SOFTWARE-

METRIKEN

DIE VERMESSUNG
VON APPLIKATIONEN

Leseprobe

ZU

Software-Metriken

von Richard Seidl, Manfred Baumgartner und Harry M.
Sneed

Print-ISBN: 978-3-446-47687-5
E-Book-ISBN: 978-3-446-47853-4
E-Pub-ISBN: 978-3-446-48058-2

Weitere Informationen und Bestellungen unter
https://www.hanser-kundencenter.de/fachbuch/artikel /9783446476875
sowie im Buchhandel

© Carl Hanser Verlag, Miinchen

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446476875

Inhalt

VOrWOrt .. e XV
Geleitwortzur1. Auflage XVl
Die Autoren X1X
1 Softwaremessung 1
1.1 Das Wesen von Software 1
1.2 Sinn und Zweck der Softwaremessungoueiiiineinineeenn.. 6
1.2.1 Zum Verstandnis (Comprehension) der Software 7
1.2.2 Zum Vergleich der Software i i 7
1.2.3 Zur VOThersageottt 7
1.2.4 Zur Projektsteuerungiiniinnininii i 8
1.2.5 Zur zwischenmenschlichen Verstdndigung 8
1.3 Dimensionen der Substanz Software 8
1.3.1 Quantitatsmetrik von Software 9
1.3.2 Komplexitatsmetrik von Software 9
1.3.3 Qualitatsmetrik von Software i 10
1.4 Sichten auf die Substanz Software 10
1.5 Objekte der SOftwaremesSUNGottt it i ie e e 12
1.6 Ziele einer SOftwaremesSUngo vvvtn ettt it e ie e 14
1.7 Zur Gliederung dieses Buches i, 17
2 Softwarequantitat 19
2.1 QuantitdtsmaBeioii i e 19
2.2 C0degrOBENttt e 21
221 Codedateiencouiiniii e 23
2.2.2 Codezeilen i 23
2.2.3 ADWEISUNZEN ...ttt e 23
2.2.4 Prozeduren bzw. Methoden 23
2.2.5 Module bzw. KIaSSenoouiii e 24
2.2.6 Entscheidungenottt 24

2.2.7 LogiKZWEIZeo 24

Inhalt

2.3

2.4

2.5

228 Aufrufe 24
2.2.9 Vereinbarte Datenelementet 24
2.2.10 Benutzte Datenelemente bzw. Operanden 25
2.2.11 Datenobjekte i 25
2.2.12 Datenzugriffe 25
2.2.13 Benutzeroberflichen i 25
2.2.14 Systemnachrichten 26
EntwurfsgroBent 26
2.3.1 Strukturierte EntwurfsgroBen o i, 26
2.3.2 DatenmodellgroBen i 26
2.3.3 ObjektmodellgroBent 27

2.3.3.1 Komponenteniiiiiiiiiiiiiiia. 28

2.3.3.2 KIaSSEN 28

2.3.3.3 Klassenmethoden 28

2.3.3.4 Klassenattribute 28

2.3.3.5 Klasseninteraktionen oL, 28

2.3.3.6 ObJEKIE .ottt 28

2.3.3.7 Objektzustindeottt 29

2.3.3.8 Objektinteraktionenc..o i, 29

2.3.3.9 AKHVItATEN . ..ot e 29

2.3.3.10 Entscheidungen 29

2.3.3.11 Verarbeitungsregelcoiiiiiiiiiiiiin... 29

2.3.3.12 Systemschnittstellen i 29

2.3.3.13 Anwendungsfille und Systemakteure 30
AnforderungsgroBen 30
2.4.1 Anforderungen 32
2.4.2 AbnahmeKriterien 32
243 Anwendungsfalle 32
244 Verarbeitungsschritte 33
245 Oberflichen 33
2.4.6 Systemschnittstellenci it 33
2.4.7 SystemaKteUrettt ittt e e e 33
2.4.8 Relevante Objektet 33
249 Objektzustdndecoiiiiiii 34
2410 BedingUNEENttt e 34
2411 AKHONEN ...ttt e 34
2412 Testfalle 34
TS tgrO BN .ttt e 35
251 Testfllle . ..ot e 36
252 Testfallattributeo 36
253 Testldufe 36
2.5.4 Testskripte bzw. Testprozeduren, 36
2.5.5 Testskriptzeilen 37
2.5.6 Testskriptanweisungenc..oiiiiineiiinneiiinaan. 37
2.5.7 Fehlermeldungenoininiininie i 37

Inhalt VII

2.6 Abgeleitete GroBenmaBe i 38
2.6.1 Function-Points 38
2.6.2 Data-Points i 39
2.6.3 ObJeCt-Pointst 40
2.6.4 Use-Case-Pointsiiiiiniiii i 41
2.6.5 Testfall-Points iiiii i 41
3 Softwarekomplexitat L. 43
3.1.1 Softwarekomplexitat nach dem IEEE-Standard 46
3.1.2 Softwarekomplexitat aus der Sicht von Zuse 47
3.1.3 Softwarekomplexitat nach Fenton 47
3.1.4 Komplexitit als Krankheit der Softwareentwicklung 48
3.1.5 Komplexititsmessung nach Ebert und Dumke 50
3.1.6 Die Alpha-Komplexitatsmetrik, 51
3.2 Steigende Softwarekomplexitat i 54
3.2.1 Codekomplexitdt - Warum Java komplexer als COBOList 55
3.2.2 Entwurfskomplexitdt - warum verschiedene Entwurfsansitze im
Endeffekt gleich komplex sind 58
3.2.3 Anforderungskomplexitit - warum die zu losenden Aufgaben immer
komplexer Werdenttt 60
3.3 Allgemeingiiltige MaBe fiir die Softwarekomplexitat 61
3.3.1 Sprachkomplexitat........... ..o 61
3.3.2 Strukturkomplexitat 62
3.3.3 Algorithmische Komplexitat 62
4 Die Messung der Softwarequalitat 63
4.1 Qualitatseigenschaften nach Boehm 64
4.1.1 Verstandlichkeitnach Boehm............. 65
4.1.2 VollstandigkeitnachBoehm 66
4.1.3 Portabilitit nach Boehm il 66
4.1.4 Anderbarkeit nach Boehmccoiiinininaiainin.. 66
4.1.5 TestbarkeitnachBoehm i i 66
4.1.6 Benutzbarkeit nach Boehm 67
4.1.7 Zuverlassigkeitnach Boehm 67
4.1.8 Effizienznach Boehm il 68
4.2 Gilb und die Quantifizierung der Qualitat 68
4.2.1 Funktionalititsmessungnach Gilb 69
4.2.2 Performanz-Messungnach Gilb 69
4.2.3 Zuverlassigkeitsmessungnach Gilb 70
4.2.4 Datensicherungsmessungnach Gilb 70
4.2.5 Effizienzmessungnach Gilb 70
4.2.6 Verfiighbarkeitsmessungnach Gilb 71
4.2.7 Wartbarkeitsmessungnach Gilb 71
4.3 McCalls Qualitdtshaumcouuiiiin i 71
4.4 Eine deutsche Sicht auf Softwarequalitat 74

4.4.1 Qualitatsbegriff 74

VIl Inhalt

4.4.2 Qualitatsklassifizierung i i 74
4.4.3 QualitatsmaBet 75
444 QualitdtSgroBenottt e 75
4.5 IEEE-und ISO/IEC-Standards fir Softwarequalitat 76
4.5.1 Funktionalitit nach ISO 25010 77
4.5.2 Effiziente Performanz nach ISO 25010 77
4.5.3 Kompatibilitit nach ISO 25010 77
4.5.4 Benutzbarkeit nach ISO 25010 77
4.5.5 Zuverlassigkeit nach ISO 25010 i i, 78
4.5.6 Sicherheit nach ISO 25010 it 78
4.5.7 Wartbarkeit nach ISO 25010 i, 78
4.5.8 Portabilitdt nach ISO 25010 i 79
4.6 Zielgerichtete Softwarequalitdtssicherung 79
4.6.1 Qualitdtszielbestimmungoiiiiiiiiiininneiiian. 79
4.6.2 Qualitatszielbefragungot 80
4.6.3 QualititszielDEmMeSSUNZooui et 80
4.7 Automatisierte Softwarequalitatssicherung 81
4.7.1 Automatisierte Messung der Anforderungsqualitat 82
4.7.2 Automatisierte Messung der Entwurfsqualitat 83
4.7.3 Automatisierte Messung der Codequalitat 84
4.7.4 Automatisierte Messung der Testqualitat 86
4.8 Folgen fehlender QualitatsSmessungvuiiinn e ennenenennn 87
5 Anforderungsmessung i 89
5.1 Tom Gilbs AnstoB der Anforderungsmessungc.ovueuneennenn.. 91
5.2 Weitere Ansitze zur Anforderungsmessungouveuneunennnenn.. 93
5.2.1 DerBoehm-AnSatzooiiuuiiiiin e 93
5.2.1.1 Vollstandigkeit i 93
5.2.1.2 KONSIStENZovit it e 94
5.2.1.3 Machbarkeit o 94
5.2.1.4 Testbarkeitt e 94
5.2.2 N-Fold InspeKtiono it 95
5.2.3 Parnas & Weis Anforderungspriifung 95
5.2.4 Abgleich der Anforderungen nach Fraser und Vaishnavi
(Anforderungsprifung)c. i 96
5.2.5 Verfolgung der Anforderungen nach Hayes 96
5.2.6 Bewertung der Anforderungennach Glinz 98
5.2.7 ISO-Standard 25030ttt e 99
5.2.8 Das V-Modell-XT als Referenzmodell fiir die Anforderungsmessung .. 99
5.3 Eine Metrik fiir Anforderungen von C.Ebert 100
5.3.1 Zahl aller Anforderungen in einem Projekt 101
5.3.2 Fertigstellungsgrad der Anforderungen 101
5.3.3 Anderungsrate der Anforderungenoiiiiii... 102
5.3.4 Zahl der Anderungsursachenooueiuinnennennann.. 102
5.3.5 Vollstindigkeit des Anforderungsmodells 102

5.3.6 Anzahl der Anforderungsméingel 102

5.4

5.5
5.6

5.7

6.2

6.3

Inhalt

5.3.7 Anzahlder Mangelarten 103
5.3.8 Nutzwert der Anforderungenciiuiiiiiinenn... 103
Die Sophist-Anforderungsmetrik i 103
5.4.1 Eindeutigkeit der Anforderungen 104
5.4.2 Ausschluss der Passivform bei den Anforderungen 104
5.4.3 Klassifizierbarkeit der Anforderungen 105
5.4.4 Identifizierbarkeit der Anforderungen 105
5.4.5 Lesbarkeito 105
5.4.6 Selektierbarkeit 105
Agile Anforderungsmetrik 106
Werkzeuge fiir die Anforderungsmessungcovuvinenenennen... 107
5.6.1 Anforderungsmessung in den friiheren CASE-Werkzeugen 107
5.6.2 Anforderungsmessung im CASE-Tool SoftSpec 107
5.6.3 Anforderungsmessung in den gegenwirtigen Requirements
Management Tools i 109
5.6.4 Anforderungsmetrik aus dem Werkzeug TextAudit 109
5.6.4.1 AnforderungsgroBeniiiiiiiiiiiiiin... 110
5.6.4.2 Anforderungskomplexititen 111
5.6.4.3 Anforderungsqualititen 111
5.6.4.4 Priifung der Rupp-Regeln 111
5.6.4.5 Implementierung der Sophist-Metrik 112
5.6.5 Darstellung der Anforderungsmetrik 112
Griinde fiir die Anforderungsmessungcuuriirnennenneenn.nn. 113
Entwurfsmessung i 115
Erste Ansétze zu einer Entwurfsmetrik o oL 116
6.1.1 Der MECCA-Ansatzvon Tom Gilb iiiiai.n. 116
6.1.2 Der Structured-Design-Ansatz von Yourdon und Constantine 116
6.1.3 Der Datenflussansatz von Henry und Kafura 118
6.1.4 Der Systemgliederungsansatz von Belady und Evangelisti 119
Entwurfsmessung nach Cardund Glassccoiiiiiieinnn ... 120
6.2.1 EntwurfsqualititsmaBeot 121
6.2.1.1 ModulgroBec.coiiiiiii 122
6.2.1.2 Modulkoh&sionot 122
6.2.1.3 Modulkopplungc.coiiiiiii i 122
6.2.1.4 Modulkontrollspannec.couuieinernnennenn... 122
6.2.1.5 Konsequenzen der Modularisierung 123
6.2.2 EntwurfskomplexitdtsmaBeccuiiiiiiiiiiiinn.... 123
6.2.2.1 Relative Systemkomplexitdt 123
6.2.2.2 Strukturelle Systemkomplexitit 124
6.2.2.3 Verarbeitungskomplexitat, 125
6.2.2.4 Entscheidungskomplexitat 125
6.2.2.5 Prozedurale Komplexitdt 126
6.2.3 Erfahrung mit der ersten Entwurfsmetrik 126
Die SOFTCON Entwurfsmetriko, 127
6.3.1 Formale Vollstandigkeits- und Konsistenzpriiffung 128

X Inhalt

6.3.2 Technische QualitatsmaBe fiir den Systementwurf 129
6.3.2.1 ModularitatSmessSunguieeiiineerinenennnn 129

6.3.2.2 Wiederverwendbarkeitsmessung 130

6.3.2.3 Portabilitatsmessungiiiiiiiiiiiaa.. 130

6.3.2.4 Entwurfskomplexitatsmessungooon. 130

6.3.2.5 Systemintegritatsmessungc.vveerneeennnn.. 131

6.3.2.6 Zeiteffizienz 131

6.3.2.7 Speichereffizienzmessung 131

6.4 Objektorientierte Entwurfsmetrik 132
6.4.1 Die 00-Metrik von Chidamer und Kemerer 133
6.4.1.1 Anzahl gewichteter Methoden pro Klasse (WMC) 134

6.4.1.2 Tiefe der Vererbungshierarchie (DIH) 134

6.4.1.3 Anzahl der Unterklassen (SUB) 134

6.4.1.4 Kopplung der Klassen (CBO)ccoiiiii .. 135

6.4.1.5 Anzahl potenzieller Zielmethoden (RFC) 135

6.4.1.6 Zusammenhalt der Methoden (CBO) 135

6.4.1.7 Kritik der Chidamer/Kemerer-Metrik 136

6.4.2 MOOD-Entwurfsmetrikcooiiiii ... 136
6.4.2.1 Messung des Kapselungsgrades 137

6.4.2.2 Messung des Vererbungsgrades 138

6.4.2.3 Messung des Kopplungsgrades 138

6.4.2.4 Messung des Bindungsgrades 138

6.5 Entwurfsmetrik in UMLAudit oo 139
6.5.1 Entwurfsquantitatsmetrik i 140
6.5.2 Entwurfskomplexitatsmetrik 142
6.5.2.1 Objektinteraktionskomplexitat 143

6.5.2.2 Klassenhierarchiekomplexitat 143

6.5.2.3 Klassen/Attributskomplexitat 143

6.5.2.4 Klassen/Methodenkomplexitat 143

6.5.2.5 Objektzustandskomplexitat 144

6.5.2.6 Zustandsiibergangskomplexitat......................... 144

6.5.2.7 Aktivitatenflusskomplexitat 145

6.5.2.8 Anwendungsfallkomplexitdt 145

6.5.2.9 Akteurinteraktionskomplexitdt 145
6.5.2.10 Allgemeine Entwurfskomplexitat 146
6.5.2.11 Mittlere Entwurfskomplexitdt 146

6.5.3 Entwurfsqualitdtsmetrik i 146
6.5.3.1 Klassenkopplungsgrad 147

6.5.3.2 Klassenkohdsionsgrad 147

6.5.3.3 Modularitdtsgrad i 148

6.5.3.4 Portabilititsgrad i 148

6.5.3.5 Wiederverwendbarkeitsgrad 149

6.5.3.6 Testbarkeitsgrad i 149

6.5.3.7 Konformitdtsgrad il 149

6.5.3.8 Konsistenzgrad i 150

6.5.3.9 Vollstandigkeitsgrad oo i 150

Inhalt

6.5.3.10 Erfilllungsgradciiiiiiiniiiinin.. 151

6.5.3.11 Mittlere Entwurfsqualitdt 151

6.5.4 EntwurfsgroBenmetriko 152
6.5.4.1 Data-Points it 153

6.5.4.2 Function-Points 0. i 153

6.54.3 Object-Points 153

6.5.4.4 UseCase-Points, 154

6.5.45 Test-Pointsccouiiiii 154

6.6 Entwurfsmetrik fiir Webapplikationen, 155
7 Codemetrik 157
7.1 Programmaufbau 157
7.2 Ansatze zur Messung von Codekomplexitat 160
7.2.1 Halsteads Software Scienceciiiiiiiiiinna.. 160

7.2.2 McCabes Zyklomatische Komplexitat 162

7.2.3 Chapins Q-Komplexitat, 164

7.2.4 Elshofs Referenzkomplexitat o .. 165

7.2.5 Prathers Verschachtelungskomplexitat 166

7.2.6 Weitere CodekomplexitdtsmaBec.cooiiiieiinaa... 167

7.3 Ansidtze zur Messung von Codequalitato i, 168
7.3.1 Der Codequalititsindex von Simonccooun ... 168

7.3.2 Der Maintainability-Index von Oman 169

7.3.3 Zielorientierte Codequalitatsmessungccouvinenennnn. 171
7.3.3.1 Codeverstiandlichkeit 171

7.3.3.2 Codeportierbarkeit i 172

7.3.3.3 Codekonvertierbarkeit 174

7.3.3.4 Codewiederverwendbarkeit 174

7.3.3.5 Codesicherheit i 175

7.3.3.6 Codetestbarkeitciiiiiiiiiiiiiiii. 176

7.3.3.7 Codewartbarkeit i 178

7.4 Codemetrik nach SoftAudit o i 179
7.4.1 Codequantititsmetrik i 179

7.4.2 CodekompleXitdtoviuiiinii it 180
7.4.2.1 Datenkomplexitdt i 180

7.4.2.2 Datenflusskomplexitdtciiiiiiiiiiin... 180

7.4.2.3 Zugriffskomplexitat........... .. i 180

7.4.2.4 Schnittstellenkomplexitat, 181

7.4.2.5 Ablaufkomplexitdt i 181

7.4.2.6 Entscheidungskomplexitat 181

7.4.2.7 Verschachtelungskomplexitat 182

7.4.2.8 Sprachkomplexitat i, 182

7.4.2.9 Beziehungskomplexitdt 182

743 Codequalitatoiiniin i e 183
7.4.3.1 Sicherheit (Security)o i 183

7.4.3.2 Konformitit (Conformity) oo .. 183

7.4.3.3 Datenunabhingigkeit (Data Independency) 184

Inhalt

7.5

8.2
8.3
8.4

8.5

8.6

9.1
9.2

7.4.3.4 Redundanzfreiheit (Non redundant) 184
7.4.3.5 Testbarkeit (Testability)ccooiiiiiiiiiii... 184
7.4.3.6 Wiederverwendbarkeit (Reusability) 185
7.4.3.7 Konvertierbarkeit (Convertibility) 185
7.4.3.8 Ubertragbarkeit (Portability) 186
7.4.3.9 Modularitat (Modularity) it 186
7.4.3.10 Kommentierung (Commentation) 186
7.4.3.11 Weitere Qualitdtsmerkmale 187
Beispiel einer Codemessungoouiiuiiieinenin i, 187
Testmetrik 191
Testmessung in der fritheren Projektpraxis 192
8.1.1 Das ITS-Projekt bei Siemens i, 192
8.1.2 Das Wella-Migrationsprojekt oo, 193
Testmetrik nach Hetzel 195
Testmetrik bei IBM Rochester 197
MaBzahlen fiir den Systemtestc.iiiiiiiiiii i 200
841 Testzeit ... 201
8.4.2 TestkOSteNt 201
8.4.3 Testfalleooiinii e 201
8.4.4 Fehlermeldungeniininiininiiiin i 202
8.4.5 Systemtestiiberdeckungoi i 202
8.4.6 Empfehlungen von Hutcheson 203
8.4.7 Test-Pointsot 203
Testmetrik im GEOS-Projekt i 205
8.5.1 Messungder Testfallecoiiiiiiiiniiininnennann. 205
8.5.2 Messung der Testliberdeckung oo, 208
8.5.3 Messung der Fehlerfindung iiiii.... 208
8.5.4 Auswertung der Testmetrik i 210
Testmetrik nach Sneed und Jungmayr iiiiiiininn.. 211
8.6.1 Testbarkeitsmetrik i 211
8.6.1.1 Testbarkeit auf der Unit-Test-Ebene 212
8.6.1.2 Testbarkeit auf der Integrationstestebene 212
8.6.1.3 Testbarkeit auf Systemtestebene 213
8.6.2 Testplanungsmetrikoiiiiiiiiii i 214
8.6.3 Testfortschrittsmetrik 217
8.6.4 Testqualitatsmetrikt 218
8.6.4.1 Testeffektivitdt 218
8.6.4.2 TeStVETtrauenvieunnetn e 219
8.6.4.3 Testeffizienz 220
8.6.4.4 Restfehlerwahrscheinlichkeit 220
Produktivitaitsmessung von Software 223
Produktivitdtsmessung - Ein umstrittenes Thema 226

Softwareproduktivitat im Rickblick L. 227

Inhalt X

9.2.1 Dokumentenmessung mit dem Fog-Index 227
9.2.2 Produktivititsmessung bei der Standard Bank of South Africa 228
9.2.3 Die Entstehung der Function-Point-Methode 229
9.2.4 Das COCOMO-I-Modell von Boehm 231
9.2.5 Putnams Softwaregleichung 233
9.2.6 Die Data-Point-Methodeo iiiiiiiininnna... 235
9.2.7 Die Object-Point-Methode i, 237
9.2.8 Die Use-Case-Point-Methode 240
9.3 Alternative ProduktivitatsmaBe i 242
9.4 Produktivitaitsberechnung anhand der SoftwaregroBe 244
0.5 Aufwandserfassung i 245
9.6 Arten von Softwareproduktivitat 246
9.6.1 Programmierproduktivitat i 246
9.6.2 Designproduktivitdt i 247
9.6.3 Analyseproduktivitdt i 247
9.6.4 Testproduktivitdt oo 248
9.6.5 Gesamtproduktivitat 248
9.7 Produktivitdtsstudien 249
9.7.1 Studien {iber Softwareproduktivititinden USA 249
9.7.2 Studien {iber Softwareproduktivitdt in Europa 251
9.7.3 Probleme beim Produktivitiatsvergleich 253
9.8 Produktivititsmessung nach Wertbeitrag, 254
9.9 Velocity - Produktivitét in agilen Projekten 255
10 Die Messung der Wartungsproduktivitat 257
10.1 Friihere Ansitze zur Messung der Wartbarkeit von Software 258
10.1.1 StabilititsmaBe von Yau und Collofello 259
10.1.2 Maintenance-Umfrage bei der U.S. Air Force 260
10.1.3 Die Wartbarkeitsstudie von Vessey und Weber 262
10.1.4 Bewertung der Softwarewartbarkeit nach Berns 263
10.1.5 Die Wartungsuntersuchung von Gremillion 264
10.1.6 Wartungsmetrik bei Hewlett-Packard 264
10.1.7 Wartungsmessung nach Rombach 266
10.1.8 Messung der Wartbarkeit kommerzieller COBOL Systeme 267
10.1.9 Der Wartbarkeitsindex von Oman 268
10.2 Ansatze zur Messung der Wartbarkeit objektorientierter Software 271
10.2.1 Erste Untersuchung der Wartbarkeit objektorientierter Programme .. 271
10.2.2 Chidamer/Kemerers OO-Metrik fiir Wartbarkeit 272
10.2.3 MOOD-Metrik als Indikator der Wartbarkeit 273
10.2.4 Eine empirische Validation der OO-Metrik fiir die Schatzung des
Wartungsaufwands e 274
102.5 Der Einfluss einer zentralen Steuerung auf die Wartbarkeit eines
OO0-SYStEIMS o ettt ettt e e 275

10.2.6 Kalkulation des Wartungsaufwands aufgrund der Programm-
komplexitat 275

XIv

Inhalt

10.2.7 Vergleich der Wartbarkeit objektorientierter und prozeduraler

SOFtWATE . ..ttt e 276
10.2.8 Zur Anderung der Wartbarkeit im Laufe der Softwareevolution 278
10.3 WartungsproduktivitatsSmessungo, 280
10.3.1 Erste Ansdtze zur Messung von Wartungsproduktivitat............. 280
10.3.2 Messung von Programmwartbarkeit im ESPRIT-Projekt MetKit 283
10.3.3 Wartungsproduktivitditsmessung in der US-Marine 285
10.3.4 Messung der Wartungsproduktivitat bei Martin-Marietta 287

10.3.5 Vergleich der Wartungsproduktivitat reprasentativer Schweizer
ANWENAET . ..o e 288
11 SoftwaremessunginderPraxis 293
11.1 Dauerhafte Messverfahren i 295
11.1.1 Beteiligung der Betroffenen it 295
11.1.2 Aufbauen auf vorhandener Metrik, 296
11.1.3 Transparenz des Verfahrens oot 296
11.2 Beispiele dauerhafter Messverfahren o .. 297
11.2.1 Die Initiative von Hewlett-Packard zur Softwaremessung 297
11.2.2 Prozess- und Produktmessung in der Siemens AG 300
11.3 Einmalige Messverfahren it iinennnnnnn. 305
11.3.1 Vereinbarung der Messzielecoiiiiniineneennnnn.. 306
11.3.2 Auswahlder Metrik i 307
11.3.3 Bereitstellung der Messwerkzeuge iiiiinon.. 307
11.3.4 Ubernahme der Messobjektecooeiririnrenenanenn .. 307
11.3.5 Durchfiihrung der MeSSUNEottt ie e 308
11.3.6 Auswertung der Messergebnissecouiiniineneennenn.. 308
11.4 Beispiel einer einmaligen MessUNZoiieiniinennennnennnn. 310
Literatur 313

Vorwort

Dieses Buch ,Software-Metriken“ ist das Ergebnis langjahriger Forschung und Entwick-
lung, die auf das ESPRIT-METKIT-Projekt im Jahre 1989 zuriickgeht. Parallel zu dieser For-
schungstatigkeit wurden tiber 30 Jahre lang Erfahrungen mit der Messung und Bewertung
von Softwaresystemen in der industriellen Praxis gesammelt. Keiner hat sich in der Praxis
so lange und so intensiv mit diesem Thema befasst wie der Autor Harry Sneed. Eine Er-
kenntnis, die er aus jener Erfahrung gezogen hat, ist die Bedeutung der Zahlen fiir die
Softwarequalitatssicherung. Es ist nicht moglich, iiber Qualitit zu reden, ohne auf MaBzah-
len einzugehen. Es geniigt nicht zu behaupten, System A sei viel schlechter als System B.
Der Qualitatsgutachter muss erklaren warum, denn Qualitit ist relativ, und um die Qualitat
eines Softwareproduktes mit der Qualitét eines anderen zu vergleichen, miissen beide Qua-
litdten in Zahlen ausgedriickt werden. Nur so kann man den Abstand zwischen den beiden
Produktqualititen erkldren. Das Gleiche gilt fiir die GroBe und die Komplexitét eines Soft-
waresystems. Eine Aussage wie ,Das System ist zu groB“ ist inhaltslos, ohne zu wissen, was
»Zu groB“ bedeutet. Auch GroBe ist relativ zu den Vorstellungen des Menschen, die das
System zu beurteilen haben. Sie miissen in der Lage sein, den GroBenmaB mit einem Soll-
maBstab fiir Softwaresysteme zu vergleichen. Voraussetzung dafiir ist eine messbare und
vergleichbare Zahl. Wer seine Aussagen nicht mit Zahlen belegen kann, wird nicht ernst
genommen.

Es gibt zahlreiche Verwendungszwecke fiir die Zahlen, die wir aus der Software gewinnen:
® Wir konnen damit den Aufwand fiir ein Projekt kalkulieren.

= Wir konnen damit ein Projekt planen und steuern.

= Wir konnen damit Riickschliisse auf die Qualitit eines Produktes ziehen.

® Wir konnen damit die Produktivitdt unserer Mitarbeiter verfolgen.

= Wir konnen damit Ziele fiir die Produkt- und Prozessverbesserung setzen.

= Wir konnen damit Projekte und Produkte miteinander vergleichen.

Das sind auch langst nicht alle Zwecke. Zahlen sind eine unentbehrliche Voraussetzung fiir
ein professionelles Projekt- und Produktmanagement. Dass wir bisher mit so wenig Zahlen-
material ausgekommen sind, zeigt nur, wie unterentwickelt unsere Branche ist. Wenn wir
weiterkommen wollen, miissen wir mehr mit Zahlen arbeiten.

An dieser Stelle mochten wir auf die Arbeit des Deutschen Zentrums fiir Softwaremetrik an
der Universitat Magdeburg unter der Leitung von Professor Dr. Reiner Dumke hinweisen.
Diese Institution ist bemiiht, in Zusammenarbeit mit der DASMA und der GI-Fachgruppe
fiir Softwaremetrik Zahlen aus dem ganzen deutschsprachigen Raum zu sammeln und allen

XVI Vorwort

interessierten Anwender bereitzustellen. Das Zentrum fiir Softwaremessung hat neben den
vielen Tagungen und Workshops, die sie jahrlich veranstaltet, und dem Rundbrief, den sie
zwei Mal jahrlich versendet, auch zahlreiche Veroffentlichungen zum Thema Softwaremes-
sung herausgebracht, darunter:

= Dumke, R., Lehner, F.: Software-Metriken, Deutscher Universitdtsverlag, Wiesbaden 2000

® Dumke, R., Abran, A.: New Approaches in Software Measurement, Springer-Verlag, Berlin
Heidelberg, 2001

® Dumke, R., Rombach, D.: Software-Messung und -Bewertung, Deutscher Universitats-Verlag,
Wiesbaden 2002

® Dumke, R., Abran, A.: Investigations in Software Measurement, Shaker-Verlag, Aachen, 2003
® Abran, A., Dumke, R.: Innovations in Software Measurement, Shaker-Verlag, Aachen, 2005

m Ebert, C., Dumke, R., Bundschuh, M., Schmietendorf, A.: Best Practices in Software Measu-
rement, Springer-Verlag, Berlin Heidelberg, 2005

® Dumke, R., Biiren, G., Abran, A., Cuadrado-Gallego,].: Software Process and Product Mea-
surement, Springer-Verlag, Berlin Heidelberg, 2008

® Biiren, G., Dumke, R.: Praxis der Software-Messung, Shaker-Verlag, Aachen, 2009

Leser dieses Buches, die ihre Metrikkenntnisse vertiefen wollen, werden auf diese Verof-
fentlichungen hingewiesen. Wenn Sie auch noch bei der Weiterentwicklung der Software-
metrik mitwirken wollen, mdchten wir Sie ermutigen, der GI-Fachgruppe und/oder der
DASMA beizutreten. Auf jeden Fall sollten Sie sich der deutschen Metrik Community an-
schlieBen, um auf diese Weise auf dem Laufenden zu bleiben. Dieses Buch wére dann nur
als Einstieg in die Welt der Softwarezahlen zu betrachten. Sie ist eine faszinierende Welt
mit vielen Facetten.

Warum eine Neuauflage? Auch wenn die vorgestellten Konzepte und Metriken heute immer
noch ihre Giiltigkeit haben, hat sich die Welt des Software Engineerings weiterentwickelt.
Und dieser Weiterentwicklung wollen wir Rechnung tragen. Gerade die agile Arbeitsweise
erlaubt noch einmal einen neuen Blick auf Softwaremetriken, den wir gerne mit Ihnen hier
teilen. Auch hat sich die Werkzeuglandschaft seit der ersten Auflage massiv verandert. Der
Markt ist hier sehr dynamisch. Es entstehen stindig neue Tools, und ebenso verschwinden
einige wieder oder werden nicht weiterentwickelt. Wir haben daher entschieden, konkrete
Tools nur mehr punktuell zu nennen, wo sie dem Verstdndnis des dahinterliegenden Kon-
zeptes dienlich sind.

Wien und Essen, im Januar 2024
Richard Seidl und Manfred Baumgartner

Geleitwort
zur 1. Auflage

Zahlen sind aus unserem téglichen Leben nicht mehr wegzudenken. Wir planen Treffen zu
bestimmten Zeitpunkten, kontrollieren die Gewichtsangaben von Produkten beziiglich
moglicher Preisverdnderungen, kalkulieren den Spritverbrauch fiir gefahrene Kilometer,
klassifizieren Wohnungen nach ihren Quadratmetern, priifen genau die Verdnderungen des
Kontostandes hinsichtlich der Buchungen, zdhlen die Haufigkeit auftretender Fehler bei der
Nutzung von Haushaltsgerdten, mégen oder meiden die Zahl 13 fiir ein Hotelzimmer und
vieles andere mehr. Wie sieht es aber bei Softwaresystemen aus? Kann man Software auch
quantifizieren und Systemeigenschaften - insbesondere Qualitdt - genau bewerten oder
gar exakt nachweisen? Was ist tiberhaupt Software?

Fiir die Beantwortung dieser und anderer Fragen hat sich eine Disziplin etabliert: das Soft-
ware Engineering. Das bedeutet, dass Software etwas Reales ist, ein Artefakt als Softwaresys-
tem, welches an eine (reale) Hardware gebunden ist und mit ingenieurtechnischen Metho-
den erstellt, gepflegt und somit auch analysiert und bewertet werden kann. Andererseits
besteht Software nicht einfach nur aus (Computer-)Programmen, sondern umfasst alle da-
bei involvierten Entwicklungs-, Darstellungs- und Beschreibungsformen (also Dokumenta-
tionen). Fiir die Erstellung von Software wiinscht man sich eigentlich

1. Beschreibungen von Methoden, die genau spezifizieren, was mit dieser Methode an Soft-
warequalitat erreicht werden kann und was nicht,

2. Dokumentationen zu Entwicklungswerkzeugen, die zeigen, wie die Software mit all ihren
Artefakten (entwicklungsbegleitend) an Komplexitit, Performanz usw. zu- bzw. abnimmt,

3. Komponenten- bzw. Softwarebibliothekenbeschreibungen, die - analog zu einem elekt-
ronischen Handbuch - die genauen (Qualitéts-)Eigenschaften dieser Komponenten aus-
weisen,

4. schlieBlich: SoftwaremaBe, die einheitlich definiert und angewandt werden und damit
eine generelle Vergleichbarkeit von Softwareeigenschaften gestatten.

Genau diesem komplexen Thema widmet sich das vorliegende Buch von Sneed, Seidl und
Baumgartner, welches den eigentlichen Kern des Software Engineering (die Softwaremes-
sung und -bewertung) behandelt, die die grundlegenden Eigenschaften eines Softwarepro-
duktes quantifiziert darstellt, alle Artefakte der Entwicklung, Anwendung und Wartung
einbezieht und die jeweilige Systemauspragung beriicksichtigt. Das ist heute leider noch
keine Selbstverstandlichkeit. Es gibt immer noch zahlreiche Biicher zur Software bzw. zum
Software Engineering, die

® die Softwarequalitdt vornehmlich bzw. nur auf die Qualitdtsbestimmung von Program-
men einschranken,

XVII Geleitwort zur 1. Auflage

m die Verifikation von Softwaremodellen fiir eine Qualitdtssicherung als hinreichend pos-
tulieren,

® die Darstellung von Softwaremetriken ausschlieBlich auf die ersten Denkansatze von
McCabe und Halstead reduzieren,

® die Definition und Anwendung von Metriken nicht im Kontext eines Messprozesses und
damit von Softwareprozessen iiberhaupt verstehen.

Auch und vor allem in dieser Hinsicht stellt das vorliegende Buch eine besondere Bereiche-
rung der Literatur zum Software Engineering dar. Die Softwaremessung wird stets in den
Kontext einer zielgerichteten Vorgehensweise innerhalb realer Softwareprojekte und -entwick-
lungen gestellt. Als Kern der Bewertung wird die Softwarequalitdt unter Verwendung der
Softwaremerkmale wie Umfang und Komplexitit betrachtet. Auch wenn die oben genann-
ten vier Punkte immer noch eine Wunschliste darstellen, zeigen die Autoren sehr anschau-
lich, wie in der jeweiligen konkreten Situation mit Anforderungsanalyse, Modellierung,
Design, Codierung und Test einerseits und vor allem der weiteren Wartung der Softwaresys-
teme andererseits jeweils Messmethoden und MaBe auszuwidhlen und anzuwenden sind,
um die jeweiligen (Qualitits-)Ziele zu erreichen.

Der besondere Wert des Buches besteht aber auch vor allem im immensen Erfahrungshinter-
grund der Autoren, der nicht nur in der Kenntnis verschiedenster Entwicklungsmethoden
und Softwaresystemarten, sondern vor allem in den {iber Jahrzehnte hinweg miterlebten
und mitgestalteten Methoden-, Technologie-, Paradigmen- und vor allem Anwendungsbe-
reichswechseln besteht. Das versetzt die Autoren auch in die Lage, scheinbar spielerisch
den komplexen Prozess der Softwareentwicklung mit Zahlen zu unterlegen, die genau die
jeweils zu bewertenden Softwaremerkmale charakterisieren. Das abschlieBende Kapitel zur
Softwaremessung in der Praxis zeigt noch einmal die noch offenen Fragen in diesem Be-
reich, denen sich auch vor allem die nationalen und internationalen Communities zu die-
sem Thema widmen, wie das Common Software Measurement International Consortium
(COSMIC), das Metrics Association’s International Network (MAIN), die Deutschsprachige
Anwendergruppe fiir Software-Metrik und Aufwandschiatzung (DASMA) und nicht zuletzt
die Fachgruppe fiir Softwaremessung und -bewertung der Gesellschaft fiir Informatik (GI
FG 2.1.20), in denen auch die Autoren dieses Buches aktiv mitarbeiten.

Das vorliegende Buch von Harry Sneed, Richard Seidl und Manfred Baumgartner ist sehr
anschaulich geschrieben, sehr gut lesbar und kann von seiner Themenbreite als Handbuch
des Software Engineering angesehen werden. Es ist vornehmlich fiir den im IT-Bereich prak-
tisch Tatigen, aber vor allem auch als Erganzungsliteratur fiir den Hochschulbereich her-
vorragend geeignet.

Reiner Dumke
Professor fiir Softwaretechnik, Otto-von-Guericke-Universitat Magdeburg

Die Autoren

Harry M. Sneed

Harry M. Sneed ist seit 1969 Magister der Informations-
wissenschaften der University of Maryland. Seit 1977,
als er fiir das Siemens ITS-Projekt die Rolle des Test-
managers iibernommen hat, arbeitet er im Testbereich.
Damals entwickelte er die erste europdische Komponen-
tentestumgebung namens PriifStand und griindete ge-
meinsam mit Dr. Ed Miller das erste kommerzielle Test-
labor in Budapest. Seit dieser Zeit hat Harry M. Sneed
mehr als 20 verschiedene Testwerkzeuge fiir unterschied-
liche Umgebungen entwickelt - von Embedded-Echtzeit-
systemen tiber integrierte Informationssysteme auf Grof-
rechnern bis hin zu Webapplikationen.

Am Beginn seiner Karriere hat er als Testprojektleiter gearbeitet; am Ende seiner langen
Karriere war er fiir die ANECON GmbH in Wien in die Rolle eines Softwaretesters zuriick-
gekehrt. Parallel zu seiner Projekttitigkeit hat Harry Sneed {iber 200 technische Artikel
und 18 Biicher (davon vier iiber das Thema Test) verfasst. Er unterrichtete zudem Soft-
wareentwicklung an der Universitdt von Regensburg, Softwarewartung an der technischen
Hochschule in Linz sowie Softwaremessung, Reengineering und Test an den Universitaten
von Koblenz und Szeged. 2005 wurde Sneed von der Deutschen Gesellschaft fiir Informatik
zum ,GI Fellow® berufen und iibte die Funktion des ,general chair“ der Internationalen
Konferenz fiir Softwarewartung in Budapest aus. 1996 wurde Sneed vom IEEE fiir seine
Errungenschaften im Bereich des Software Reengineerings ausgezeichnet, und 2008 erhielt
er den Stevens Award fiir seine Pionierarbeit in der Disziplin der Softwarewartung. 2011
wurde er fiir sein Lebenswerk mit dem renommierten Deutschen Preis fiir Softwarequalitat
(DPSQ) ausgezeichnet.

Die Autoren

Richard Seidl

Richard Seidl ist Agile Quality Coach und Softwaretest-
experte. In seiner abwechslungsreichen beruflichen
Laufbahn hat er schon viel Software gesehen und getes-
tet: gute und schlechte, groBe kleine, alte und neue.
Seine Erfahrungen biindelt er nun zu einem ganzheit-
lichen Ansatz, denn Entwicklungs- und Testprozesse
konnen nur dann erfolgreich sein, wenn die unter-
schiedlichsten Krifte sowie Stirken und Schwéichen
ausbalanciert sind. So wie ein Okosystem nur mit allen
Aspekten in seiner ganzen Qualitdt harmonisch existie-
ren kann, miissen die Prozesse im Testumfeld als ein
Netzwerk verschiedener Akteure betrachtet werden.
Agilitdt und Qualitdt wird dann zu einer Haltung, die wir wirklich leben konnen, anstatt sie
nur abzuarbeiten. Als Autor und Co-Autor hat er verschiedene Fachbiicher und Artikel ver-
offentlicht, darunter ,Der Systemtest - Von den Anforderungen zum Qualitdtsnachweis®
(2006, 2008, 2011), ,Der Integrationstest - Von Entwurf und Architektur zur Komponenten-
und Systemintegration“ (2012) und ,Basiswissen Testautomatisierung” (2012, 2015, 2021).
Seit April 2023 betreibt er zudem den Podcast , Software-Testing*.

Manfred Baumgartner

e e Manfred Baumgartner verfiigt iiber mehr als 30 Jahre
' Erfahrung in der Softwareentwicklung, insbesondere in
der Softwarequalitdtssicherung und im Softwaretest.
Nach dem Studium der Informatik an der Technischen
Universitat Wien war er als Softwareentwickler bei
einem groBen Softwareunternehmen im Bankensektor
und spater als Quality Director eines CRM-Losungsan-
bieters tdtig. Seit 2001 hat er die QS-Beratungs- und
Schulungsangebote der ANECON, spater Nagarro GmbH,
eines der fithrenden Dienstleistungsunternehmen im Be-
reich Softwaretest, auf- und ausgebaut. Er ist Vorstands-
mitglied im Arbeltskrels fiir Softwarequalitdt und Fortbildung (ASQF) und Mitglied des
Austrian Testing Board (ATB). Seine umfangreichen Erfahrungen sowohl in der klassischen
als auch in der agilen Softwareentwicklung bringt er als beliebter Referent auf internatio-
nal renommierten Konferenzen und als Autor und Co-Autor einschlagiger Fachbiicher ein:
LDer Systemtest - Von den Anforderungen zum Qualitdtsnachweis“ (2006, 2008, 2011),
LSoftware in Zahlen“ (2010), ,Basiswissen Testautomatisierung“ (2012, 2015, 2021), ,Agile
Testing - Der agile Weg zur Qualitit“ (2013, 2018, 2023).

Softwaremessung

B 1.1 Das Wesen von Software

Software ist Sprache. Sie dient der Kommunikation zwischen den Menschen und Rechnern
ebenso wie zwischen Rechnern und Rechnern und zwischen Menschen und Menschen
(siehe Bild 1.1). Programmcode ist jene Sprache, in der der Mensch der Maschine Anwei-
sungen erteilt. Der Mensch schreibt den Code, der Rechner liest ihn. Er muss sowohl von
den Menschen als auch vom Rechner, in diesem Fall dem Compiler, verstanden werden
[DeLi99].

Analytiker ‘ lPrufer

&

m m
n HDH

Programmierer Benutzer

Bild 1.1 Software als Kommunikation zwischen Mensch und Maschine

Anforderungsspezifikationen und Entwurfsdiagramme sind ebenfalls Software, also auch
Sprachen. Sie dienen der Kommunikation zwischen Menschen. Der eine Mensch schreibt
sie, z.B. der Analytiker, der andere Mensch - der Programmierer - liest sie. Wenn sie nicht
fiir beide Seiten verstandlich sind, haben sie ihren Zweck verfehlt. Eine Spezifikation, die
von einem Rechner interpretiert werden kann, z.B. eine doménenspezifische Sprache, ist
zugleich eine Kommunikation zwischen Mensch und Rechner, dhnlich dem Programmcode.

Kommunikationsprotokolle wie XML-Dateien und Web-Service SOAP-Nachrichten sind des-
gleichen Software. Sie dienen der Kommunikation zwischen Rechnern. Der eine Rechner

2 1 Softwaremessung

schreibt sie, der andere liest sie. Sie muss daher von beiden Rechnern verstanden werden.
Ein Protokoll ist eine Vereinbarung zwischen zwei Rechnerarten, wie sie sich verstdndigen
wollen, ebenso wie eine Sprache eine Vereinbarung zwischen Menschen ist, die sich ver-
standigen wollen. Natursprachen sind aus dem Zusammenleben der Menschen heraus er-
wachsen. Programmier-, Spezifikations- und Testsprachen sind wiederum aus dem Zusam-
menleben der Menschen mit Computern hervorgegangen [Rose67].

Wenn es nun um die Messung und Erforschung von Software geht, geht es also um die Ana-
lyse und Bewertung von Sprachen und den in diesen Sprachen geschriebenen Werken.

Eine Rechnersprache besteht genauso wie eine Sprache der Menschen aus Begriffen und
Regeln fiir die Zusammensetzung jener Begriffe. Der Umfang einer Sprache wird an der
Anzahl ihrer Begriffe bzw. Worter gemessen. Oft legen Schiiler Worterbiicher zweier unter-
schiedlicher Sprachen nebeneinander, um zu sehen, welches dicker ist. Dies ist in der Tat
eine sehr grobe Messung des Sprachumfangs und setzt voraus, dass die Seitenaufteilung
und die SchriftgréBe gleich sind, aber sie ist nichtsdestotrotz eine Messung. Genauer ware
es, die Worteintrage zu zahlen und zu vergleichen, aber auch hier ist die Messung ungenau,
denn wer weiB, ob in den Worterbiichern alle mdglichen Worter in beiden Sprachen be-
riicksichtigt sind? Die Zahlung der Worter ist auf jeden Fall genauer als der Vergleich der
beiden Worterbiicher. Das Gleiche gilt fiir Softwaresprachen. Ihr Umfang in vereinbarten
Begriffen bzw. Symbolen lasst sich grob und fein vergleichen [LiGu88].

Aber nicht nur die Sprachen selbst kinnen gemessen und miteinander verglichen werden.
Auch die Ergebnisse von Sprache wie zum Beispiel Theaterstiicke, Biicher, Essays etc. kon-
nen nach unterschiedlichen Kriterien und zu unterschiedlichen Zwecken gemessen wer-
den. Ist die Schularbeit lang genug? Durch Zdhlung der Worter erhdlt man die Antwort.
Warum ist das Buch ,Die Buddenbrooks“ von Thomas Mann schwerer zu lesen als Astrid
Lindgrens ,Pippi Langstrumpf“ und kann man den Unterschied messen? Der Umfang alleine
scheint dafiir nicht der Grund zu sein und die Zahlung der Seiten oder Worte wohl eine zu
einfache Erkldrung. Sind die Sédtze durchschnittlich linger? Haben die beiden Werke einen
unterschiedlichen Wortschatz? Wenn jedes Wort, welches mehrfach vorkommt, nur einmal
gezihlt wird, hitten wir das Vokabular des Schriftstiicks. Ahnlich verfuhr M. Halstead, als
er begann, Programmcode zu messen [Hals77]. Er zdhlte alle Worter, also Operatoren und
Operanden, um die Programmlidnge zu ermitteln, und zéahlte jedes verwendete Wort, um
das Programmvokabular zu bestimmen. Daraus berechnete er einen Wert fiir die Schwierig-
keit, ein Programm zu verstehen.

Wire eine Sprache nur eine beliebige Aneinanderreihung von Begriffen, konnte man sich
mit der Messung der Grofle zufriedengeben. Aber eine Sprache hat auch eine Grammatik.
Darin befinden sich die Regeln fiir die Zusammensetzung der Worter. Den Wortern werden
Rollen zugewiesen. Es gibt Hauptwdrter, Eigenschaftsworter, Zeitworter usw. Ahnliche Re-
geln gibt es auch in der Software. Fiir jede Sprache - Spezifikationssprache, Entwurfsspra-
che, Programmiersprache und Testsprache - gibt es Regeln, wie die Worter und Symbole
verwendet werden konnen. Man spricht hier von der Syntax der Sprache. Mit der Syntax
kommt die Komplexitit. Je nachdem, wie umfangreich die Regeln sind, ergeben sich mehr
oder weniger mogliche Wortkonstrukte. Je mehr Wortkonstrukte moglich sind, desto kom-
plexer ist die Sprache.

Durch den Vergleich der Grammatik bzw. der Sprachregel ist es moglich, die Komplexitat

der Sprachen zu vergleichen. Dies trifft fiir Deutsch, Englisch und Latein ebenso zu wie fiir
COBOL, Java, UML und VDM. Erschwert wird dies allerdings durch die informale Definition

1.1 Das Wesen von Software K]

der Regeln und den vielen erlaubten Ausnahmen fiir die Sprache. In der Softwarewelt
wird der Vergleich durch die vielen herstellerspezifischen Abweichungen erschwert. Es
gibt kaum eine bekannte Softwaresprache, von der es nicht eine Reihe von Derivaten,
sprich Dialekte gibt, die sich mehr oder weniger stark unterscheiden [JoneO1].

In natiirlichen Sprachen gibt es das Kunstwerk Satz: Das ist eine Zusammensetzung von
Wortern nach einem geregelten Muster. Ein Satz hat ein Subjekt, ein Objekt und ein Pradi-
kat. Subjekt und Objekt sind Operanden bzw. Hauptworter. Sie konnen durch Eigenschafts-
worter ergdnzt werden. Die Pradikate, sprich Zeitworter, konnen gleichfalls Eigenschafts-
worter haben, welche die Handlung ergdnzen. Diese Wortarten miissen in einem gewissen
Satzmuster vorkommen, um einen sinnvollen Satz zu bilden. Je mehr Muster zugelassen
sind, desto komplexer die Satzbildung.

In Softwaresprachen entspricht der Satz einer Anweisung. Auch hier gibt es Syntaxregeln
fiir die Satzbildung. Es gibt Operanden (= Objekte) und Operatoren (= Pradikate). Das Sub-
jekt fehlt. Es wird impliziert als die ausfiihrende Maschine. Der Rechner oder das System
liest eine Datei, errechnet Datenwerte, vergleicht zwei Werte oder sendet Nachrichten. Je
nachdem, wie viele Anweisungsarten eine Sprache hat, ist sie mehr oder weniger komplex.
Die Zahl der einzelnen Anweisungen ist wie die Zahl der Sédtze im Prosatext ein GroBen-
maB. Die Zahl der verschiedenen Anweisungsarten ist wiederum ein KomplexitatsmaB. Sie
deutet auf die Komplexitat der Sprache bzw. der jeweiligen Sprachanwendung hin.

Sprachen lassen sich in Form von Syntaxbdumen oder Netzdiagrammen darstellen. Peter
Chen hat bewiesen, dass sich jeder Sprachtext, auch in einer natiirlichen Sprache, mit einem
»Entity/Relationship-Diagramm*® abbilden ldsst [Chen76]. Die Begriffe sind die Entitéten,
die Zusammensetzung der Begriffe ergeben die Beziehungen. Urspriinglich war das E/R
Model fiir die Datenmodellierung gedacht, wobei die Entitdten die Datenobjekte sind. Es
lasst sich jedoch genauso gut fiir die Funktionsmodellierung verwenden, wobei hier die
Entitaten die Funktionen sind. Die Zahl der Entitidten bestimmt die GroBe einer Beschrei-
bung. Die Zahl der Beziehungen bestimmt deren Komplexitét. Je mehr Beziehungen es zwi-
schen Entitaten relativ zur Anzahl der Entititen gibt, desto komplexer ist die Beschreibung.

Sprachen sind Beschreibungsmittel. Ihr Umfang héngt von der Zahl ihrer Begriffe, sprich
den Entitdten ab. Ihre Komplexitidt hiangt wiederum von der Zahl ihrer erlaubten Konst-
rukte bzw. moglichen Beziehungen zwischen ihren Begriffen ab. Eine Sprachanwendung ist
eine ganz bestimmte Beschreibung. Softwaresysteme sind letztendlich nur Beschreibun-
gen. Die Anforderungsspezifikation ist die Beschreibung einer fachlichen Losung zu einem
Zielproblem. Der Systementwurf, z. B. ein UML-Modell, ist die Beschreibung einer rechneri-
schen Losung zum Zielproblem, die an die fachliche Beschreibung angelehnt werden sollte
[ErPe00]. Der Programmcode ist ebenfalls nur eine Beschreibung, allerdings eine sehr de-
taillierte Beschreibung der technischen Losung eines fachlichen Problems, das mehr oder
weniger der Entwurfsbeschreibung und der Anforderungsbeschreibung entspricht. Schlie3-
lich ist die Testspezifikation nochmals eine Beschreibung dessen, wie sich die Software
verhalten sollte.

Alle diese Beschreibungen dhneln den Schatten in Platons Hohlengleichnis [Plat06]. Sie
sind nur abstrakte Darstellungen eines Objekts, das wir in Wahrheit gar nicht wahrnehmen
konnen. Zum einen handelt es sich um abstrakte Darstellungen konkreter Vorstellungen
und Anforderungen seitens eines Kunden an ein Softwaresystem, zum anderen um Be-
schreibungen von Rechenvorgdngen auf unterschiedlichsten Abstraktionsebenen. Da wir
das eigentliche Objekt selbst nicht messen konnen, messen wir die Beschreibungen des

4 1 Softwaremessung

Objekts und damit die Sprachen, in denen die Beschreibungen formuliert sind. Was wir
bekommen, sind nur die GroBe und die Komplexitit einer Beschreibung. So gesehen ist je-
des SoftwaremaB ein MaB fiir eine Darstellung und kann nur so zuverldssig sein wie die
Darstellung selbst.

Eine Beschreibung bzw. eine Darstellung hat nicht nur eine Quantitidt und eine Komplexi-
tat, sie hat auBerdem noch eine Qualitét, und diese soll auch messbar sein. Die Frage stellt
sich, was die Qualitét einer Beschreibung ist. Man konnte genauso gut nach der Qualitét der
Schatten in Platons Hohle fragen. Wir wiirden gerne antworten, die Qualitat eines Schat-
tens sei der Grad an Ubereinstimmung mit dem Objekt, das den Schatten wirft. Demnach
misste die Qualitdt des Programmcodes am hdochsten sein, weil diese Beschreibung am
néachsten an den eigentlichen Rechenvorgang herankommt. Dies entspricht der Behauptung
von DeMillo und Perles, die besagt, ,die einzige zuverlassige Beschreibung eines Pro-
gramms ist der Code selbst“ [DePL79]. Lieber wiirde der Mensch sich mit den Entwurfs-
bildern befassen, aber diese sind verzerrte Darstellungen der Wirklichkeit. Je leichter ver-
standlich eine Darstellung ist, desto weiter ist es von der Wirklichkeit entfernt.

Aber was ist die Wirklichkeit? Was ist, wenn das real existierende System nicht dem ent-
spricht, was der Auftraggeber haben wollte? Wie sollen wir wissen, ob die verwirklichte
Funktionalitait mit der gewiinschten Funktionalitit samt allen Eigenschaften iiberein-
stimmt? Auch Platon unterscheidet zwischen den sichtbaren Schatten, die wir sehen kon-
nen, und den projektierten Schatten, die wir sehen wollen. Ein Abgleich kann nur statt-
finden, wenn wir zwei Beschreibungen vergleichen: die Beschreibung, die dem wahren
Rechenvorgang am nachsten kommt, mit der Beschreibung, die den Vorstellungen des Auf-
traggebers am ehesten entspricht. In der Welt der Softwarekonstruktion ware dies die An-
forderungsspezifikation. Um diese Beschreibung mit der Beschreibung Programmcode zu
vergleichen, miissen die beiden Beschreibungen einander begrifflich und syntaktisch zuor-
denbar sein. Das heiBt, sie miissen sich in etwa auf der gleichen semantischen Ebene befin-
den. Eine grobe Anforderungsbeschreibung ist jedoch mit einer feinen Codebeschreibung
nicht vergleichbar. Die Anforderungsbeschreibung miisste fast so fein sein wie die des
Codes. Da dies mit Ausnahme der formalen Spezifikationssprachen wie Z, VDM und SET
selten der Fall ist, wird die Anforderungsbeschreibung stellvertretend {iber die Testfélle mit
dem echten Systemverhalten verglichen. Dabei darf nicht iibersehen werden, dass die Test-
falle zur Bestitigung der Erfiillung der Anforderungen auch in einer Sprache verfasst sind
und als solche allen Unzuldnglichkeiten jener Sprache ausgesetzt sind [Fetz88].

Der statische Zustand von Softwareprodukten, also Struktur und Inhalt ihrer Beschreibun-
gen, kann entsprechend einer Vielzahl von Qualitdtseigenschaften bewertet werden. So
sollte z. B. der Programmcode als Beschreibung modular aufgebaut, flexibel, portabel, wie-
derverwendbar, testbar und vor allem verstandlich sein. Dieses sind alles Kriterien, die sich
unmittelbar auf die Beschreibung beziehen. Um sie messen zu konnen, werden Richtlinien
und Konvention bendtigt. Diese konnen in Form einer Checkliste, eines Musterbeispiels
oder einer Soll-Metrik vorliegen. Auch hier handelt es sich um einen Soll-Ist-Vergleich. Die
eigentliche Softwarebeschreibung wird gegen die Soll-Beschreibung abgeglichen. Jede Ab-
weichung vom Soll wird als Mangel oder als Regelverletzung betrachtet. Die statische Qua-
litdt der Software wird anhand der Anzahl gewichteter Mangel relativ zur GroBe gemessen.
Je mehr Méangel eine Softwarebeschreibung hat und je schwerer diese Midngel wiegen, desto
niedriger ist die statische Qualitdt [ZWNSO06].

1.1 Das Wesen von Software 5

Softwareprodukte haben aber nicht nur einen statischen Zustand, sondern auch ein dyna-
misches Verhalten. Das alles erschwert die Messung der Systemqualitat. Der Grad der dy-
namischen Qualitit ist der Grad, zu dem das tatsdchliche Systemverhalten mit dem erwar-
teten Systemverhalten iibereinstimmt. Jede Abweichung zwischen Soll und Ist ware als
Abweichung zu betrachten, egal ob es sich um die Nichterfiillung einer funktionalen Anfor-
derung, um die falsche Erfiillung einer solchen Anforderung oder um die Nichterfiillung
einer nichtfunktionalen Anforderung handelt. Mit jedem zusitzlich festgestellten Fehler
sinkt die Qualitdt. Die konventionelle Art, Softwarequalitat zu messen, ist anhand der An-
zahl der Fehler gewichtet durch die Fehlerschwere relativ zur SoftwaregroBe.

I Nominalskala:
Bezeichnungen, z.B. Die Roten
Die Griinen
Die Schwarzen
@ oOrdinalskala:

Stufen z. B. hoch, mittel, niedrig
Ranking A>B>C
Benotung ausgezeichnet, gut , ausreichend, ungentigend

O Intervaliskala:
aufsteigende Wertskala z.B. Thermometer mit Temperatur in Celsius
oder Kalenderzeit oder Punktzahl

A =50, Abstand = 20
B = 30,
C=20 Abstand = 10
O Verhaltnisskala
Relation zum Festpunkt z.B. Lange, Laufzeit Ist = 60
gleiches Verhaltnis mit ,nattrlicher® Null Soll = 90

Erfullungsgrad = Ist/Soll = 0,67
O Absolutskala
Auszahlungen z.B. Anzahl GréReneinheiten

Statements =24.000
Function-Points =480
Defects =21
Deficiencies =756
Person Days =520

Bild 1.2 Messskalen nach Zuse

Es ist jedoch zu betonen, dass in beiden Fallen - der statischen Qualitdtsmessung wie auch
der dynamischen Qualitaitsmessung - der Begriff Qualitit relativ zu einer Beschreibung,
namlich der Beschreibung der erwarteten Qualitét ist. Ohne eine derartige Beschreibung
lasst sich Qualitdt nicht messen. Die Messung von Qualitdt impliziert den Vergleich einzel-
ner Ist-Eigenschaften mit entsprechenden Soll-Eigenschaften. Es gibt keinen Weltstandard
fiir Fehlerhaftigkeit - ebenso wenig wie es einen Weltstandard fiir Wartbarkeit oder Test-
barkeit gibt. Hinter jedem QualitdtsmaB steckt eine heuristische Regel, die zu einer lokalen
Norm erhoben wurde. Wie wir spéter sehen werden, kann jede Qualitatsnorm quantifiziert
und auf eine Werteskala gebracht werden. Hinter jeder solchen Werteskala steckt jedoch
eine heuristisch begriindete oder willkiirliche Vereinbarung, was gut und was schlecht ist
(siehe Bild 1.2).

6 1 Softwaremessung

B 1.2 Sinn und Zweck der Softwaremessung

Ein wesentlicher Zweck der Softwaremessung ist, die Software besser zu verstehen. Dazu
dienen uns die Zahlen. Zahlen helfen uns, die Zusammensetzung eines komplexen Gebildes
wie ein Softwaresystem zu begreifen: ,Comprehension through Numbers“ [Sned95]. Durch
sie erfahren wir, wie viele verschiedene Bauelemente es gibt und wie viele Auspragungen
jedes hat, wir erhalten Informationen {iber deren komplexe Beziehungen und MaBzahlen
iiber die Qualitat der Softwaresysteme.

Ein weiterer Zweck ist die Vergleichbarkeit. Zahlen geben uns die Moglichkeit, Softwarepro-
dukte mit anderen Softwareprodukten zu vergleichen bzw. verschiedene Versionen ein und
desselben Produktes zu vergleichen. Nicht nur Produkte, auch Projekte und Prozesse las-
sen sich vergleichen - allerdings nur, wenn sie in Zahlen abbildbar sind.

Ein dritter Zweck ist die Vorhersage. Um planen zu konnen, miissen wir die Zukunft vor-
hersagen, z.B. schitzen konnen, was ein Projekt kosten wird. Dazu brauchen wir Zahlen
aus der Vergangenheit, die wir in die Zukunft projizieren konnen.

Ein vierter Zweck ist, Zahleninformationen fiir die Steuerung von Projekten und Produkt-
entwicklungen zu erhalten: Wenn z. B. wochentlich hundert neue Fehler im Fehlermanage-
menttool erfasst werden, aber gleichzeitig nur dreiBig geschlossen werden, sind entspre-
chende SteuerungsmafBnahmen zu ergreifen (z. B. Behebung der Fehler vor Implementierung
neuer Funktionalitat).

Der letzte Zweck ist eher abstrakt. Es geht darum, die Kommunikation zwischen Menschen
zu verbessern. Wir kennen alle die Unzuldnglichkeiten der natiirlichen Sprachen. Es gibt
viele uneindeutige Begriffe und solche, die nichtssagend sind. Die zwischenmenschliche
Kommunikation leidet an Missverstiandnissen und Fehlinterpretationen. Die natiirliche
Sprache stoBt schnell an ihre Grenzen, wenn es darum geht, komplexe technische Gebilde
exakt zu beschreiben. Zahlen sind eine eindeutige Sprache. Urvilker kannten keine Zahlen.
Sie konnten sagen, dass es einen Lowen gibt, wenige Lowen oder viele Lowen. Heute wissen
wir, dass es drei Lowen gibt oder dass der Weltumfang etwa 40 000 Kilometer betrédgt. Das
ist eine andere Aussage als die, dass die Welt groB ist. So gesehen tragen Zahlen dazu
bei, die zwischenmenschliche Kommunikationsfdhigkeit zu steigern. Wie Lord Kelvin es so
trefflich formuliert hat: ,Erst wenn wir etwas in Zahlen ausdriicken konnen, haben wir es
wirklich verstanden. Bis dahin ist unser Verstdndnis oberflachlich und unzuldnglich®
[Kelv67]. Das heiBit, erst wenn wir Software quantifizieren konnen, haben wir sie wirklich
im Griff. Der englische Professor Norman Fenton behauptet, dass es ohne Metrik kein Soft-
ware Engineering geben kann. Messung ist die Voraussetzung fiir jegliche Engineering-
Disziplin [Fent94].

Zusammenfassend ist der Zweck der Softwaremessung fiinferlei:

® Sie dient dem Softwareverstandnis.

® Sie dient der Vergleichbarkeit.

= Sie dient der Vorhersage.

® Sie dient der Steuerung.

® Sie dient der zwischenmenschlichen Verstdndigung.

1.2 Sinn und Zweck der Softwaremessung 7

1.2.1 Zum Verstandnis (Comprehension) der Software

Wenn wir Software verstehen wollen, miissen wir wissen, wie sie zusammengesetzt ist, d. h.
aus welchen Bausteintypen sie besteht und welche Beziehungen zwischen jenen Baustein-
typen existieren. Die Eigenschaften der Bausteintypen helfen, diese Typen zu klassifizie-
ren. Am besten lassen sich diese Eigenschaften in Zahlen ausdriicken wie z. B. die GroBe in
Zeilen oder Wortern oder Symbole. Die Zahl der Beziehungen zwischen den Bausteinen
hilft uns, den Zusammenhang der Softwareelemente zu verstehen. Zahlen sind neben Spra-
che und Grafik ein weiteres Verstindigungsmittel. Sie sind genauer als die anderen beiden
Mittel.

1.2.2 Zum Vergleich der Software

Gesetzt den Fall, ein IT-Anwender muss zwischen zwei Softwareprodukten entscheiden,
welche die gleiche Funktionalitidt haben. Wie soll er sie vergleichen? Ohne Zahlen wird der
Vergleich schwer moglich oder sehr subjektiv sein. Mit Zahlen lassen sich Gré8e und Kom-
plexitdt, ja sogar Qualitat vergleichen. Er kann z.B. feststellen, dass das eine Produkt mit
der Hilfte des Codes dasselbe leistet oder dass das eine Produkt um 20 % komplexer ist als
das andere. Durch einen Performanztest kann er die Laufzeiten und die Antwortzeiten ver-
gleichen. Das Gleiche gilt fiir den Vergleich von Versionen desselben Systems. Durch die
Messung der Unterschiede wird erkennbar, ob ein System sich verbessert oder verschlech-
tert hat. Fiir den Vergleich sind Zahlen Grundvoraussetzung.

1.2.3 Zur Vorhersage

Solange Softwareentwicklung und -wartung Geld und Zeit kosten, wird der Kaufer der Soft-
ware wissen wollen, was diese kostet und wie lange ein Vorhaben dauern wird. AuBerdem
will der Kaufer wissen, was er fiir sein Geld bekommt, also welche Funktionalitiat zu wel-
cher Qualitat. Damit wir diese verstandlichen Wiinsche erfiillen konnen, brauchen wir Zah-
len. Die Dauer eines Projekts in Tagen oder Monaten ist eine Zahl, die jeder Auftraggeber
wissen will, ebenso die Anzahl der Personentage, die er bezahlen muss. Falls es zu lange
dauert oder zu viel kostet, wird er bereit sein, auf das Projekt zu verzichten, oder er wahlt
eine andere Losung. Wenn er sieht, dass die Funktionalitat zu wenig und die Qualitat zu
gering sein wird, wird er sich nach Alternativen umsehen. Der Kunde braucht Informatio-
nen fiir seinen Entscheidungsprozess. Durch die Softwaremessung erhélt er nicht nur Zah-
len zur Projektabwicklung, sondern auch detaillierte und objektive Informationen tiber das
Softwaresystem und dessen Entwicklung selbst. Zahlen iiber Zahlen sind die beste Informa-
tion, die er bekommen kann. Nur mit Zahlen ist eine fundierte Aussage mdoglich, alles an-
dere ist reine Spekulation.

1.2.4 Zur Projektsteuerung

Ist ein Projekt einmal genehmigt und gestartet, sind Zahlen erforderlich, um den Stand des
Projektes festzustellen. Die Projektleitung soll wissen, welcher Anteil der Software bereits
fertig ist und was noch zu entwickeln ist. Sie soll auch wissen, wie es um die Qualitit des
fertigen Anteils bestellt ist. Entspricht diese der vereinbarten Qualitdt und wenn nicht, wie
weit ist sie davon entfernt? Hierzu braucht man Zahlen: iiber den Umfang der gefertigten
Software sowie Zahlen tber den Qualitidtszustand. Ohne Zahlen hat die Projektleitung
kaum eine Chance, die Entwicklung oder Wartung von Software zu verfolgen und nach Be-
darf einzugreifen. Wie Tom DeMarco es formulierte: ,You cannot control what you cannot
measure” [DeMa82]. Messung ist die Vorbedingung fiir Steuerung; und zur Messung gehort
eine Metrik. Das Wort ,Metrik“ kommt aus dem Altgriechischen und bezeichnet im Allge-
meinen ein System von Kennzahlen oder ein Verfahren zur Messung einer quantifizierba-
ren GroBe [Wik07].

1.2.5 Zur zwischenmenschlichen Verstiandigung

Die Menschen haben genug Schwierigkeiten, sich tiber Alltagsprobleme wie den Kauf eines
neuen Autos oder den Anbau einer neuen Garage zu verstindigen. Zahlen wie die der
Pferdestdrke, Hochstgeschwindigkeit und Hubraum erleichtern die Verstindigung. Soft-
ware ist eine unsichtbare Substanz - desto schwerer ist es deshalb, sich dariiber zu verstan-
digen. Niemand kann wissen, was der andere meint, wenn er sagt, die Software ist ,gro“
oder die Aufgabe ist ,komplex“. Man fragt sich sofort: Relativ zu was? Was bedeutet groB
oder komplex? Man sucht nach einer Messskala fiir GroBe oder Komplexitét. Das Gleiche
gilt fiir Qualitat: Wenn einer sagt, das System ware fehlerhaft, was meint er damit? Kommt
ein Fehler bei jeder Nutzung oder bei jeder zehnten Nutzung vor? Damit sind wir bei Zahlen
angelangt. Die Nutzung von Zahlen ist ein Indikator fiir die Genauigkeit der zwischen-
menschlichen Kommunikation.

Fiir die Beschreibung von Software gilt dies umso mehr. Statt zu sagen, die Software sei
groB, ist es genauer, wenn man sagt, die Software habe 15557 Anweisungen. Wir setzen
damit jedoch voraus, dass der Kommunikationspartner dies einordnen kann. Wer noch nie
einen Source-Code und seine Anweisungen gesehen hat, fiir den hat auch die Zahl 15557
keine Bedeutung.

B 1.3 Dimensionen der Substanz Software

Software ist eine multidimensionale Substanz. Sie hat bestimmt mehr Dimensionen, drei
davon sind allerdings messbar. Die eine Dimension ist die GroBe bzw. die Quantitit der
Software. Die zweite Dimension ist die Zusammensetzung bzw. die Komplexitit der Soft-
ware. Die dritte Dimension ist die Giite bzw. die Qualitét der Software. Wenn also von Mes-
sung bei Software die Rede ist, dann von einer dieser drei Metrikarten:

1.3 Dimensionen der Substanz Software 9

® Quantitdtsmetrik
= Komplexitdtsmetrik
® (Qualitatsmetrik (siehe Bild 1.3)

Dimensionen eines
Softwaresystems

Qualitatsmale

Qualitat
GréRenmale
Software
Komplexitat
Bild 1.3
Grole Drei Dimensionen von Software

1.3.1 Quantitatsmetrik von Software

Mit der Quantitdtsmessung sind Mengenzahlen gemeint, z.B. die Menge aller Worter in
einem Dokument, die Menge der Anforderungen, die Menge der Modelltypen in einem Ent-
wurfsmodell und die Menge aller Anweisungen in einer Source-Bibliothek. Mengenzéahlun-
gen sind Aussagen iiber den Umfang von Software. Sie werden benutzt, um den Aufwand
fiir die Entwicklung einer vergleichbaren Menge zu kalkulieren. Aus der Menge der Daten-
elemente wird die GroBe der Datenbank projiziert, aus der Menge der Anforderungen wird
die Menge der Entwurfsentitdten und aus dieser die Menge der Codeanweisungen abgelei-
tet. Aus der Menge der Anforderungen und Anwendungsfélle wird auch die Menge der
Testfélle projiziert. In einem Softwaresystem gibt es etliche Mengen, die wir zahlen konn-
ten. Manche sind relevant, andere nicht. Unsere Aufgabe als Software-Ingenieure besteht
darin, die relevanten Mengen zu erkennen. Eine weitere Herausforderung besteht darin,
diese Mengen richtig zu zdhlen. Dafiir brauchen wir Zahlregeln. In diesem Buch werden
mehrere davon behandelt.

1.3.2 Komplexitatsmetrik von Software

Mit der Komplexitatsmetrik sind Verhéltniszahlen fiir die Beziehungen zwischen den Men-
gen und deren Elementen gemeint. Ein Element wie das Modul XY hat Beziehungen zu an-
deren Elementen wie zu weiteren Modulen oder zu weiteren Datenelementen. Die Zahl der
Beziehungen ist eine Aussage liber Komplexitiat. Die Menge aller Module hat Beziehungen
zu der Menge aller Daten. Sie werden benutzt, erzeugt und gedndert. Sie haben auch Bezie-
hungen zur Menge aller Testfille, die das Modul testen. Je mehr Beziehungen eine Menge
hat, desto hoher ist ihre Komplexitat. Komplexitat steigt und féllt mit der Zahl der Bezie-

1 Softwaremessung

hungen. Also gilt es hier, Beziehungen zu zahlen und miteinander zu vergleichen. Das Pro-
blem ist hier dasselbe wie bei der Quantitat, namlich zu erkennen, welche Beziehungen re-
levant sind. Es ist nur sinnvoll, relevante Komplexitidten zu messen. Dafiir miissen wir aber
zwischen relevanten und irrelevanten Beziehungen unterscheiden konnen. Komplexitét ist
somit wie Quantitit eine Frage der Definition.

1.3.3 Qualitatsmetrik von Software

Mit der Qualitatsmetrik wollen wir die Giite einer Software beurteilen. Wenn schon die GroBe
und Komplexitdt von Software unklar sind, dann ist deren Qualitdt um ein Vielfaches mehr
verschwommen. Was gut und was schlecht ist, hdngt von den Sichten des Betrachters ab. Die
Klassifizierung von Software in gut und schlecht kann erst in Bezug zu einer definierten
Norm stattfinden. Ohne Gebote und Gesetze ist ein Qualitatsurteil weder fiir menschliches
Verhalten noch fiir Software moglich. Gut ist das, was den Geboten entspricht, und schlecht
ist das, was zu ihnen im Widerspruch steht. Aufgrund von Erfahrungen lassen sich einige
Schliisse ziehen wie etwa der, dass unstrukturierter und undokumentierter Code ohne spre-
chende Namen schwer lesbar und somit auch schwer weiterzuentwickeln ist. UbergroBe
Source-Module sind bekanntlich schwer handzuhaben. Nicht abgesicherte Klassen sind leicht
zu knacken. Mehrfache Verbindungen zwischen Code-Bausteinen erschweren deren Wieder-
verwendbarkeit. Tief verschachtelte Entscheidungslogik ist fehleranfillig. Diese und viele an-
dere als schiadlich empfundene Codierpraktiken konnen durch Regeln verboten werden.

VerstoBe gegen die Regel gelten als qualititsmindernd. Demnach ist die Qualitat des Codes
mit der Einhaltung von Regeln eng verkniipft. Ohne ein derartiges Regelwerk kann Qualitadt
nur post factum nachgewiesen werden. Eine Software, in der viele Fehler auftreten oder die
unverhéltnismaBig langsam ist, gilt als qualitatsarm. Hierfiir ist aber der Benutzer auch in
der Pflicht zu definieren, was im speziellen Fall zu viele Fehler sind oder was zu langsam
ist. Schlechthin kann es ohne Qualitdtsnorm keine Qualititsmessung geben. Qualitat ist der
Grad, zu dem eine vereinbare Norm eingehalten wird. Sie ist die Distanz zwischen dem
Soll- und dem Ist-Zustand. Liegt die Ist-Qualitdt unter der Soll-Qualitédt, ist die Qualitat zu
gering. Liegt sie dariiber, ist sie eventuell zu hoch. Zu wenig Qualitat verursacht Kosten fiir
den Betrieb und die Erhaltung eines Systems. Zu viel Qualitdt verursacht Mehrkosten bei
der Entwicklung des Systems. In beiden Féllen sind dies Kosten, die der Auftraggeber nicht
tragen mochte. Bei Qualitat wie bei Quantitat kommt es darauf an, genau das zu liefern, was
der Kunde bestellt hat, nicht mehr und nicht weniger [DGQ86a].

B 1.4 Sichten auf die Substanz Software

Ein Softwaresystem besteht aus vielen verschiedenen Typen von Elementen, nicht nur
Code, sondern auch Texte, Diagramme, Tabellen und Daten jeglicher Art. Wenn es darum
geht, ein solches System zu messen, miissen die Elementtypen genau definiert werden. Die
Definition der Messobjekte ist der erste Schritt in einem Messprozess. Es muss fiir alle Be-
teiligten klar sein, was gemessen wird [Jone91].

1.4 Sichten auf die Substanz Software

Eine mogliche Kategorisierung der Messobjekte ist nach deren Darstellungsform bzw. Ele-
menttyp wie z.B. Softwarecode, Textdokumente, Diagramme oder Tabellen.

Ein anderes Gliederungsschema ist nach dem Zweck der Elemente. Manche Elemente die-
nen dazu, die Anforderungen an ein System zu beschreiben. Mit anderen Elementen wer-
den die Konstruktion bzw. Architektur des Systems beschrieben. Eine dritte Kategorie von
Elementen sind dann die Codebausteine, die von einer Maschine ausgefiihrt werden. Eine
vierte bilden die Elemente, die dazu dienen, das System zu testen. Eine letzte Kategorie
umfasst alle Elemente, die dazu dienen, die Bedienung des Systems zu beschreiben. Diese
fiinf Kategorien entsprechen den fiinf Schichten eines Softwareprodukts:

= Anforderungsdokumentation

= Entwurfsdokumentation

= Code

m Testware

= Nutzungsanleitung (siehe Bild 1.4)

Eine weitere Gliederungsmoglichkeit ist nach dem Gesichtspunkt der Beteiligten. Auf
der einen Seite stehen die Benutzer der Software. Aus ihrer Sicht besteht ein System aus
Bildschirmoberfldchen, Telekommunikationsnachrichten, Papierausdrucken, gespeicherten
Daten und Bedienungsanleitungen. Auf der anderen Seite stehen die Entwickler von Soft-
ware. Aus ihrer Sicht besteht ein System aus Codebausteinen, Dokumenten, Dateien, Daten-
banken und Steuerungsprozeduren. Diese beiden Sichten - die fachliche und die techni-
sche - sind oft unvertraglich, da sie verschiedene Ontologien verwenden. Der Benutzer
verwendet die Begriffe aus der Fachwelt, die von der Software abgebildet wird. Der Entwick-
ler verwendet die Begriffe aus der Welt der Maschinen, in welcher die Software implemen-

tiert ist.

Fachlich
-FrZ‘éE'n'ch/ o Entwurfsdokumentation

Technisch Source-Code ‘
Egm;ch/ Testware

Fachlich / Benutzerdokumentation \

Bild 1.4 Finf Schichten eines Softwareproduktes

Deshalb gibt es noch eine dritte Sichtweise auf die Software - die Sicht des Integrators, der
versucht, die beiden anderen Sichten miteinander zu vereinen. In der IT-Projektpraxis
nimmt der Tester die Rolle des Integrators ein und vertritt diese dritte, ibergreifende Sicht.
Demnach gibt es

m fachliche Beschreibungselemente,
® technische Beschreibungselemente,
= integrative Beschreibungselemente.

SchlieBlich wird unterschieden zwischen statischen und dynamischen Sichten auf ein Soft-
waresystem. Eine statische Sicht nimmt die Elemente wahr, die zu einem bestimmten Zeit-
punkt existieren, z.B. die Struktur einer Datenbank oder die Zusammenstellung einer Kom-
ponente. Diese Elemente konnen sich zwar verdndern, aber zu einem gegebenen Zeitpunkt
sind sie statisch invariant. Die statischen Elemente eines Systems bieten sich am besten als
Messobjekte an.

Die dynamische Sicht auf die Software nimmt Bewegungen bzw. Zustandsverdnderungen
wahr. Hier werden Abfolgen von Aktionen und Veranderungsfolgen von Daten beobach-
tet. Auch diese Bewegungen bzw. Zustandsverdanderungen der Systemelemente lassen sich
messen, aber dies ist viel schwieriger und verlangt besondere Messinstrumente.

B 1.5 Objekte der Softwaremessung

Aus den Sichten auf die Software ergeben sich die Objekte der Softwaremessung.
Aus der Sicht der Elementtypen gibt es Folgendes zu messen:

m Natiirlichsprachliche Texte

® Diagramme

= Tabellen

® Codestrukturen (siehe Bild 1.5)

Aus der Sicht des Zwecks der Elemente kann Folgendes gemessen werden:
= Anforderungselemente

= Entwurfselemente

= Codeelemente

® Testelemente

® Beschreibungselemente

Aus der Sicht des Systembenutzers lasst sich Folgendes messen:

® Die System/Benutzer-Interaktionen

® Die Systemkommunikation

® Die Systemausgabe

® Die Benutzerdokumentation

1.5 Objekte der Softwaremessung

Englisch
Deutsch P1 - n
Franzésisch
,,,,, P2 - -
P3 | - =
P4 | - =
- - Tabellen
Naturlichsprachliche
Texte P o1 02 Class P
Pl (a,b,c)
| P2 (x,y,2)
Softwaremessobjekte | Class O
ki omethl (a, b)
ometh?2 (x, V)

Diagramme (UML)

Source-Code
(PL/1, COBOL, C++, Java)

Bild 1.5 Objekte der Softwaremessung

Aus Sicht des Systemintegrators kann Folgendes gemessen werden:
= Die Programme

= Die Daten

= Die Schnittstellen

= Die Systemdokumentation

® Die Fehlermeldungen

Aus statischer Sicht sind alle Elementtypen zu messen, die als Dateien in einem Verzeich-
nis abgelegt sind. Dazu gehoren Testdaten, Tabellen, Grafiken und Diagramme, Source-
Code-Texte, Listen und Dateien im Zeichenformat. Aus dynamischer Sicht ldsst sich die
Ausfiihrung des Codes, die Anzahl an Fehlern, die Veranderung der Daten, die Nutzung der
Maschinenressourcen und die Dauer der Computeroperationen messen. Auch Zeiteinhei-
ten wie Ausfallzeiten, Reparaturzeiten und Reaktionszeiten gelten als dynamische Mess-
objekte. Im Prinzip ldsst sich fast alles an einem Softwaresystem messen. Die Frage ist nur
immer, ob es sich lohnt, etwas zu messen. Denn Messwerte sind lediglich ein Mittel zum
Zweck. Zuerst muss das Ziel der Messung definiert sein. Was will man damit erreichen? Die
Kosten schatzen, Qualititsaussagen treffen oder Mitarbeiter bewerten? Erst wenn diese
Ziele klar sind, konnen aus der groBen Anzahl potenzieller Messobjekte die richtigen aus-
gewahlt werden. Es macht wenig Sinn, sdmtliche Objekte zu messen, bloB weil sie da sind.
Auf diese Weise entstehen die beriihmt-beriichtigten Zahlenfriedhofe. Wer Software mes-
sen will, muss eine definierte Messstrategie haben und dieses Konzept verfolgen. Die Mess-
strategie bestimmt, welche Messobjekte letztendlich herangezogen werden und welche Me-
triken zur Anwendung kommen.

B 1.6 Ziele einer Softwaremessung

Im Hinblick auf die Ziele einer Softwaremessung ist es wichtig, zwischen einer einmaligen
und einer kontinuierlichen Messung zu unterscheiden. Optimalerweise misst ein Software-
Entwicklungsbetrieb bzw. ein Anwenderbetrieb seine Projekte und Produkte stiandig, so
wie es z.B. im CMMI-Modell vorgesehen ist [ChKS03]. Dazu braucht er eine zustandige
Stelle, die dem Qualititsmanagement untersteht. Diese Stelle vereinbart die Ziele der Soft-
waremessung mit der IT-Leitung und fiihrt die erforderlichen Messinstrumente ein. Es gibt
aber leider nur wenig Anwender im deutschsprachigen Raum, die sich eine solche perma-
nente Messung leisten wollen oder konnen.

Dies liegt zum einen daran, dass sie den Nutzen nicht erkennen kdnnen, andererseits da-
ran, dass ihnen die Kosten zu hoch erscheinen, oder drittens daran, dass selbst wenn sie
den Nutzen erkennen und die Kosten tragen konnen, sie kein qualifiziertes Personal fin-
den. Nur wenig Informatiker haben sich mit Metriken befasst, und die meisten von ihnen
sind irgendwo an der Hochschule oder einem Forschungsinstitut. Die Zahl der verfiigharen
Metrikspezialisten ist viel zu klein, um den Bedarf zu decken. Demzufolge werden Messun-
gen nur sporadisch durchgefiihrt.

Die Griinde fiir einmalige Messungen sind unter anderem:

= Der Anwender steht vor einem betrieblichen Merger und muss entscheiden, welche der
doppelten Anwendungssysteme beibehalten werden.

® Der Anwender iibernimmt ein Softwaresystem zur Wartung und mdochte wissen, worauf
er sich einlasst.

= Der Anwender hat vor, seine bestehenden Anwendungen zu migrieren, und mochte wis-
sen, um welchen Umfang es sich handelt.

= Der Anwender hat vor, seine Anwendungen auszulagern, und mdchte wissen, was ihre
Erhaltung und Weiterentwicklung kosten soll.

= Der Anwender steht vor einer Neuentwicklung und mdochte wissen, wie groB und wie
komplex die alte Anwendung war.

® Der Anwender hat massive Probleme mit der bestehenden Software und mochte diese
genaueren Analysen unterziehen.

Die Ziele einer laufenden Messung unterscheiden sich von denen einer einmaligen Messung.
Bei der einmaligen Messung ist das Ziel, den aktuellen Stand eines Systems zu bewerten
und daraus Informationen fiir Entscheidungen zu gewinnen:

® Kosten und Nutzen alternativer Strategien

® Vergleiche verschiedener Systeme

® Vergleiche mit den Industriestandards (Benchmarking)

= Informationen tiber den Gesundheitsstand eines Softwaresystems

Bei der fortlaufenden Messung geht es darum, Veranderungen in der Produktivitat und Ter-
mintreue der Projekte sowie in der GroBe, der Komplexitat und der Qualitdt der Produkte zu
verfolgen.

® Veranderungen der Quantitit
® Reduzierung der Komplexitét

1.6 Ziele einer Softwaremessung

® Erhohung der Qualitit

® Verbesserung der Schatzgenauigkeit

Da die Ziele so vielfaltig sind, miissen sie vor jeder Messung neu definiert werden. Diese
Erkenntnis hat Victor Basili und Hans-Dieter Rombach dazu bewogen, die Methode Goal-
Question-Metric (GOM) ins Leben zu rufen [BaRo94]. Diese Methode gilt seitdem als Grund-
lage fiir jede Softwaremessung (siehe Bild 1.6).

Nach der GOM-Methode werden zunichst die Ziele gesetzt. Zu diesen Zielen werden Fragen
gestellt, um sich dartiber klar zu werden, wann die Ziele erreicht sind bzw. wie diese zu
erreichen sind. Auf die Fragen folgen MaBe und Metriken, die uns wissen lassen, wo wir im
Verhiltnis zu unseren Zielen stehen bzw. wie weit wir noch von ihnen entfernt sind. Das
Ziel ist also der Gipfel, den wir besteigen wollen. Die Frage ist, auf welchem Weg man ihn
besteigt, und die Metrik ist die Entfernung vom Ausgangspunkt bzw. zum Zielpunkt.

Goals Z|e|

Frage Frage
Questions é <> ‘ Fragen

Metrics Metrlk Metrik Metrlk Metrik

s

(z.B.) LOCS Stmt Procs Data Calls Data Os Keys

Bild 1.6 Zielorientierte Softwaremessung mit der GQM-Methode

Eigentlich miisste die GOM-Methode um eine weitere Stufe ergdnzt werden, und zwar um
die der Kennzahlen. Denn eine Metrik ist eine Gleichung mit Kennzahlen als Parameter, die
ein bestimmtes, numerisches Ergebnis liefert [Kiitz07]. In der gdngigen Literatur werden
alle Zahlen (auch Summen einzelner Eigenschaften) als Metrik bezeichnet. Dies ist aus
Sicht der Metrik eine Verfalschung. Eine Metrik benutzt Zahlungen in einer Gleichung, um
damit ein Ergebnis zu errechnen. Die Function-Point-Metrik etwa vereint die Zahl der ge-
wichteten Ein- und Ausgaben mit der Zahl der gewichteten Datenbestdnde und der Zahl der
externen Schnittstellen, um daraus Function-Points zu errechnen. Dies ist eine Metrik fiir
die SystemgroBe. Die Zahl der Ein- und Ausgaben ist eine Kennzahl bzw. im Englischen ein
scount“. Die Anzahl Codezeilen und die Anzahl Anweisungen sind ebenfalls ,counts“. In
diesem Buch wird zwischen Metriken und Kennzahlen unterschieden. Metriken basieren
auf Kennzahlen. Demzufolge wird die GOM-Methode um eine Stufe erweitert:

G = Goal = Ziel

Q = Question = Frage
M = Metric = Metrik

C = Counts = Kennzahl

1 Softwaremessung

Als Beispiel dient das Ziel ,Die Software soll moglichst fehlerfrei sein®. Die erste Frage, die
sich dazu stellt, ist: Was bedeutet moglichst fehlerfrei? Die zweite Frage wire: Wie fehlerfrei
ist die Software jetzt? Das Messziel fiir die erste Frage konnte eine Restfehlerwahrschein-
lichkeit von 0,015 sein. Als Metrik fiir die zweite Frage konnte die Berechnung der Anzahl
der noch nicht entdeckten Fehler auf Basis der bisherigen Fehlerrate in Bezug zur Testiiber-
deckung dienen.

Restfehler = bisherige Fehler * .t -1

Testliberdeckung
wobei Testiiberdeckung auf verschiedenen Stufen betrachtet werden kann. Auf der Code-
stufe konnte sie getestete Logikzweige/alle Logikzweige, auf der Entwurfsstufe getestete
Modelelemente/alle Modelelemente und auf der Anforderungsebene getestete Anforderun-
gen/alle Anforderungen sein.

Dies wire die Metrik. Die Kennzahlen sind:
® Anzahl bisheriger Fehler

= Anzahl getesteter Elemente

= Anzahl aller Elemente

Die GOM-Methode wurde urspriinglich im Jahre 1984 von V. Basili und D. Weis im Rahmen
einer Softwaremessung beim NASA Goddard Space Flight Center entwickelt [BaWe84]. Sie
wurde in Europa erst Anfang der 90er Jahre bei der Schlumberger Petroleum AG in den
Niederlanden eingesetzt, um die dortige Prozessverbesserung zu messen. Im Jahre 1999
brachte R. van Solingen und E. Berghout ein Buch mit dem Titel , The Goal/Question/Metric
Method“ heraus [SoBe99]. In diesem Buch beschreiben die Autoren ihre Erfahrungen mit
der Methode in mehreren europdischen Unternehmen. Trotz der iiblichen Probleme mit
Ziel- und Begriffsdefinitionen konnten damit einige Prozesse und Produkte gemessen und
bewertet werden. Welche MaBnahmen auf die Messungen folgten, bleibt unbeschrieben.
Jedenfalls konnten die Anwender erkennen, wo sie sich im Verhaltnis zu ihren Zielen befan-
den. Auch der Autor Sneed hat mit der Methode gute Erfahrungen gemacht, vor allem in
Bezug auf die Optimierung der Wartungsprozesse im Anwendungsbetrieb. Ausschlagge-
bend fiir den Erfolg der Methode ist die Definition messbarer Ziele wie z.B. die Reduktion
der Kundenfehlermeldungen um 25 %. Auf welchem Weg das Ziel zu erreichen ist, ist eine
andere Frage, die wiederum von anderen Messungen abhangt.

Die Wahl des Weges zum Ziel wird von der Korrelation diverser Metriken bestimmt wie
etwa der Korrelation zwischen Codequalitdt oder Architekturqualitdt und Fehlerrate. Ein
GroBteil der Metrikforschung ist darauf ausgerichtet, solche Korrelationen zwischen Ziel
und Mittel herauszustellen. Erst wenn wir wissen, was einen Zustand verursacht, konnen
wir daran gehen, die Ursachen des Zustands zu verandern, sei es die Codequalitat, die Pro-
zessreife, die Werkzeugausstattung oder die Qualifikation der Mitarbeiter.

Ein Ziel der Metrik ist, derartige Zusammenhange aufzudecken, damit wir die betroffenen
Zustande dandern konnen. Ein weiteres Ziel ist, die Zustande zu verfolgen, wo sie im Ver-
haltnis zum Soll stehen. Ein drittes Ziel ist es zu kalkulieren, welche Mittel man braucht,
um die Zustande zu verandern. Hier ist ein Projekt als Zustandsdnderung bzw. als Zu-
standsiibergang zu betrachten.

1.7 Zur Gliederung dieses Buches

B 1.7 Zur Gliederung dieses Buches

In Anlehnung an die Dimensionen und Schichten eines Softwareproduktes sowie an die
Ziele eines Softwareprozesses ist dieses Buch in drei Teile mit elf Kapiteln gegliedert (siehe

Bild 1.7)
Wartung/Evolution
Entwicklung
icKlungs”
: " ntwick
Messobjekte Anfor.d?rur]gs Systementwurf| Source-Code Testware E mabe
spezifikation
Geschéftsprozesse |Klassen/Module |Codezeilen Testobjekte unc—Pol‘ms
Q titst Geschiftsobjekte |Methoden/Procs |Anweisungen Testfille Ob-‘_Po‘\f\tS
uantita Geschaftsregeln Schnittstellen Bedingungen Testldufe UC_PO\n’tS
Anwendungsfélle |Daten Referenzen Fehlermeldungen
i iekie
Strukturiert Entitdten Ablaufe Zustandsdichte ome\f en
e - : Pfadanzahl elation
Komplexitat | Textuell Beziehungen Zugriffe Schnittstellen- Re (sse
Fachlich Interaktionen Datennutzung . E\'e\g\"‘
breite
Andig
Konsistenz Kohdsion Modularitat Fehlerdichte \Io\\s‘t\ster\t
Qualitat |Vollstandigkeit Kopplung Konvertierbarkeit |Testiberdeckung Kons'be\
Exaktheit Ausbaufahigkeit |Konformitat Fehlerfindung Plaust
. . Codezeilen/ . FPs =2
.| Testzeilen Diagramme X Testfélle Ps pro
Produktivitat Zeilen pro PT pro PT PRSI pro PT ©

pro PT

artungs”
W e

[

CS
\&nwe‘\sunge“

N\Odu\e

\(oord'\\""“en

Zweige
\r<00\'c\'\\"3“en
Zweige
LOCs
Stm\s
TCs

pro PT

TCs

Bild 1.7 Dreifache Gliederung des Buches

1o

Der erste Teil befasst sich mit den Dimensionen der Software bzw. mit deren Groe, Kom-
plexitdat und Qualitdt. Das zweite Kapitel beschreibt die MaBe fiir die GroBe eines Soft-
wareprodukts, MaBe wie Anforderungen, Dokumentationsseiten, Modeltypen, Codezeilen,
Anweisungen, Object-Points, Function-Points und Testfélle. Das dritte Kapitel geht auf die
Komplexitdtsmessung ein und behandelt solche Komplexitatsmetriken wie Graphenkom-
plexitét, Verschachtelungstiefe, Kopplungsgrad und Datennutzungsdichte. Das vierte Kapi-
tel setzt sich mit dem Thema Qualititsmessung auseinander. Dabei geht es um MaBstdbe
fiir Qualitdtsmerkmale wie Zuverldssigkeit, Korrektheit, Sicherheit und Wiederverwend-
barkeit. Hier kommt die GOM-Methode zur Geltung.

Der zweite Teil befasst sich mit den einzelnen Softwareschichten und wie sie zu messen
sind. Die hier behandelten Softwareschichten sind:

® Die Anforderungsdokumentation

® Der Systementwurf
= Der Code

® Die Testware

1 Softwaremessung

Kapitel 5 behandelt die Messung natursprachlicher Anforderungsdokumente. Kapitel 6
schldgt eine Metrik fiir den Systementwurf im Allgemeinen und im Speziellen fiir UML vor.
Das Kapitel 7 beschiftigt sich mit der Messung und Bewertung sowohl von prozeduralem
als auch objektorientiertem Code. Kapitel 8 ist dem Thema Testmessung gewidmet. Darin
werden diverse Testmetriken vorgestellt, die nicht nur das dynamische Verhalten des Sys-
tems, sondern auch den statischen Zustand der Testware messen. Fiir alle vier Schichten
werden die drei Dimensionen Quantitat, Komplexitiat und Qualitdt behandelt.

Im dritten und letzten Teil des Buches geht es um die Messung der Softwareprozesse. Kapi-
tel 9 geht auf die Messung der Produktivitat in Entwicklungsprojekten ein. Hier werden
diverse Ansdtze zur Ermittlung der Produktivitdt zwecks Planung und Steuerung von Ent-
wicklungsprojekten vorgestellt. Kapitel 10 befasst sich mit dem schwierigen Thema ,War-
tungsmessung”. Es geht dabei sowohl um die Wartbarkeit der Softwareprodukte als auch
um die Messung der Wartungsproduktivitat. Kapitel 11 schildert den Messprozess, den die
Autoren bereits in zahlreichen Messprojekten verwendet haben, und die Werkzeuge, die
sie eingesetzt haben, um die Messergebnisse zu erzeugen. Hier wird Softwaremessung als
ein - im Sinne des CMMI - definierter und wiederholbarer Prozess dargestellt.

A

Ablaufkomplexitat 57,168, 181, 278
Abnahmekriterien 32
Abstraktion 132

Agile Anforderungsmetrik 106
Akteurinteraktionskomplexitat 145
Aktivitatenflusskomplexitat 145
Akzeptanzkriterien 32

Albert, Albrecht 229
algorithmische Komplexitat 49f., 62
Allgemeingultigkeit 74
Alpha-Komplexitdtsmetrik 51
Analyseproduktivitat 247
Analysierbarkeit 78,168
Anderbarkeit 66, 74,184
Anderungen 257
Anderungsmetrik 265
Anforderung 20, 32, 55, 89

- Anforderungsdokument 30

- AnforderungsgroBen 30, 110

- Anforderungskomplexitdt 60, 89, 111
- Anforderungsmessung 89 ff.

- Anforderungsmetrik 91

- Anforderungsproduktivitdt 89
- Anforderungsqualitat 82, 89, 111
- Anforderungsiiberdeckung 196
- formal 4,20

- semiformal 20
Angemessenheit 77
Anpassbarkeit 72, 79
Anweisungen 23
Anwendungsfall 32
Anwendungsfallkomplexitdt 145
AS/400 193

Assembler 52, 55
Asthetik 78

Aufrufe 24
Aufwandsschatzung 225
Austauschbarkeit 79,168
Authentizitat 78
Automatisierung 81
Availability 68

B

Barrierefreiheit 78

Basili, Victor 293
Bebugging 218
Bedienbarkeit 78
Bedingungsdichte 111
Belady, Les 119, 258
Belastbarkeit 93
Benutzbarkeit 67, 71, 77
Benutzerdokumentation 19
Benutzeroberflachen 25
Berns, Gerald 263
Beziehungskomplexitat 182
Bindung 138

Boehm, Barry W. 64, 93, 231
Broy, Manfred 99
Burndown Chart 106

c

C 55

C++ bH3ff., 187
CaliberRM 109
Card, David 120
CARE 109

CASE-Werkzeuge 107

CBO-Metrik 272

Chapin, Ned 164, 258

Chidamer, Shyam 50, 133

CMFAnalyzer 210

CMMI 14,169, 294

COBOL 55f., 85,159,187,193, 228, 264, 267,
277

COCOMO 70

COCOMO-Modell

Code 55

- Codedateien 23

- CodegroBen 21

- Codekomplexitat 180

- Codekonvertierbarkeit 174

- Codemetrik 157

- Codeportierbarkeit 172

- Codequalitat 84,183

- Codequalitatsindex 168

- Codequantitat 179

- Codesicherheit 175

- Codetestbarkeit 176

- Codelberdeckung 196, 265

- Codeverstandlichkeit 171

- Codewartbarkeit 178

- Codewiederverwendbarkeit 174

- Codezeilen 23,159

Collofello, James 259

Compliance 83

Comprehensibility 266

Constantine, Larry 116

COSMIC-FFP 38

CPPAnalyzer 210

Crosby, Philip B. 63

CSVAnalyzer 206

CTFAnalyzer 210

231, 248, 285

D

Data-Points 39, 110, 153, 179, 227, 235
Datendichte 111

Datenfluss 118
Datenflusskomplexitat 180
Datenkomplexitat 168, 180, 278
DatenmodellgroBen 26
Datenobjekte 25

Datensicherung 70

Datentransformation 58
Datenunabhéangigkeit 184
Datenzugriffe 25

DeMarco, Tom 226

Deming, William Edward 63
Designproduktivitat 247
Deutsche Gesellschaft fir Qualitdt 63
Dienstleistungsschicht 120
DIT-Metrik 272
Domain-Specific-Sprachen 30
DOORS 109

Dumke, Reiner 211
dynamische Test-Points 204

E

Ebert, Christof 89,100, 211
Effektivitat 68, 93
Effizienz 68ff., 74, 77, 93
Eindeutigkeit 103f.
Elshof, J.L. 165

Entity /Relationship-Modell
Entropie 52
Entscheidungen 24
Entscheidungskomplexitat 125, 181
Entscheidungslogik 65

Entwurf 20, 55

- EntwurfsgroBen 26,140, 152
Entwurfskomplexitat 58,123,130, 142
- Entwurfsmessung 115
Entwurfsqualitat 83,115, 121,146
Entwurfsiuberdeckung 196
Erfillungsgrad 151

Erhaltungskosten 257

Erlernbarkeit 77

Erweiterbarkeit 259

Erweiterung 257

Evangelisti, Charles 119, 258

3, 58,107

F

Fan-in/Fan-out-Metrik
Fehler 208
Fehlerdichte 86
Fehlerfindungskurve 197
Fehlerfindungsrate 203
Fehlerhadufigkeit 199, 272

15, 19

Fehlerkorrektur 257

Fehlerkosten 203

Fehlermeldungen 37, 202

Fehlermetrik 265

Fehlerrate 54,123,139, 262, 272

Fehlerstatistik 191

Fehlertoleranz 78

Fehlervermeidung 78

Flexibilitat 278

Fog-Index 227

FORTRAN 53, 56, 65f., 91,126, 155, 228, 263,
266

Fraser, Martin 96

Function-Points 33, 38, 60, 89, 110, 153, 179,
224, 229, 247, 281, 306

Funktionale Allokation 120

Funktionalitat 68f., 77

Funktionsabdeckung 71, 74

Funktionsdichte 111

G

GEOS 205
Gesamtproduktivitat 248
Gewichtung

- Anweisung 263

- Codekonstrukt 263

- Datentyp 263

Gilb, Tom 68, 91,116
Glass, Robert 120
Glinz, Martin 98
Goal-Question-Metric 15, 79, 171, 295
Graphkomplexitat 284
Gremillion, Lee 264
Gunning, Robert 228

H

Halstead, Maurice 43,160, 258
Handhabbarkeit 74
Hawthorne-Effekt 288

Hayes, Jane Hoffman 96
Henry, Sallie 118

Hetzel, Bill 195

Hutcheson 202

|dentifizierbarkeit 104f., 112
|EEE-Standard 46, 76
IFPUG 38, 253
Installierbarkeit 79
Instandsetzbarkeit 72
Integrationstest 212
Integritat 78
Interaktionen 119
Interoperabilitdt 77
|ISO-Standard 76, 99
- 1SO 25010 77

ITIL 258

J
Java 53ff., 187f., 275

K

Kafura, Don 118

Kan, Stephan 197

Kapazitat 77

Kapselung 59,132,137
Kapselungsgrad 273

Kemerer, Chris 50, 133

Klassen 24
Klassen/Attributskomplexitat 143
Klassen/Methodenkomplexitat 143
Klassenhierarchiekomplexitat 143
Klassenkohdsionsgrad 147
Klassenkopplungsgrad 147
Klassifizierbarkeit 103ff., 112
Koexistenz 77

Kohéasion 59, 115ff., 156, 166
Kokol, Peter 51
Kommentarzeilen 279
Kommentierung 186
Kommunikation 6
Kompatibilitat 77

Komplexitat

- Ablaufkomplexitat 57

- algorithmische 49f., 62

- Anforderungskomplexitat 60
- Entwurfskomplexitat 58

- konzeptionelle 49

- kinstliche 55

- logische 44

- psychologische 44

- Sprachkomplexitat 61

- strukturelle 48ff.

- Strukturkomplexitat 62

- zyklomatische 43, 57
Komplexitatsmetrik 179
Konformitat 10, 111,149,183
Konsistenz 82f., 93f., 111,128, 150
Konvertierbarkeit 185
konzeptionelle Komplexitat 49
Kopplung 115f.,121,135, 138, 156
Kopplungsgrad 273
Korrektheit 71,77
Kostenschatzung 152
kinstliche Komplexitat 55

L

Lastenheft 99
LCOM-Metrik 272
Legacy-Softwaresysteme 53
Lesbarkeit 104f., 112
Lientz, Bennet P. 257
Lines of Code 159, 265
Lister, Timothy 226
Liverpool-Knots-Metrik 168
Locality 266

Logikzweige 24

logische Komplexitat 44
LOTOS 53

LRC-MaB 52

LUSTRE 53

M

Machbarkeit 93f.
Maintainability 68, 266
Maintainability-Index 169
maintenance

- adaptive maintenance 257
- corrective maintenance 257
- enhansive maintenance 257
- perfective maintenance 257
Maintenance Analysis Tool 263
Méngelstatistik 210

MARK-II 38

Martin, Johnny 95

Mashup 155

McCabe, Thomas 43, 57, 115f.,162, 258
McCall, Jim A. 71

MECCA 116
Mehrdeutigkeit 132
Methoden 23

Metrik 8,16, 65

- Metrikbericht 211

- Metrikdatenbank 115, 209
Modifiability 266
Modifizierbarkeit 78, 168
Modularitat 78, 111,121,129, 148, 156, 186, 278
Modulbeziehung 124
Modulbildung 116

Module 24

Modulentwurf 121
ModulgréBe 122, 267
Modulkohasion 122
Modulkomplexitat 264, 284
Modulkontrollspanne 122
Modulkopplung 122
Moduliberdeckung 196
MOOD 136

MOOD-Metrik 273

Myers, Glenford 115, 200

N

Nachweisbarkeit 78
NESMA 38

N-Fold Inspektion 95
NOC-Metrik 272

o

Object Constraint Language (OCL) 29
Object-Points 40, 60, 110, 153, 179, 227, 237
Objektinteraktionskomplexitat 143
Objektmodell 133

ObjektmodellgroBen 27

Objektorientierte Entwurfsmetrik 132
objektorientierte Programmierung 57
objektorientierter Entwurf 59
Objektzustandskomplexitat 144

Oman, Paul 169, 268

00-Metrik 274

Operand 3, 25, 45, 53, 157, 161
Operator 3, 45, 53, 157, 161
Optimierungen 257

ordinale Skala 117

OWL 155

P

Parnas, David 95
PASCAL 53,166, 266
Passivform 103f.
Passivformlosigkeit 112
Performance 98,120
Performanz 68f., 77
Pighin, Maurizio 51
Plausibilitat 82

PL/I 56, 85,165

Pohl, Klaus 89
Polymorphie 271
Polymorphismusgrad 273
polynomische Regressionsanalyse 269

Portabilitat 66ff., 72ff., 79, 93, 98,130, 148,

278
Prather, R.E. 166
Produktivitat 223, 293
ProduktivitatsmaBe 287
Produktivitatsmessung 223
Programmiererqualifikation 262
Programmierproduktivitdt 246
Programmkomplexitét 275
Projektsteuerung 8
PROMELA 53
Prozedurale Komplexitat 126
Prozeduren 23
ProzedurgroBe 267
ProzessmaBle 287
Prifbarkeit 168
Psychologische Komplexitat 44
Putnam, Larry 223, 233

Q

Q-Komplexitat 164,180
Qualitét 63

- dynamische 86
Qualitatsbaum 71

Qualitatsdaten 293
Qualitatseigenschaften 64
Qualitatsindikatoren 187
Qualitadtsmanagement 14
Qualitatsmatrix 75
Qualitatsmetrik 179
Qualitatssicherung 81,197
QUALMS 301

Quantitat 19
Quantitatsmetrik 179

R

Ramamoorthy, Chitoor 120
RDF 155

Redundanzfreiheit 184
Refaktorierung 257
Referenzierungsdichte 111
Referenzkomplexitat 165
Regelverletzung 65
Regressionstest 193

Reife 78

Reliability 68

Reparierbarkeit 93
RequistePro 109
Restfehlerwahrscheinlichkeit 37, 220
Restrukturierung 257

RETRO 97

Reusability 266

RFC-Metrik 272

Richtigkeit 75, 82

Robertson, Suzanne/James 89
Robustheit 71, 75

Rombach, Hans-Dieter 266, 293
Rupp, Chris 89,103
Rupp-Regeln 111

S

Schlisselworter 30
Schnittstellenkomplexitat 181, 278
Security 68

Selbstbeschreibung 259
Selektierbarkeit 105, 112
Shannon, Clauda 160

Shull, Forrest 293

Sicherheit 71,75, 78,183

Smalltalk 277

SoftAudit 179, 311

SOFTCON 127

SoftMess 210

SoftOrg 83

SOFTSPEC 82,107
Software

- Gliederung 10
Softwarekomplexitat 43
Softwaremessung 6

- einmalig 14, 294

- laufend 14, 294

- Objekte 12

- Ziele 14

- Zweck 6
Softwaremodularitat 259
Softwarewartung 257
Sophist-Anforderungsmetrik 103
Sophist-Metrik 112
Sortierbarkeit 104

SPARQL 155
Speicherbelegung 68
Speichereffizienz 131
Sprachkomplexitat 61, 161,182, 278
Sprachparser 30

Stabilitat 168, 259
StabilitatsmaB 259
Steuerungskopplung 117
Stevens, Wayne 115

Story Points 255
Stroustrup, Bjarne 56
strukturelle Komplexitat 48ff.
Strukturierte EntwurfsgroBen 26
Strukturkomplexitat 62
Swanson, E. Burton 257
Systementwurf 120
Systemintegritat 131
Systemkomplexitat 123
Systemnachrichten 26
Systempartitionierung 119
Systemtest 200, 213
Systemtestiberdeckung 202

T

Testaufwand 195

Testbarkeit 66, 74,79, 93f., 111,120, 126, 149,
184, 211, 279

Testdaten 19

TestDoku 222

Testeffektivitat 37,195, 203, 218

Testeffizienz 195f., 220

Testergebnismetrik 199

Testfall 19, 36,192, 201, 205

Testfallanalysewerkzeug 206

Testfalldichte 111

Testfall-Points 41

Testfortschritt 203, 217

Testfortschrittskurve 197

TestgroBen 35

Testkosten 201

Testleistungsmetrik 199

Testmessungswerkzeug 194

Testmetrik 191

Testplanung 214

Test-Points 110, 154, 197, 200, 203, 214

Testproduktivitat 203, 215, 248

Testprozedur 19

Testqualitat 86, 218

Testlberdeckung 194, 203ff., 208

Testlberdeckungskurve 197

Testvertrauen 219

Testvollstandigkeit 203

Testware 19

Testzeit 201

Teufelsquadrat 223

TextAudit 109

TMAP 204
Tsai, W. 95
U

Ubertragbarkeit 79, 186
Umarji, Medha 293
UML 3

UMLAudit 139
UML-Modell 52, 275
Unit-Test 212

Use Case 32

Use-Case-Point 21, 33, 41, 60, 89, 110, 154,
240, 247
User-Storys 255

Vv

Vaishnavi, V. 96

van Megen, Rudolf 74

Velocity 255
Verarbeitungskomplexitat 125
Verbrauchsverhalten 77,168
Vereinbarte Datenelemente 24
Vererbung 132,138, 271
Vererbungsgrad 273
Vererbungshierarchie 134
Verfligbarkeit 71,78

Verifikation 83

Verknupfbarkeit 72
Verschachtelungskomplexitat 166, 182
Verstandlichkeit 65, 74, 77
Vertraulichkeit 78
Verzweigungskomplexitat 267, 278
Vessey, Iris 262

V-Modell-XT 99

Volere 109

Vollstandigkeit 66, 77, 82f., 93, 111,128, 150

w

Wartbarkeit 71, 78, 93, 98,120, 126, 271
Wartbarkeitsindex 170, 268f.
Wartungsaufwand 265, 268, 271, 275

Wartungskosten 257
Wartungsproduktivitdt 257, 280
Weaver, Warren 160
Webapplikationen 155
Weber, Ron 262
Web Ontology Language 155
Wella-Migrationsprojekt 193
Werkzeuge 107
Wiederherstellbarkeit 78
Wiederverwendbarkeit 72, 78,120, 130, 149,
185, 279
Wiederverwertbarkeit 93
WMC-Metrik 272

Y

Yau, Stephan 259
Yourdon, Edward 116

z

Zeiteffizienz 131

Zeitverbrauch 68

Zeitverhalten 77,168

Zugriffskomplexitat 180

Zugriffsschicht 120

Zurechenbarkeit 78

Zuse, Horst 46,167

Zustandsubergangskomplexitat 144

Zuverlassigkeit 67, 70f., 78

zyklomatische Komplexitat 43, 57,115,162,
260, 269

	Deckblatt_Leseprobe
	Inhalt
	Vorwort
	Geleitwort
	Autoren
	Kapitel_1
	Index

