wien war er als Softwareentwickler bei
einem großen Softwareunternehmen im Bankensektor
und später als Quality Director eines CRM-Lösungsan-
bieters tätig. Seit 2001 hat er die QS-Beratungs- und
Schulungsangebote der ANECON, später Nagarro GmbH,
eines der führenden Dienstleistungsunternehmen im Be-
reich Softwaretest, auf- und ausgebaut. Er ist Vorstands-

mitglied im Arbeitskreis für Softwarequalität und Fortbildung (ASQF) und Mitglied des
Austrian Testing Board (ATB). Seine umfangreichen Erfahrungen sowohl in der klassischen
als auch in der agilen Softwareentwicklung bringt er als beliebter Referent auf internatio-
nal renommierten Konferenzen und als Autor und Co-Autor einschlägiger Fachbücher ein:
„Der Systemtest – Von den Anforderungen zum Qualitätsnachweis“ (2006, 2008, 2011),
„Software in Zahlen“ (2010), „Basiswissen Testautomatisierung“ (2012, 2015, 2021), „Agile
Testing – Der agile Weg zur Qualität“ (2013, 2018, 2023).

 � 1.1 Das Wesen von Software

Software ist Sprache. Sie dient der Kommunikation zwischen den Menschen und Rechnern
ebenso wie zwischen Rechnern und Rechnern und zwischen Menschen und Menschen
(siehe Bild 1.1). Programmcode ist jene Sprache, in der der Mensch der Maschine Anwei-
sungen erteilt. Der Mensch schreibt den Code, der Rechner liest ihn. Er muss sowohl von
den Menschen als auch vom Rechner, in diesem Fall dem Compiler, verstanden werden
[DeLi99].

Doku Doku

Doku Doku

Manager

Prüfer

BenutzerProgrammierer

Analy�ker

Bild 1.1 Software als Kommunikation zwischen Mensch und Maschine

Anforderungsspezifikationen und Entwurfsdiagramme sind ebenfalls Software, also auch
Sprachen. Sie dienen der Kommunikation zwischen Menschen. Der eine Mensch schreibt
sie, z. B. der Analytiker, der andere Mensch – der Programmierer – liest sie. Wenn sie nicht
für beide Seiten verständlich sind, haben sie ihren Zweck verfehlt. Eine Spezifikation, die
von einem Rechner interpretiert werden kann, z. B. eine domänenspezifische Sprache, ist
zugleich eine Kommunikation zwischen Mensch und Rechner, ähnlich dem Programmcode.
Kommunikationsprotokolle wie XML-Dateien und Web-Service SOAP-Nachrichten sind des-
gleichen Software. Sie dienen der Kommunikation zwischen Rechnern. Der eine Rechner

Softwaremessung1

2 �1 Softwaremessung

schreibt sie, der andere liest sie. Sie muss daher von beiden Rechnern verstanden werden.
Ein Protokoll ist eine Vereinbarung zwischen zwei Rechnerarten, wie sie sich verständigen
wollen, ebenso wie eine Sprache eine Vereinbarung zwischen Menschen ist, die sich ver-
ständigen wollen. Natursprachen sind aus dem Zusammenleben der Menschen heraus er-
wachsen. Programmier-, Spezifikations- und Testsprachen sind wiederum aus dem Zusam-
menleben der Menschen mit Computern hervorgegangen [Rose67].
Wenn es nun um die Messung und Erforschung von Software geht, geht es also um die Ana-
lyse und Bewertung von Sprachen und den in diesen Sprachen geschriebenen Werken.
Eine Rechnersprache besteht genauso wie eine Sprache der Menschen aus Begriffen und
Regeln für die Zusammensetzung jener Begriffe. Der Umfang einer Sprache wird an der
Anzahl ihrer Begriffe bzw. Wörter gemessen. Oft legen Schüler Wörterbücher zweier unter-
schiedlicher Sprachen nebeneinander, um zu sehen, welches dicker ist. Dies ist in der Tat
eine sehr grobe Messung des Sprachumfangs und setzt voraus, dass die Seitenaufteilung
und die Schriftgröße gleich sind, aber sie ist nichtsdestotrotz eine Messung. Genauer wäre
es, die Worteinträge zu zählen und zu vergleichen, aber auch hier ist die Messung ungenau,
denn wer weiß, ob in den Wörterbüchern alle möglichen Wörter in beiden Sprachen be-
rücksichtigt sind? Die Zählung der Wörter ist auf jeden Fall genauer als der Vergleich der
beiden Wörterbücher. Das Gleiche gilt für Softwaresprachen. Ihr Umfang in vereinbarten
Begriffen bzw. Symbolen lässt sich grob und fein vergleichen [LiGu88].
Aber nicht nur die Sprachen selbst können gemessen und miteinander verglichen werden.
Auch die Ergebnisse von Sprache wie zum Beispiel Theaterstücke, Bücher, Essays etc. kön-
nen nach unterschiedlichen Kriterien und zu unterschiedlichen Zwecken gemessen wer-
den. Ist die Schularbeit lang genug? Durch Zählung der Wörter erhält man die Antwort.
Warum ist das Buch „Die Buddenbrooks“ von Thomas Mann schwerer zu lesen als Astrid
Lindgrens „Pippi Langstrumpf“ und kann man den Unterschied messen? Der Umfang alleine
scheint dafür nicht der Grund zu sein und die Zählung der Seiten oder Worte wohl eine zu
einfache Erklärung. Sind die Sätze durchschnittlich länger? Haben die beiden Werke einen
unterschiedlichen Wortschatz? Wenn jedes Wort, welches mehrfach vorkommt, nur einmal
gezählt wird, hätten wir das Vokabular des Schriftstücks. Ähnlich verfuhr M. Halstead, als
er begann, Programmcode zu messen [Hals77]. Er zählte alle Wörter, also Operatoren und
Operanden, um die Programmlänge zu ermitteln, und zählte jedes verwendete Wort, um
das Programmvokabular zu bestimmen. Daraus berechnete er einen Wert für die Schwierig-
keit, ein Programm zu verstehen.
Wäre eine Sprache nur eine beliebige Aneinanderreihung von Begriffen, könnte man sich
mit der Messung der Größe zufriedengeben. Aber eine Sprache hat auch eine Grammatik.
Darin befinden sich die Regeln für die Zusammensetzung der Wörter. Den Wörtern werden
Rollen zugewiesen. Es gibt Hauptwörter, Eigenschaftswörter, Zeitwörter usw. Ähnliche Re-
geln gibt es auch in der Software. Für jede Sprache – Spezifikationssprache, Entwurfsspra-
che, Programmiersprache und Testsprache – gibt es Regeln, wie die Wörter und Symbole
verwendet werden können. Man spricht hier von der Syntax der Sprache. Mit der Syntax
kommt die Komplexität. Je nachdem, wie umfangreich die Regeln sind, ergeben sich mehr
oder weniger mögliche Wortkonstrukte. Je mehr Wortkonstrukte möglich sind, desto kom-
plexer ist die Sprache.
Durch den Vergleich der Grammatik bzw. der Sprachregel ist es möglich, die Komplexität
der Sprachen zu vergleichen. Dies trifft für Deutsch, Englisch und Latein ebenso zu wie für
COBOL, Java, UML und VDM. Erschwert wird dies allerdings durch die informale Definition

31.1 Das Wesen von Software

der Regeln und den vielen erlaubten Ausnahmen für die Sprache. In der Softwarewelt
wird der Vergleich durch die vielen herstellerspezifischen Abweichungen erschwert. Es
gibt kaum eine bekannte Softwaresprache, von der es nicht eine Reihe von Derivaten,
sprich Dialekte gibt, die sich mehr oder weniger stark unterscheiden [Jone01].
In natürlichen Sprachen gibt es das Kunstwerk Satz: Das ist eine Zusammensetzung von
Wörtern nach einem geregelten Muster. Ein Satz hat ein Subjekt, ein Objekt und ein Prädi-
kat. Subjekt und Objekt sind Operanden bzw. Hauptwörter. Sie können durch Eigenschafts-
wörter ergänzt werden. Die Prädikate, sprich Zeitwörter, können gleichfalls Eigenschafts-
wörter haben, welche die Handlung ergänzen. Diese Wortarten müssen in einem gewissen
Satzmuster vorkommen, um einen sinnvollen Satz zu bilden. Je mehr Muster zugelassen
sind, desto komplexer die Satzbildung.
In Softwaresprachen entspricht der Satz einer Anweisung. Auch hier gibt es Syntaxregeln
für die Satzbildung. Es gibt Operanden (= Objekte) und Operatoren (= Prädikate). Das Sub-
jekt fehlt. Es wird impliziert als die ausführende Maschine. Der Rechner oder das System
liest eine Datei, errechnet Datenwerte, vergleicht zwei Werte oder sendet Nachrichten. Je
nachdem, wie viele Anweisungsarten eine Sprache hat, ist sie mehr oder weniger komplex.
Die Zahl der einzelnen Anweisungen ist wie die Zahl der Sätze im Prosatext ein Größen-
maß. Die Zahl der verschiedenen Anweisungsarten ist wiederum ein Komplexitätsmaß. Sie
deutet auf die Komplexität der Sprache bzw. der jeweiligen Sprachanwendung hin.
Sprachen lassen sich in Form von Syntaxbäumen oder Netzdiagrammen darstellen. Peter
Chen hat bewiesen, dass sich jeder Sprachtext, auch in einer natürlichen Sprache, mit einem
„Entity/Relationship-Diagramm“ abbilden lässt [Chen76]. Die Begriffe sind die Entitäten,
die Zusammensetzung der Begriffe ergeben die Beziehungen. Ursprünglich war das E/R
Model für die Datenmodellierung gedacht, wobei die Entitäten die Datenobjekte sind. Es
lässt sich jedoch genauso gut für die Funktionsmodellierung verwenden, wobei hier die
Entitäten die Funktionen sind. Die Zahl der Entitäten bestimmt die Größe einer Beschrei-
bung. Die Zahl der Beziehungen bestimmt deren Komplexität. Je mehr Beziehungen es zwi-
schen Entitäten relativ zur Anzahl der Entitäten gibt, desto komplexer ist die Beschreibung.
Sprachen sind Beschreibungsmittel. Ihr Umfang hängt von der Zahl ihrer Begriffe, sprich
den Entitäten ab. Ihre Komplexität hängt wiederum von der Zahl ihrer erlaubten Konst-
rukte bzw. möglichen Beziehungen zwischen ihren Begriffen ab. Eine Sprachanwendung ist
eine ganz bestimmte Beschreibung. Softwaresysteme sind letztendlich nur Beschreibun-
gen. Die Anforderungsspezifikation ist die Beschreibung einer fachlichen Lösung zu einem
Zielproblem. Der Systementwurf, z. B. ein UML-Modell, ist die Beschreibung einer rechneri-
schen Lösung zum Zielproblem, die an die fachliche Beschreibung angelehnt werden sollte
[ErPe00]. Der Programmcode ist ebenfalls nur eine Beschreibung, allerdings eine sehr de-
taillierte Beschreibung der technischen Lösung eines fachlichen Problems, das mehr oder
weniger der Entwurfsbeschreibung und der Anforderungsbeschreibung entspricht. Schließ-
lich ist die Testspezifikation nochmals eine Beschreibung dessen, wie sich die Software
verhalten sollte.
Alle diese Beschreibungen ähneln den Schatten in Platons Höhlengleichnis [Plat06]. Sie
sind nur abstrakte Darstellungen eines Objekts, das wir in Wahrheit gar nicht wahrnehmen
können. Zum einen handelt es sich um abstrakte Darstellungen konkreter Vorstellungen
und Anforderungen seitens eines Kunden an ein Softwaresystem, zum anderen um Be-
schreibungen von Rechenvorgängen auf unterschiedlichsten Abstraktionsebenen. Da wir
das eigentliche Objekt selbst nicht messen können, messen wir die Beschreibungen des

4 �1 Softwaremessung

Objekts und damit die Sprachen, in denen die Beschreibungen formuliert sind. Was wir
bekommen, sind nur die Größe und die Komplexität einer Beschreibung. So gesehen ist je-
des Softwaremaß ein Maß für eine Darstellung und kann nur so zuverlässig sein wie die
Darstellung selbst.
Eine Beschreibung bzw. eine Darstellung hat nicht nur eine Quantität und eine Komplexi-
tät, sie hat außerdem noch eine Qualität, und diese soll auch messbar sein. Die Frage stellt
sich, was die Qualität einer Beschreibung ist. Man könnte genauso gut nach der Qualität der
Schatten in Platons Höhle fragen. Wir würden gerne antworten, die Qualität eines Schat-
tens sei der Grad an Übereinstimmung mit dem Objekt, das den Schatten wirft. Demnach
müsste die Qualität des Programmcodes am höchsten sein, weil diese Beschreibung am
nächsten an den eigentlichen Rechenvorgang herankommt. Dies entspricht der Behauptung
von DeMillo und Perles, die besagt, „die einzige zuverlässige Beschreibung eines Pro-
gramms ist der Code selbst“ [DePL79]. Lieber würde der Mensch sich mit den Entwurfs
bildern befassen, aber diese sind verzerrte Darstellungen der Wirklichkeit. Je leichter ver-
ständlich eine Darstellung ist, desto weiter ist es von der Wirklichkeit entfernt.
Aber was ist die Wirklichkeit? Was ist, wenn das real existierende System nicht dem ent-
spricht, was der Auftraggeber haben wollte? Wie sollen wir wissen, ob die verwirklichte
Funktionalität mit der gewünschten Funktionalität samt allen Eigenschaften überein-
stimmt? Auch Platon unterscheidet zwischen den sichtbaren Schatten, die wir sehen kön-
nen, und den projektierten Schatten, die wir sehen wollen. Ein Abgleich kann nur statt
finden, wenn wir zwei Beschreibungen vergleichen: die Beschreibung, die dem wahren
Rechenvorgang am nächsten kommt, mit der Beschreibung, die den Vorstellungen des Auf-
traggebers am ehesten entspricht. In der Welt der Softwarekonstruktion wäre dies die An-
forderungsspezifikation. Um diese Beschreibung mit der Beschreibung Programmcode zu
vergleichen, müssen die beiden Beschreibungen einander begrifflich und syntaktisch zuor-
denbar sein. Das heißt, sie müssen sich in etwa auf der gleichen semantischen Ebene befin-
den. Eine grobe Anforderungsbeschreibung ist jedoch mit einer feinen Codebeschreibung
nicht vergleichbar. Die Anforderungsbeschreibung müsste fast so fein sein wie die des
Codes. Da dies mit Ausnahme der formalen Spezifikationssprachen wie Z, VDM und SET
selten der Fall ist, wird die Anforderungsbeschreibung stellvertretend über die Testfälle mit
dem echten Systemverhalten verglichen. Dabei darf nicht übersehen werden, dass die Test-
fälle zur Bestätigung der Erfüllung der Anforderungen auch in einer Sprache verfasst sind
und als solche allen Unzulänglichkeiten jener Sprache ausgesetzt sind [Fetz88].
Der statische Zustand von Softwareprodukten, also Struktur und Inhalt ihrer Beschreibun-
gen, kann entsprechend einer Vielzahl von Qualitätseigenschaften bewertet werden. So
sollte z. B. der Programmcode als Beschreibung modular aufgebaut, flexibel, portabel, wie-
derverwendbar, testbar und vor allem verständlich sein. Dieses sind alles Kriterien, die sich
unmittelbar auf die Beschreibung beziehen. Um sie messen zu können, werden Richtlinien
und Konvention benötigt. Diese können in Form einer Checkliste, eines Musterbeispiels
oder einer Soll-Metrik vorliegen. Auch hier handelt es sich um einen Soll-Ist-Vergleich. Die
eigentliche Softwarebeschreibung wird gegen die Soll-Beschreibung abgeglichen. Jede Ab-
weichung vom Soll wird als Mangel oder als Regelverletzung betrachtet. Die statische Qua-
lität der Software wird anhand der Anzahl gewichteter Mängel relativ zur Größe gemessen.
Je mehr Mängel eine Softwarebeschreibung hat und je schwerer diese Mängel wiegen, desto
niedriger ist die statische Qualität [ZWNS06].

51.1 Das Wesen von Software

Softwareprodukte haben aber nicht nur einen statischen Zustand, sondern auch ein dyna-
misches Verhalten. Das alles erschwert die Messung der Systemqualität. Der Grad der dy-
namischen Qualität ist der Grad, zu dem das tatsächliche Systemverhalten mit dem erwar-
teten Systemverhalten übereinstimmt. Jede Abweichung zwischen Soll und Ist wäre als
Abweichung zu betrachten, egal ob es sich um die Nichterfüllung einer funktionalen Anfor-
derung, um die falsche Erfüllung einer solchen Anforderung oder um die Nichterfüllung
einer nichtfunktionalen Anforderung handelt. Mit jedem zusätzlich festgestellten Fehler
sinkt die Qualität. Die konventionelle Art, Softwarequalität zu messen, ist anhand der An-
zahl der Fehler gewichtet durch die Fehlerschwere relativ zur Softwaregröße.

Nominalskala:
Bezeichnungen, z.B. Die Roten

Die Grünen
Die Schwarzen

Ordinalskala:
Stufen z. B. hoch, mittel, niedrig
Ranking A>B>C
Benotung ausgezeichnet, gut , ausreichend, ungenügend

Intervallskala:
aufsteigende Wertskala z.B. Thermometer mit Temperatur in Celsius

oder Kalenderzeit oder Punktzahl
A = 50, Abstand = 20
B = 30,
C = 20 Abstand = 10

Verhältnisskala
Relation zum Festpunkt z.B. Länge, Laufzeit Ist = 60
gleiches Verhältnis mit „natürlicher“ Null Soll = 90

Erfüllungsgrad = Ist/Soll = 0,67
Absolutskala

Auszählungen z.B. Anzahl Größeneinheiten
Statements = 24.000
Function-Points = 480
Defects = 21
Deficiencies = 756
Person Days = 520

Bild 1.2 Messskalen nach Zuse

Es ist jedoch zu betonen, dass in beiden Fällen – der statischen Qualitätsmessung wie auch
der dynamischen Qualitätsmessung – der Begriff Qualität relativ zu einer Beschreibung,
nämlich der Beschreibung der erwarteten Qualität ist. Ohne eine derartige Beschreibung
lässt sich Qualität nicht messen. Die Messung von Qualität impliziert den Vergleich einzel-
ner Ist-Eigenschaften mit entsprechenden Soll-Eigenschaften. Es gibt keinen Weltstandard
für Fehlerhaftigkeit – ebenso wenig wie es einen Weltstandard für Wartbarkeit oder Test-
barkeit gibt. Hinter jedem Qualitätsmaß steckt eine heuristische Regel, die zu einer lokalen
Norm erhoben wurde. Wie wir später sehen werden, kann jede Qualitätsnorm quantifiziert
und auf eine Werteskala gebracht werden. Hinter jeder solchen Werteskala steckt jedoch
eine heuristisch begründete oder willkürliche Vereinbarung, was gut und was schlecht ist
(siehe Bild 1.2).

6 �1 Softwaremessung

 � 1.2 Sinn und Zweck der Softwaremessung

Ein wesentlicher Zweck der Softwaremessung ist, die Software besser zu verstehen. Dazu
dienen uns die Zahlen. Zahlen helfen uns, die Zusammensetzung eines komplexen Gebildes
wie ein Softwaresystem zu begreifen: „Comprehension through Numbers“ [Sned95]. Durch
sie erfahren wir, wie viele verschiedene Bauelemente es gibt und wie viele Ausprägungen
jedes hat, wir erhalten Informationen über deren komplexe Beziehungen und Maßzahlen
über die Qualität der Softwaresysteme.
Ein weiterer Zweck ist die Vergleichbarkeit. Zahlen geben uns die Möglichkeit, Softwarepro-
dukte mit anderen Softwareprodukten zu vergleichen bzw. verschiedene Versionen ein und
desselben Produktes zu vergleichen. Nicht nur Produkte, auch Projekte und Prozesse las-
sen sich vergleichen – allerdings nur, wenn sie in Zahlen abbildbar sind.
Ein dritter Zweck ist die Vorhersage. Um planen zu können, müssen wir die Zukunft vor-
hersagen, z. B. schätzen können, was ein Projekt kosten wird. Dazu brauchen wir Zahlen
aus der Vergangenheit, die wir in die Zukunft projizieren können.
Ein vierter Zweck ist, Zahleninformationen für die Steuerung von Projekten und Produkt
entwicklungen zu erhalten: Wenn z. B. wöchentlich hundert neue Fehler im Fehlermanage-
menttool erfasst werden, aber gleichzeitig nur dreißig geschlossen werden, sind entspre-
chende Steuerungsmaßnahmen zu ergreifen (z. B. Behebung der Fehler vor Implementierung
neuer Funktionalität).
Der letzte Zweck ist eher abstrakt. Es geht darum, die Kommunikation zwischen Menschen
zu verbessern. Wir kennen alle die Unzulänglichkeiten der natürlichen Sprachen. Es gibt
viele uneindeutige Begriffe und solche, die nichtssagend sind. Die zwischenmenschliche
Kommunikation leidet an Missverständnissen und Fehlinterpretationen. Die natürliche
Sprache stößt schnell an ihre Grenzen, wenn es darum geht, komplexe technische Gebilde
exakt zu beschreiben. Zahlen sind eine eindeutige Sprache. Urvölker kannten keine Zahlen.
Sie konnten sagen, dass es einen Löwen gibt, wenige Löwen oder viele Löwen. Heute wissen
wir, dass es drei Löwen gibt oder dass der Weltumfang etwa 40 000 Kilometer beträgt. Das
ist eine andere Aussage als die, dass die Welt groß ist. So gesehen tragen Zahlen dazu
bei, die zwischenmenschliche Kommunikationsfähigkeit zu steigern. Wie Lord Kelvin es so
trefflich formuliert hat: „Erst wenn wir etwas in Zahlen ausdrücken können, haben wir es
wirklich verstanden. Bis dahin ist unser Verständnis oberflächlich und unzulänglich“
[Kelv67]. Das heißt, erst wenn wir Software quantifizieren können, haben wir sie wirklich
im Griff. Der englische Professor Norman Fenton behauptet, dass es ohne Metrik kein Soft-
ware Engineering geben kann. Messung ist die Voraussetzung für jegliche Engineering-
Disziplin [Fent94].
Zusammenfassend ist der Zweck der Softwaremessung fünferlei:

	� Sie dient dem Softwareverständnis.
	� Sie dient der Vergleichbarkeit.
	� Sie dient der Vorhersage.
	� Sie dient der Steuerung.
	� Sie dient der zwischenmenschlichen Verständigung.

71.2 Sinn und Zweck der Softwaremessung

1.2.1 Zum Verständnis (Comprehension) der Software

Wenn wir Software verstehen wollen, müssen wir wissen, wie sie zusammengesetzt ist, d. h.
aus welchen Bausteintypen sie besteht und welche Beziehungen zwischen jenen Baustein-
typen existieren. Die Eigenschaften der Bausteintypen helfen, diese Typen zu klassifizie-
ren. Am besten lassen sich diese Eigenschaften in Zahlen ausdrücken wie z. B. die Größe in
Zeilen oder Wörtern oder Symbole. Die Zahl der Beziehungen zwischen den Bausteinen
hilft uns, den Zusammenhang der Softwareelemente zu verstehen. Zahlen sind neben Spra-
che und Grafik ein weiteres Verständigungsmittel. Sie sind genauer als die anderen beiden
Mittel.

1.2.2 Zum Vergleich der Software

Gesetzt den Fall, ein IT-Anwender muss zwischen zwei Softwareprodukten entscheiden,
welche die gleiche Funktionalität haben. Wie soll er sie vergleichen? Ohne Zahlen wird der
Vergleich schwer möglich oder sehr subjektiv sein. Mit Zahlen lassen sich Größe und Kom-
plexität, ja sogar Qualität vergleichen. Er kann z. B. feststellen, dass das eine Produkt mit
der Hälfte des Codes dasselbe leistet oder dass das eine Produkt um 20 % komplexer ist als
das andere. Durch einen Performanztest kann er die Laufzeiten und die Antwortzeiten ver-
gleichen. Das Gleiche gilt für den Vergleich von Versionen desselben Systems. Durch die
Messung der Unterschiede wird erkennbar, ob ein System sich verbessert oder verschlech-
tert hat. Für den Vergleich sind Zahlen Grundvoraussetzung.

1.2.3 Zur Vorhersage

Solange Softwareentwicklung und -wartung Geld und Zeit kosten, wird der Käufer der Soft-
ware wissen wollen, was diese kostet und wie lange ein Vorhaben dauern wird. Außerdem
will der Käufer wissen, was er für sein Geld bekommt, also welche Funktionalität zu wel-
cher Qualität. Damit wir diese verständlichen Wünsche erfüllen können, brauchen wir Zah-
len. Die Dauer eines Projekts in Tagen oder Monaten ist eine Zahl, die jeder Auftraggeber
wissen will, ebenso die Anzahl der Personentage, die er bezahlen muss. Falls es zu lange
dauert oder zu viel kostet, wird er bereit sein, auf das Projekt zu verzichten, oder er wählt
eine andere Lösung. Wenn er sieht, dass die Funktionalität zu wenig und die Qualität zu
gering sein wird, wird er sich nach Alternativen umsehen. Der Kunde braucht Informatio-
nen für seinen Entscheidungsprozess. Durch die Softwaremessung erhält er nicht nur Zah-
len zur Projektabwicklung, sondern auch detaillierte und objektive Informationen über das
Softwaresystem und dessen Entwicklung selbst. Zahlen über Zahlen sind die beste Informa-
tion, die er bekommen kann. Nur mit Zahlen ist eine fundierte Aussage möglich, alles an-
dere ist reine Spekulation.

8 �1 Softwaremessung

1.2.4 Zur Projektsteuerung

Ist ein Projekt einmal genehmigt und gestartet, sind Zahlen erforderlich, um den Stand des
Projektes festzustellen. Die Projektleitung soll wissen, welcher Anteil der Software bereits
fertig ist und was noch zu entwickeln ist. Sie soll auch wissen, wie es um die Qualität des
fertigen Anteils bestellt ist. Entspricht diese der vereinbarten Qualität und wenn nicht, wie
weit ist sie davon entfernt? Hierzu braucht man Zahlen: über den Umfang der gefertigten
Software sowie Zahlen über den Qualitätszustand. Ohne Zahlen hat die Projektleitung
kaum eine Chance, die Entwicklung oder Wartung von Software zu verfolgen und nach Be-
darf einzugreifen. Wie Tom DeMarco es formulierte: „You cannot control what you cannot
measure“ [DeMa82]. Messung ist die Vorbedingung für Steuerung; und zur Messung gehört
eine Metrik. Das Wort „Metrik“ kommt aus dem Altgriechischen und bezeichnet im Allge-
meinen ein System von Kennzahlen oder ein Verfahren zur Messung einer quantifizierba-
ren Größe [Wik07].

1.2.5 Zur zwischenmenschlichen Verständigung

Die Menschen haben genug Schwierigkeiten, sich über Alltagsprobleme wie den Kauf eines
neuen Autos oder den Anbau einer neuen Garage zu verständigen. Zahlen wie die der
Pferdestärke, Höchstgeschwindigkeit und Hubraum erleichtern die Verständigung. Soft-
ware ist eine unsichtbare Substanz – desto schwerer ist es deshalb, sich darüber zu verstän-
digen. Niemand kann wissen, was der andere meint, wenn er sagt, die Software ist „groß“
oder die Aufgabe ist „komplex“. Man fragt sich sofort: Relativ zu was? Was bedeutet groß
oder komplex? Man sucht nach einer Messskala für Größe oder Komplexität. Das Gleiche
gilt für Qualität: Wenn einer sagt, das System wäre fehlerhaft, was meint er damit? Kommt
ein Fehler bei jeder Nutzung oder bei jeder zehnten Nutzung vor? Damit sind wir bei Zahlen
angelangt. Die Nutzung von Zahlen ist ein Indikator für die Genauigkeit der zwischen-
menschlichen Kommunikation.
Für die Beschreibung von Software gilt dies umso mehr. Statt zu sagen, die Software sei
groß, ist es genauer, wenn man sagt, die Software habe 15 557 Anweisungen. Wir setzen
damit jedoch voraus, dass der Kommunikationspartner dies einordnen kann. Wer noch nie
einen Source-Code und seine Anweisungen gesehen hat, für den hat auch die Zahl 15 557
keine Bedeutung.

 � 1.3 Dimensionen der Substanz Software

Software ist eine multidimensionale Substanz. Sie hat bestimmt mehr Dimensionen, drei
davon sind allerdings messbar. Die eine Dimension ist die Größe bzw. die Quantität der
Software. Die zweite Dimension ist die Zusammensetzung bzw. die Komplexität der Soft-
ware. Die dritte Dimension ist die Güte bzw. die Qualität der Software. Wenn also von Mes-
sung bei Software die Rede ist, dann von einer dieser drei Metrikarten:

91.3 Dimensionen der Substanz Software

	� Quantitätsmetrik
	� Komplexitätsmetrik
	� Qualitätsmetrik (siehe Bild 1.3)

Bild 1.3 
Drei Dimensionen von Software

1.3.1 Quantitätsmetrik von Software

Mit der Quantitätsmessung sind Mengenzahlen gemeint, z. B. die Menge aller Wörter in
einem Dokument, die Menge der Anforderungen, die Menge der Modelltypen in einem Ent-
wurfsmodell und die Menge aller Anweisungen in einer Source-Bibliothek. Mengenzählun-
gen sind Aussagen über den Umfang von Software. Sie werden benutzt, um den Aufwand
für die Entwicklung einer vergleichbaren Menge zu kalkulieren. Aus der Menge der Daten-
elemente wird die Größe der Datenbank projiziert, aus der Menge der Anforderungen wird
die Menge der Entwurfsentitäten und aus dieser die Menge der Codeanweisungen abgelei-
tet. Aus der Menge der Anforderungen und Anwendungsfälle wird auch die Menge der
Testfälle projiziert. In einem Softwaresystem gibt es etliche Mengen, die wir zählen könn-
ten. Manche sind relevant, andere nicht. Unsere Aufgabe als Software-Ingenieure besteht
darin, die relevanten Mengen zu erkennen. Eine weitere Herausforderung besteht darin,
diese Mengen richtig zu zählen. Dafür brauchen wir Zählregeln. In diesem Buch werden
mehrere davon behandelt.

1.3.2 Komplexitätsmetrik von Software

Mit der Komplexitätsmetrik sind Verhältniszahlen für die Beziehungen zwischen den Men-
gen und deren Elementen gemeint. Ein Element wie das Modul XY hat Beziehungen zu an-
deren Elementen wie zu weiteren Modulen oder zu weiteren Datenelementen. Die Zahl der
Beziehungen ist eine Aussage über Komplexität. Die Menge aller Module hat Beziehungen
zu der Menge aller Daten. Sie werden benutzt, erzeugt und geändert. Sie haben auch Bezie-
hungen zur Menge aller Testfälle, die das Modul testen. Je mehr Beziehungen eine Menge
hat, desto höher ist ihre Komplexität. Komplexität steigt und fällt mit der Zahl der Bezie-

Software

Größe

Komplexität

Qualität

Dimensionen eines
Softwaresystems

Größenmaße
Kom

ple
xit

äts
-

maß
e

Qualitätsmaße

10 �1 Softwaremessung

hungen. Also gilt es hier, Beziehungen zu zählen und miteinander zu vergleichen. Das Pro-
blem ist hier dasselbe wie bei der Quantität, nämlich zu erkennen, welche Beziehungen re-
levant sind. Es ist nur sinnvoll, relevante Komplexitäten zu messen. Dafür müssen wir aber
zwischen relevanten und irrelevanten Beziehungen unterscheiden können. Komplexität ist
somit wie Quantität eine Frage der Definition.

1.3.3 Qualitätsmetrik von Software

Mit der Qualitätsmetrik wollen wir die Güte einer Software beurteilen. Wenn schon die Größe
und Komplexität von Software unklar sind, dann ist deren Qualität um ein Vielfaches mehr
verschwommen. Was gut und was schlecht ist, hängt von den Sichten des Betrachters ab. Die
Klassifizierung von Software in gut und schlecht kann erst in Bezug zu einer definierten
Norm stattfinden. Ohne Gebote und Gesetze ist ein Qualitätsurteil weder für menschliches
Verhalten noch für Software möglich. Gut ist das, was den Geboten entspricht, und schlecht
ist das, was zu ihnen im Widerspruch steht. Aufgrund von Erfahrungen lassen sich einige
Schlüsse ziehen wie etwa der, dass unstrukturierter und undokumentierter Code ohne spre-
chende Namen schwer lesbar und somit auch schwer weiterzuentwickeln ist. Übergroße
Source-Module sind bekanntlich schwer handzuhaben. Nicht abgesicherte Klassen sind leicht
zu knacken. Mehrfache Verbindungen zwischen Code-Bausteinen erschweren deren Wieder-
verwendbarkeit. Tief verschachtelte Entscheidungslogik ist fehleranfällig. Diese und viele an-
dere als schädlich empfundene Codierpraktiken können durch Regeln verboten werden.
Verstöße gegen die Regel gelten als qualitätsmindernd. Demnach ist die Qualität des Codes
mit der Einhaltung von Regeln eng verknüpft. Ohne ein derartiges Regelwerk kann Qualität
nur post factum nachgewiesen werden. Eine Software, in der viele Fehler auftreten oder die
unverhältnismäßig langsam ist, gilt als qualitätsarm. Hierfür ist aber der Benutzer auch in
der Pflicht zu definieren, was im speziellen Fall zu viele Fehler sind oder was zu langsam
ist. Schlechthin kann es ohne Qualitätsnorm keine Qualitätsmessung geben. Qualität ist der
Grad, zu dem eine vereinbare Norm eingehalten wird. Sie ist die Distanz zwischen dem
Soll- und dem Ist-Zustand. Liegt die Ist-Qualität unter der Soll-Qualität, ist die Qualität zu
gering. Liegt sie darüber, ist sie eventuell zu hoch. Zu wenig Qualität verursacht Kosten für
den Betrieb und die Erhaltung eines Systems. Zu viel Qualität verursacht Mehrkosten bei
der Entwicklung des Systems. In beiden Fällen sind dies Kosten, die der Auftraggeber nicht
tragen möchte. Bei Qualität wie bei Quantität kommt es darauf an, genau das zu liefern, was
der Kunde bestellt hat, nicht mehr und nicht weniger [DGQ86a].

 � 1.4 Sichten auf die Substanz Software

Ein Softwaresystem besteht aus vielen verschiedenen Typen von Elementen, nicht nur
Code, sondern auch Texte, Diagramme, Tabellen und Daten jeglicher Art. Wenn es darum
geht, ein solches System zu messen, müssen die Elementtypen genau definiert werden. Die
Definition der Messobjekte ist der erste Schritt in einem Messprozess. Es muss für alle Be-
teiligten klar sein, was gemessen wird [Jone91].

111.4 Sichten auf die Substanz Software

Eine mögliche Kategorisierung der Messobjekte ist nach deren Darstellungsform bzw. Ele-
menttyp wie z. B. Softwarecode, Textdokumente, Diagramme oder Tabellen.
Ein anderes Gliederungsschema ist nach dem Zweck der Elemente. Manche Elemente die-
nen dazu, die Anforderungen an ein System zu beschreiben. Mit anderen Elementen wer-
den die Konstruktion bzw. Architektur des Systems beschrieben. Eine dritte Kategorie von
Elementen sind dann die Codebausteine, die von einer Maschine ausgeführt werden. Eine
vierte bilden die Elemente, die dazu dienen, das System zu testen. Eine letzte Kategorie
umfasst alle Elemente, die dazu dienen, die Bedienung des Systems zu beschreiben. Diese
fünf Kategorien entsprechen den fünf Schichten eines Softwareprodukts:

	� Anforderungsdokumentation
	� Entwurfsdokumentation
	� Code
	� Testware
	� Nutzungsanleitung (siehe Bild 1.4)

Eine weitere Gliederungsmöglichkeit ist nach dem Gesichtspunkt der Beteiligten. Auf
der einen Seite stehen die Benutzer der Software. Aus ihrer Sicht besteht ein System aus
Bildschirmoberflächen, Telekommunikationsnachrichten, Papierausdrucken, gespeicherten
Daten und Bedienungsanleitungen. Auf der anderen Seite stehen die Entwickler von Soft-
ware. Aus ihrer Sicht besteht ein System aus Codebausteinen, Dokumenten, Dateien, Daten-
banken und Steuerungsprozeduren. Diese beiden Sichten – die fachliche und die techni-
sche – sind oft unverträglich, da sie verschiedene Ontologien verwenden. Der Benutzer
verwendet die Begriffe aus der Fachwelt, die von der Software abgebildet wird. Der Entwick-
ler verwendet die Begriffe aus der Welt der Maschinen, in welcher die Software implemen-
tiert ist.

Anforderungsdokumentation

Entwurfsdokumentation

Source-Code

Testware

Benutzerdokumentation

Fachlich

Fachlich/
Technisch

Technisch

Technisch/
Fachlich

Fachlich

Bild 1.4 Fünf Schichten eines Softwareproduktes

12 �1 Softwaremessung

Deshalb gibt es noch eine dritte Sichtweise auf die Software – die Sicht des Integrators, der
versucht, die beiden anderen Sichten miteinander zu vereinen. In der IT-Projektpraxis
nimmt der Tester die Rolle des Integrators ein und vertritt diese dritte, übergreifende Sicht.
Demnach gibt es

	� fachliche Beschreibungselemente,
	� technische Beschreibungselemente,
	� integrative Beschreibungselemente.

Schließlich wird unterschieden zwischen statischen und dynamischen Sichten auf ein Soft-
waresystem. Eine statische Sicht nimmt die Elemente wahr, die zu einem bestimmten Zeit-
punkt existieren, z. B. die Struktur einer Datenbank oder die Zusammenstellung einer Kom-
ponente. Diese Elemente können sich zwar verändern, aber zu einem gegebenen Zeitpunkt
sind sie statisch invariant. Die statischen Elemente eines Systems bieten sich am besten als
Messobjekte an.
Die dynamische Sicht auf die Software nimmt Bewegungen bzw. Zustandsveränderungen
wahr. Hier werden Abfolgen von Aktionen und Veränderungsfolgen von Daten beobach-
tet. Auch diese Bewegungen bzw. Zustandsveränderungen der Systemelemente lassen sich
messen, aber dies ist viel schwieriger und verlangt besondere Messinstrumente.

 � 1.5 Objekte der Softwaremessung

Aus den Sichten auf die Software ergeben sich die Objekte der Softwaremessung.
Aus der Sicht der Elementtypen gibt es Folgendes zu messen:

	� Natürlichsprachliche Texte
	� Diagramme
	� Tabellen
	� Codestrukturen (siehe Bild 1.5)

Aus der Sicht des Zwecks der Elemente kann Folgendes gemessen werden:
	� Anforderungselemente
	� Entwurfselemente
	� Codeelemente
	� Testelemente
	� Beschreibungselemente

Aus der Sicht des Systembenutzers lässt sich Folgendes messen:
	� Die System/Benutzer-Interaktionen
	� Die Systemkommunikation
	� Die Systemausgabe
	� Die Benutzerdokumentation

131.5 Objekte der Softwaremessung

Englisch
Deutsch
Französisch
…..

O

01 02

P

P4 - - -
P3 - - -
P2 - - -
P1 - - -

Class P
P1 (a,b,c)
P2 (x,y,z)
Class O
ometh1(a,b)
ometh2(x,y)

P O1 O2
Natürlichsprachliche

Texte

Tabellen

Source-Code
(PL/I, COBOL, C++, Java)

Diagramme (UML)

Softwaremessobjekte

Bild 1.5 Objekte der Softwaremessung

Aus Sicht des Systemintegrators kann Folgendes gemessen werden:
	� Die Programme
	� Die Daten
	� Die Schnittstellen
	� Die Systemdokumentation
	� Die Fehlermeldungen

Aus statischer Sicht sind alle Elementtypen zu messen, die als Dateien in einem Verzeich-
nis abgelegt sind. Dazu gehören Testdaten, Tabellen, Grafiken und Diagramme, Source-
Code-Texte, Listen und Dateien im Zeichenformat. Aus dynamischer Sicht lässt sich die
Ausführung des Codes, die Anzahl an Fehlern, die Veränderung der Daten, die Nutzung der
Maschinenressourcen und die Dauer der Computeroperationen messen. Auch Zeiteinhei-
ten wie Ausfallzeiten, Reparaturzeiten und Reaktionszeiten gelten als dynamische Mess
objekte. Im Prinzip lässt sich fast alles an einem Softwaresystem messen. Die Frage ist nur
immer, ob es sich lohnt, etwas zu messen. Denn Messwerte sind lediglich ein Mittel zum
Zweck. Zuerst muss das Ziel der Messung definiert sein. Was will man damit erreichen? Die
Kosten schätzen, Qualitätsaussagen treffen oder Mitarbeiter bewerten? Erst wenn diese
Ziele klar sind, können aus der großen Anzahl potenzieller Messobjekte die richtigen aus-
gewählt werden. Es macht wenig Sinn, sämtliche Objekte zu messen, bloß weil sie da sind.
Auf diese Weise entstehen die berühmt-berüchtigten Zahlenfriedhöfe. Wer Software mes-
sen will, muss eine definierte Messstrategie haben und dieses Konzept verfolgen. Die Mess-
strategie bestimmt, welche Messobjekte letztendlich herangezogen werden und welche Me-
triken zur Anwendung kommen.

14 �1 Softwaremessung

 � 1.6 Ziele einer Softwaremessung

Im Hinblick auf die Ziele einer Softwaremessung ist es wichtig, zwischen einer einmaligen
und einer kontinuierlichen Messung zu unterscheiden. Optimalerweise misst ein Software-
Entwicklungsbetrieb bzw. ein Anwenderbetrieb seine Projekte und Produkte ständig, so
wie es z. B. im CMMI-Modell vorgesehen ist [ChKS03]. Dazu braucht er eine zuständige
Stelle, die dem Qualitätsmanagement untersteht. Diese Stelle vereinbart die Ziele der Soft-
waremessung mit der IT-Leitung und führt die erforderlichen Messinstrumente ein. Es gibt
aber leider nur wenig Anwender im deutschsprachigen Raum, die sich eine solche perma-
nente Messung leisten wollen oder können.
Dies liegt zum einen daran, dass sie den Nutzen nicht erkennen können, andererseits da-
ran, dass ihnen die Kosten zu hoch erscheinen, oder drittens daran, dass selbst wenn sie
den Nutzen erkennen und die Kosten tragen können, sie kein qualifiziertes Personal fin-
den. Nur wenig Informatiker haben sich mit Metriken befasst, und die meisten von ihnen
sind irgendwo an der Hochschule oder einem Forschungsinstitut. Die Zahl der verfügbaren
Metrikspezialisten ist viel zu klein, um den Bedarf zu decken. Demzufolge werden Messun-
gen nur sporadisch durchgeführt.
Die Gründe für einmalige Messungen sind unter anderem:

	� Der Anwender steht vor einem betrieblichen Merger und muss entscheiden, welche der
doppelten Anwendungssysteme beibehalten werden.

	� Der Anwender übernimmt ein Softwaresystem zur Wartung und möchte wissen, worauf
er sich einlässt.

	� Der Anwender hat vor, seine bestehenden Anwendungen zu migrieren, und möchte wis-
sen, um welchen Umfang es sich handelt.

	� Der Anwender hat vor, seine Anwendungen auszulagern, und möchte wissen, was ihre
Erhaltung und Weiterentwicklung kosten soll.

	� Der Anwender steht vor einer Neuentwicklung und möchte wissen, wie groß und wie
komplex die alte Anwendung war.

	� Der Anwender hat massive Probleme mit der bestehenden Software und möchte diese
genaueren Analysen unterziehen.

Die Ziele einer laufenden Messung unterscheiden sich von denen einer einmaligen Messung.
Bei der einmaligen Messung ist das Ziel, den aktuellen Stand eines Systems zu bewerten
und daraus Informationen für Entscheidungen zu gewinnen:

	� Kosten und Nutzen alternativer Strategien
	� Vergleiche verschiedener Systeme
	� Vergleiche mit den Industriestandards (Benchmarking)
	� Informationen über den Gesundheitsstand eines Softwaresystems

Bei der fortlaufenden Messung geht es darum, Veränderungen in der Produktivität und Ter-
mintreue der Projekte sowie in der Größe, der Komplexität und der Qualität der Produkte zu
verfolgen.

	� Veränderungen der Quantität
	� Reduzierung der Komplexität

151.6 Ziele einer Softwaremessung

	� Erhöhung der Qualität
	� Verbesserung der Schätzgenauigkeit

Da die Ziele so vielfältig sind, müssen sie vor jeder Messung neu definiert werden. Diese
Erkenntnis hat Victor Basili und Hans-Dieter Rombach dazu bewogen, die Methode Goal-
Question-Metric (GQM) ins Leben zu rufen [BaRo94]. Diese Methode gilt seitdem als Grund-
lage für jede Softwaremessung (siehe Bild 1.6).
Nach der GQM-Methode werden zunächst die Ziele gesetzt. Zu diesen Zielen werden Fragen
gestellt, um sich darüber klar zu werden, wann die Ziele erreicht sind bzw. wie diese zu
erreichen sind. Auf die Fragen folgen Maße und Metriken, die uns wissen lassen, wo wir im
Verhältnis zu unseren Zielen stehen bzw. wie weit wir noch von ihnen entfernt sind. Das
Ziel ist also der Gipfel, den wir besteigen wollen. Die Frage ist, auf welchem Weg man ihn
besteigt, und die Metrik ist die Entfernung vom Ausgangspunkt bzw. zum Zielpunkt.

Ziel A Ziel B Ziel CGoals Ziel

Frage
B1

Frage
B2

Frage
B3

Metrik MetrikMetrik

Questions

Metrics

Counts

(z.B.) LOCS Stmt Procs Data Calls Data IOs Keys

Fragen

Metrik

Zählung

Bild 1.6 Zielorientierte Softwaremessung mit der GQM-Methode

Eigentlich müsste die GQM-Methode um eine weitere Stufe ergänzt werden, und zwar um
die der Kennzahlen. Denn eine Metrik ist eine Gleichung mit Kennzahlen als Parameter, die
ein bestimmtes, numerisches Ergebnis liefert [Kütz07]. In der gängigen Literatur werden
alle Zahlen (auch Summen einzelner Eigenschaften) als Metrik bezeichnet. Dies ist aus
Sicht der Metrik eine Verfälschung. Eine Metrik benutzt Zählungen in einer Gleichung, um
damit ein Ergebnis zu errechnen. Die Function-Point-Metrik etwa vereint die Zahl der ge-
wichteten Ein- und Ausgaben mit der Zahl der gewichteten Datenbestände und der Zahl der
externen Schnittstellen, um daraus Function-Points zu errechnen. Dies ist eine Metrik für
die Systemgröße. Die Zahl der Ein- und Ausgaben ist eine Kennzahl bzw. im Englischen ein
„count“. Die Anzahl Codezeilen und die Anzahl Anweisungen sind ebenfalls „counts“. In
diesem Buch wird zwischen Metriken und Kennzahlen unterschieden. Metriken basieren
auf Kennzahlen. Demzufolge wird die GQM-Methode um eine Stufe erweitert:

G = Goal = Ziel
Q = Question = Frage
M = Metric = Metrik
C = Counts = Kennzahl

16 �1 Softwaremessung

Als Beispiel dient das Ziel „Die Software soll möglichst fehlerfrei sein“. Die erste Frage, die
sich dazu stellt, ist: Was bedeutet möglichst fehlerfrei? Die zweite Frage wäre: Wie fehlerfrei
ist die Software jetzt? Das Messziel für die erste Frage könnte eine Restfehlerwahrschein-
lichkeit von 0,015 sein. Als Metrik für die zweite Frage könnte die Berechnung der Anzahl
der noch nicht entdeckten Fehler auf Basis der bisherigen Fehlerrate in Bezug zur Testüber-
deckung dienen.

wobei Testüberdeckung auf verschiedenen Stufen betrachtet werden kann. Auf der Code-
stufe könnte sie getestete Logikzweige/alle Logikzweige, auf der Entwurfsstufe getestete
Modelelemente/alle Modelelemente und auf der Anforderungsebene getestete Anforderun-
gen/alle Anforderungen sein.
Dies wäre die Metrik. Die Kennzahlen sind:

	� Anzahl bisheriger Fehler
	� Anzahl getesteter Elemente
	� Anzahl aller Elemente

Die GQM-Methode wurde ursprünglich im Jahre 1984 von V. Basili und D. Weis im Rahmen
einer Softwaremessung beim NASA Goddard Space Flight Center entwickelt [BaWe84]. Sie
wurde in Europa erst Anfang der 90er Jahre bei der Schlumberger Petroleum AG in den
Niederlanden eingesetzt, um die dortige Prozessverbesserung zu messen. Im Jahre 1999
brachte R. van Solingen und E. Berghout ein Buch mit dem Titel „The Goal/Question/Metric
Method“ heraus [SoBe99]. In diesem Buch beschreiben die Autoren ihre Erfahrungen mit
der Methode in mehreren europäischen Unternehmen. Trotz der üblichen Probleme mit
Ziel- und Begriffsdefinitionen konnten damit einige Prozesse und Produkte gemessen und
bewertet werden. Welche Maßnahmen auf die Messungen folgten, bleibt unbeschrieben.
Jedenfalls konnten die Anwender erkennen, wo sie sich im Verhältnis zu ihren Zielen befan-
den. Auch der Autor Sneed hat mit der Methode gute Erfahrungen gemacht, vor allem in
Bezug auf die Optimierung der Wartungsprozesse im Anwendungsbetrieb. Ausschlagge-
bend für den Erfolg der Methode ist die Definition messbarer Ziele wie z. B. die Reduktion
der Kundenfehlermeldungen um 25 %. Auf welchem Weg das Ziel zu erreichen ist, ist eine
andere Frage, die wiederum von anderen Messungen abhängt.
Die Wahl des Weges zum Ziel wird von der Korrelation diverser Metriken bestimmt wie
etwa der Korrelation zwischen Codequalität oder Architekturqualität und Fehlerrate. Ein
Großteil der Metrikforschung ist darauf ausgerichtet, solche Korrelationen zwischen Ziel
und Mittel herauszustellen. Erst wenn wir wissen, was einen Zustand verursacht, können
wir daran gehen, die Ursachen des Zustands zu verändern, sei es die Codequalität, die Pro-
zessreife, die Werkzeugausstattung oder die Qualifikation der Mitarbeiter.
Ein Ziel der Metrik ist, derartige Zusammenhänge aufzudecken, damit wir die betroffenen
Zustände ändern können. Ein weiteres Ziel ist, die Zustände zu verfolgen, wo sie im Ver-
hältnis zum Soll stehen. Ein drittes Ziel ist es zu kalkulieren, welche Mittel man braucht,
um die Zustände zu verändern. Hier ist ein Projekt als Zustandsänderung bzw. als Zu-
standsübergang zu betrachten.

171.7 Zur Gliederung dieses Buches

 � 1.7 Zur Gliederung dieses Buches

In Anlehnung an die Dimensionen und Schichten eines Softwareproduktes sowie an die
Ziele eines Softwareprozesses ist dieses Buch in drei Teile mit elf Kapiteln gegliedert (siehe
Bild 1.7)

Messobjekte

Quantität

Komplexität

Qualität

Produktivität

Anforderungs-
spezifikation

Geschä�sprozesse
Geschä�sobjekte
Geschä�sregeln
Anwendungsfälle

Strukturiert
Textuell
Fachlich

Konsistenz
Vollständigkeit
Exaktheit

Testzeilen
Zeilen pro PT

Systementwurf

Klassen/Module
Methoden/Procs
Schni stellen
Daten

En�täten
Beziehungen
Interak�onen

Kohäsion
Kopplung
Ausbaufähigkeit

Diagramme
pro PT

Source-Code

Codezeilen
Anweisungen
Bedingungen
Referenzen

Ablaufe
Zugriffe
Datennutzung

Modularität
Konver�erbarkeit
Konformität

Codezeilen/
Anweisungen
pro PT

Testware

Testobjekte
Tes�älle
Testläufe
Fehlermeldungen

Zustandsdichte
Pfadanzahl
Schni stellen-
breite

Fehlerdichte
Testüberdeckung
Fehlerfindung

Tes�älle
pro PT

Entwicklungs-

maße

Wartungs-

maße

Func-Points

Obj-Points

UC-Points

LOCS
Anweisungen

Module

Objekte

Relationen

Ereignisse

Vollständig

Konsistent

Plausibel

FPs
OPs pro PT

TCs

Koordinaten

Zweige

Pfade

Koordinaten

Zweige

Pfade

LOCs
Stmts pro PT

TCs

Wartung/Evolution
Entwicklung

Bild 1.7 Dreifache Gliederung des Buches

Der erste Teil befasst sich mit den Dimensionen der Software bzw. mit deren Größe, Kom-
plexität und Qualität. Das zweite Kapitel beschreibt die Maße für die Größe eines Soft-
wareprodukts, Maße wie Anforderungen, Dokumentationsseiten, Modeltypen, Codezeilen,
Anweisungen, Object-Points, Function-Points und Testfälle. Das dritte Kapitel geht auf die
Komplexitätsmessung ein und behandelt solche Komplexitätsmetriken wie Graphenkom-
plexität, Verschachtelungstiefe, Kopplungsgrad und Datennutzungsdichte. Das vierte Kapi-
tel setzt sich mit dem Thema Qualitätsmessung auseinander. Dabei geht es um Maßstäbe
für Qualitätsmerkmale wie Zuverlässigkeit, Korrektheit, Sicherheit und Wiederverwend-
barkeit. Hier kommt die GQM-Methode zur Geltung.
Der zweite Teil befasst sich mit den einzelnen Softwareschichten und wie sie zu messen
sind. Die hier behandelten Softwareschichten sind:

	� Die Anforderungsdokumentation
	� Der Systementwurf
	� Der Code
	� Die Testware

18 �1 Softwaremessung

Kapitel 5 behandelt die Messung natursprachlicher Anforderungsdokumente. Kapitel 6
schlägt eine Metrik für den Systementwurf im Allgemeinen und im Speziellen für UML vor.
Das Kapitel 7 beschäftigt sich mit der Messung und Bewertung sowohl von prozeduralem
als auch objektorientiertem Code. Kapitel 8 ist dem Thema Testmessung gewidmet. Darin
werden diverse Testmetriken vorgestellt, die nicht nur das dynamische Verhalten des Sys-
tems, sondern auch den statischen Zustand der Testware messen. Für alle vier Schichten
werden die drei Dimensionen Quantität, Komplexität und Qualität behandelt.
Im dritten und letzten Teil des Buches geht es um die Messung der Softwareprozesse. Kapi-
tel 9 geht auf die Messung der Produktivität in Entwicklungsprojekten ein. Hier werden
diverse Ansätze zur Ermittlung der Produktivität zwecks Planung und Steuerung von Ent-
wicklungsprojekten vorgestellt. Kapitel 10 befasst sich mit dem schwierigen Thema „War-
tungsmessung“. Es geht dabei sowohl um die Wartbarkeit der Softwareprodukte als auch
um die Messung der Wartungsproduktivität. Kapitel 11 schildert den Messprozess, den die
Autoren bereits in zahlreichen Messprojekten verwendet haben, und die Werkzeuge, die
sie eingesetzt haben, um die Messergebnisse zu erzeugen. Hier wird Softwaremessung als
ein – im Sinne des CMMI – definierter und wiederholbarer Prozess dargestellt.

A

Ablaufkomplexität  57, 168, 181, 278
Abnahmekriterien  32
Abstraktion  132
Agile Anforderungsmetrik  106
Akteurinteraktionskomplexität  145
Aktivitätenflusskomplexität  145
Akzeptanzkriterien  32
Albert, Albrecht  229
algorithmische Komplexität  49 f., 62
Allgemeingültigkeit  74
Alpha-Komplexitätsmetrik  51
Analyseproduktivität  247
Analysierbarkeit  78, 168
Änderbarkeit  66, 74, 184
Änderungen  257
Änderungsmetrik  265
Anforderung  20, 32, 55, 89
	– Anforderungsdokument  30
	– Anforderungsgrößen  30, 110
	– Anforderungskomplexität  60, 89, 111
	– Anforderungsmessung  89 ff.
	– Anforderungsmetrik  91
	– Anforderungsproduktivität  89
	– Anforderungsqualität  82, 89, 111
	– Anforderungsüberdeckung  196
	– formal  4, 20
	– semiformal  20

Angemessenheit  77
Anpassbarkeit  72, 79
Anweisungen  23
Anwendungsfall  32
Anwendungsfallkomplexität  145
AS/400  193

Assembler  52, 55
Ästhetik  78
Aufrufe  24
Aufwandsschätzung  225
Austauschbarkeit  79, 168
Authentizität  78
Automatisierung  81
Availability  68

B

Barrierefreiheit  78
Basili, Victor  293
Bebugging  218
Bedienbarkeit  78
Bedingungsdichte  111
Belady, Les  119, 258
Belastbarkeit  93
Benutzbarkeit  67, 71, 77
Benutzerdokumentation  19
Benutzeroberflächen  25
Berns, Gerald  263
Beziehungskomplexität  182
Bindung  138
Boehm, Barry W.  64, 93, 231
Broy, Manfred  99
Burndown Chart  106

C

C  55
C++  53 ff., 187
CaliberRM  109
Card, David  120
CARE  109

Index

330 �Index

CASE-Werkzeuge  107
CBO-Metrik  272
Chapin, Ned  164, 258
Chidamer, Shyam  50, 133
CMFAnalyzer  210
CMMI  14, 169, 294
COBOL  55 f., 85, 159, 187, 193, 228, 264, 267,

277
COCOMO  70
COCOMO-Modell  231, 248, 285
Code  55
	– Codedateien  23
	– Codegrößen  21
	– Codekomplexität  180
	– Codekonvertierbarkeit  174
	– Codemetrik  157
	– Codeportierbarkeit  172
	– Codequalität  84, 183
	– Codequalitätsindex  168
	– Codequantität  179
	– Codesicherheit  175
	– Codetestbarkeit  176
	– Codeüberdeckung  196, 265
	– Codeverständlichkeit  171
	– Codewartbarkeit  178
	– Codewiederverwendbarkeit  174
	– Codezeilen  23, 159

Collofello, James  259
Compliance  83
Comprehensibility  266
Constantine, Larry  116
COSMIC-FFP  38
CPPAnalyzer  210
Crosby, Philip B.  63
CSVAnalyzer  206
CTFAnalyzer  210

D

Data-Points  39, 110, 153, 179, 227, 235
Datendichte  111
Datenfluss  118
Datenflusskomplexität  180
Datenkomplexität  168, 180, 278
Datenmodellgrößen  26
Datenobjekte  25
Datensicherung  70

Datentransformation  58
Datenunabhängigkeit  184
Datenzugriffe  25
DeMarco, Tom  226
Deming, William Edward  63
Designproduktivität  247
Deutsche Gesellschaft für Qualität  63
Dienstleistungsschicht  120
DIT-Metrik  272
Domain-Specific-Sprachen  30
DOORS  109
Dumke, Reiner  211
dynamische Test-Points  204

E

Ebert, Christof  89, 100, 211
Effektivität  68, 93
Effizienz  68 ff., 74, 77, 93
Eindeutigkeit  103 f.
Elshof, J.L.  165
Entity/Relationship-Modell  3, 58, 107
Entropie  52
Entscheidungen  24
Entscheidungskomplexität  125, 181
Entscheidungslogik  65
Entwurf  20, 55

	– Entwurfsgrößen  26, 140, 152
	– Entwurfskomplexität  58, 123, 130, 142
	– Entwurfsmessung  115
	– Entwurfsqualität  83, 115, 121, 146
	– Entwurfsüberdeckung  196

Erfüllungsgrad  151
Erhaltungskosten  257
Erlernbarkeit  77
Erweiterbarkeit  259
Erweiterung  257
Evangelisti, Charles  119, 258

F

Fan-in/Fan-out-Metrik  115, 119
Fehler  208
Fehlerdichte  86
Fehlerfindungskurve  197
Fehlerfindungsrate  203
Fehlerhäufigkeit  199, 272

331Index

Fehlerkorrektur  257
Fehlerkosten  203
Fehlermeldungen  37, 202
Fehlermetrik  265
Fehlerrate  54, 123, 139, 262, 272
Fehlerstatistik  191
Fehlertoleranz  78
Fehlervermeidung  78
Flexibilität  278
Fog-Index  227
FORTRAN  53, 56, 65 f., 91, 126, 155, 228, 263,

266
Fraser, Martin  96
Function-Points  33, 38, 60, 89, 110, 153, 179,

224, 229, 247, 281, 306
Funktionale Allokation  120
Funktionalität  68 f., 77
Funktionsabdeckung  71, 74
Funktionsdichte  111

G

GEOS  205
Gesamtproduktivität  248
Gewichtung
	– Anweisung  263
	– Codekonstrukt  263
	– Datentyp  263

Gilb, Tom  68, 91, 116
Glass, Robert  120
Glinz, Martin  98
Goal-Question-Metric  15, 79, 171, 295
Graphkomplexität  284
Gremillion, Lee  264
Gunning, Robert  228

H

Halstead, Maurice  43, 160, 258
Handhabbarkeit  74
Hawthorne-Effekt  288
Hayes, Jane Hoffman  96
Henry, Sallie  118
Hetzel, Bill  195
Hutcheson  202

I

Identifizierbarkeit  104 f., 112
IEEE-Standard  46, 76
IFPUG  38, 253
Installierbarkeit  79
Instandsetzbarkeit  72
Integrationstest  212
Integrität  78
Interaktionen  119
Interoperabilität  77
ISO-Standard  76, 99
	– ISO 25010  77

ITIL  258

J

Java  53 ff., 187 f., 275

K

Kafura, Don  118
Kan, Stephan  197
Kapazität  77
Kapselung  59, 132, 137
Kapselungsgrad  273
Kemerer, Chris  50, 133
Klassen  24
Klassen/Attributskomplexität  143
Klassen/Methodenkomplexität  143
Klassenhierarchiekomplexität  143
Klassenkohäsionsgrad  147
Klassenkopplungsgrad  147
Klassifizierbarkeit  103 ff., 112
Koexistenz  77
Kohäsion  59, 115 ff., 156, 166
Kokol, Peter  51
Kommentarzeilen  279
Kommentierung  186
Kommunikation  6
Kompatibilität  77
Komplexität

	– Ablaufkomplexität  57
	– algorithmische  49 f., 62
	– Anforderungskomplexität  60
	– Entwurfskomplexität  58
	– konzeptionelle  49

332 �Index

	– künstliche  55
	– logische  44
	– psychologische  44
	– Sprachkomplexität  61
	– strukturelle  48 ff.
	– Strukturkomplexität  62
	– zyklomatische  43, 57

Komplexitätsmetrik  179
Konformität  10, 111, 149, 183
Konsistenz  82 f., 93 f., 111, 128, 150
Konvertierbarkeit  185
konzeptionelle Komplexität  49
Kopplung  115 f., 121, 135, 138, 156
Kopplungsgrad  273
Korrektheit  71, 77
Kostenschätzung  152
künstliche Komplexität  55

L

Lastenheft  99
LCOM-Metrik  272
Legacy-Softwaresysteme  53
Lesbarkeit  104 f., 112
Lientz, Bennet P.  257
Lines of Code  159, 265
Lister, Timothy  226
Liverpool-Knots-Metrik  168
Locality  266
Logikzweige  24
logische Komplexität  44
LOTOS  53
LRC-Maß  52
LUSTRE  53

M

Machbarkeit  93 f.
Maintainability  68, 266
Maintainability-Index  169
maintenance
	– adaptive maintenance  257
	– corrective maintenance  257
	– enhansive maintenance  257
	– perfective maintenance  257

Maintenance Analysis Tool  263
Mängelstatistik  210

MARK-II  38
Martin, Johnny  95
Mashup  155
McCabe, Thomas  43, 57, 115 f., 162, 258
McCall, Jim A.  71
MECCA  116
Mehrdeutigkeit  132
Methoden  23
Metrik  8, 16, 65
	– Metrikbericht  211
	– Metrikdatenbank  115, 209

Modifiability  266
Modifizierbarkeit  78, 168
Modularität  78, 111, 121, 129, 148, 156, 186, 278
Modulbeziehung  124
Modulbildung  116
Module  24
Modulentwurf  121
Modulgröße  122, 267
Modulkohäsion  122
Modulkomplexität  264, 284
Modulkontrollspanne  122
Modulkopplung  122
Modulüberdeckung  196
MOOD  136
MOOD-Metrik  273
Myers, Glenford  115, 200

N

Nachweisbarkeit  78
NESMA  38
N-Fold Inspektion  95
NOC-Metrik  272

O

Object Constraint Language (OCL)  29
Object-Points  40, 60, 110, 153, 179, 227, 237
Objektinteraktionskomplexität  143
Objektmodell  133
Objektmodellgrößen  27
Objektorientierte Entwurfsmetrik  132
objektorientierte Programmierung  57
objektorientierter Entwurf  59
Objektzustandskomplexität  144
Oman, Paul  169, 268

333Index

OO-Metrik  274
Operand  3, 25, 45, 53, 157, 161
Operator  3, 45, 53, 157, 161
Optimierungen  257
ordinale Skala  117
OWL  155

P

Parnas, David  95
PASCAL  53, 166, 266
Passivform  103 f.
Passivformlosigkeit  112
Performance  98, 120
Performanz  68 f., 77
Pighin, Maurizio  51
Plausibilität  82
PL/I  56, 85, 165
Pohl, Klaus  89
Polymorphie  271
Polymorphismusgrad  273
polynomische Regressionsanalyse  269
Portabilität  66 ff., 72 ff., 79, 93, 98, 130, 148,

278
Prather, R.E.  166
Produktivität  223, 293
Produktivitätsmaße  287
Produktivitätsmessung  223
Programmiererqualifikation  262
Programmierproduktivität  246
Programmkomplexität  275
Projektsteuerung  8
PROMELA  53
Prozedurale Komplexität  126
Prozeduren  23
Prozedurgröße  267
Prozessmaße  287
Prüfbarkeit  168
Psychologische Komplexität  44
Putnam, Larry  223, 233

Q

Q-Komplexität  164, 180
Qualität  63
	– dynamische  86

Qualitätsbaum  71

Qualitätsdaten  293
Qualitätseigenschaften  64
Qualitätsindikatoren  187
Qualitätsmanagement  14
Qualitätsmatrix  75
Qualitätsmetrik  179
Qualitätssicherung  81, 197
QUALMS  301
Quantität  19
Quantitätsmetrik  179

R

Ramamoorthy, Chitoor  120
RDF  155
Redundanzfreiheit  184
Refaktorierung  257
Referenzierungsdichte  111
Referenzkomplexität  165
Regelverletzung  65
Regressionstest  193
Reife  78
Reliability  68
Reparierbarkeit  93
RequistePro  109
Restfehlerwahrscheinlichkeit  37, 220
Restrukturierung  257
RETRO  97
Reusability  266
RFC-Metrik  272
Richtigkeit  75, 82
Robertson, Suzanne/James  89
Robustheit  71, 75
Rombach, Hans-Dieter  266, 293
Rupp, Chris  89, 103
Rupp-Regeln  111

S

Schlüsselwörter  30
Schnittstellenkomplexität  181, 278
Security  68
Selbstbeschreibung  259
Selektierbarkeit  105, 112
Shannon, Clauda  160
Shull, Forrest  293
Sicherheit  71, 75, 78, 183

334 �Index

Smalltalk  277
SoftAudit  179, 311
SOFTCON  127
SoftMess  210
SoftOrg  83
SOFTSPEC  82, 107
Software
	– Gliederung  10

Softwarekomplexität  43
Softwaremessung  6
	– einmalig  14, 294
	– laufend  14, 294
	– Objekte  12
	– Ziele  14
	– Zweck  6

Softwaremodularität  259
Softwarewartung  257
Sophist-Anforderungsmetrik  103
Sophist-Metrik  112
Sortierbarkeit  104
SPARQL  155
Speicherbelegung  68
Speichereffizienz  131
Sprachkomplexität  61, 161, 182, 278
Sprachparser  30
Stabilität  168, 259
Stabilitätsmaß  259
Steuerungskopplung  117
Stevens, Wayne  115
Story Points  255
Stroustrup, Bjarne  56
strukturelle Komplexität  48 ff.
Strukturierte Entwurfsgrößen  26
Strukturkomplexität  62
Swanson, E. Burton  257
Systementwurf  120
Systemintegrität  131
Systemkomplexität  123
Systemnachrichten  26
Systempartitionierung  119
Systemtest  200, 213
Systemtestüberdeckung  202

T

Testaufwand  195
Testbarkeit  66, 74, 79, 93 f., 111, 120, 126, 149,

184, 211, 279
Testdaten  19
TestDoku  222
Testeffektivität  37, 195, 203, 218
Testeffizienz  195 f., 220
Testergebnismetrik  199
Testfall  19, 36, 192, 201, 205
Testfallanalysewerkzeug  206
Testfalldichte  111
Testfall-Points  41
Testfortschritt  203, 217
Testfortschrittskurve  197
Testgrößen  35
Testkosten  201
Testleistungsmetrik  199
Testmessungswerkzeug  194
Testmetrik  191
Testplanung  214
Test-Points  110, 154, 197, 200, 203, 214
Testproduktivität  203, 215, 248
Testprozedur  19
Testqualität  86, 218
Testüberdeckung  194, 203 ff., 208
Testüberdeckungskurve  197
Testvertrauen  219
Testvollständigkeit  203
Testware  19
Testzeit  201
Teufelsquadrat  223
TextAudit  109
TMAP  204
Tsai, W.  95

U

Übertragbarkeit  79, 186
Umarji, Medha  293
UML  3
UMLAudit  139
UML-Modell  52, 275
Unit-Test  212
Use Case  32

335Index

Use-Case-Point  21, 33, 41, 60, 89, 110, 154,
240, 247

User-Storys  255

V

Vaishnavi, V.  96
van Megen, Rudolf  74
Velocity  255
Verarbeitungskomplexität  125
Verbrauchsverhalten  77, 168
Vereinbarte Datenelemente  24
Vererbung  132, 138, 271
Vererbungsgrad  273
Vererbungshierarchie  134
Verfügbarkeit  71, 78
Verifikation  83
Verknüpfbarkeit  72
Verschachtelungskomplexität  166, 182
Verständlichkeit  65, 74, 77
Vertraulichkeit  78
Verzweigungskomplexität  267, 278
Vessey, Iris  262
V-Modell-XT  99
Volere  109
Vollständigkeit  66, 77, 82 f., 93, 111, 128, 150

W

Wartbarkeit  71, 78, 93, 98, 120, 126, 271
Wartbarkeitsindex  170, 268 f.
Wartungsaufwand  265, 268, 271, 275

Wartungskosten  257
Wartungsproduktivität  257, 280
Weaver, Warren  160
Webapplikationen  155
Weber, Ron  262
Web Ontology Language  155
Wella-Migrationsprojekt  193
Werkzeuge  107
Wiederherstellbarkeit  78
Wiederverwendbarkeit  72, 78, 120, 130, 149,

185, 279
Wiederverwertbarkeit  93
WMC-Metrik  272

Y

Yau, Stephan  259
Yourdon, Edward  116

Z

Zeiteffizienz  131
Zeitverbrauch  68
Zeitverhalten  77, 168
Zugriffskomplexität  180
Zugriffsschicht  120
Zurechenbarkeit  78
Zuse, Horst  46, 167
Zustandsübergangskomplexität  144
Zuverlässigkeit  67, 70 f., 78
zyklomatische Komplexität  43, 57, 115, 162,

260, 269

	Deckblatt_Leseprobe
	Inhalt
	Vorwort
	Geleitwort
	Autoren
	Kapitel_1
	Index

