

# Contents

|                                                                                                                                                                  |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>Preface</b> .....                                                                                                                                             | v  |
| <b>Chapter 1. Wave Phenomena Determining Discharge Development in Gas Gaps</b> .....                                                                             | 1  |
| 1 Dynamics of Streamers .....                                                                                                                                    | 2  |
| 1.1 Development of an Electron Avalanche .....                                                                                                                   | 2  |
| 1.2 Propagation of Anode- and Cathode-Directed Streamers .....                                                                                                   | 11 |
| 2 Ionization Waves in Discharge Tubes and in a Sliding Discharge Formation System .....                                                                          | 23 |
| 2.1 Experimental Study of Ionization Waves in Discharge Tubes .....                                                                                              | 24 |
| 2.2 Formation of a Sliding Discharge .....                                                                                                                       | 30 |
| <b>Chapter 2. Macroscopic and Kinetic Description of a Weakly Ionized Gas in an Electric Field</b> .....                                                         | 35 |
| 1 Basic Macroscopic Equations .....                                                                                                                              | 35 |
| 2 Local Approach for the Frequency of Impact Ionization .....                                                                                                    | 48 |
| 2.1 The Townsend Ionization Coefficient and the Frequency of Ionization by an Electronic Impact .....                                                            | 48 |
| 2.2 Conditions of Applicability of the Local Approach. Equation for the Electron Distribution Function over Energies in a Nonuniform, Nonstationary Plasma ..... | 51 |
| <b>Chapter 3. Theory of Plane Ionization Waves</b> .....                                                                                                         | 59 |
| 1 Stationary Plane Electric Breakdown Waves .....                                                                                                                | 59 |
| 1.1 Ionization-Drift Models of Anode- and Cathode-Directed Waves .....                                                                                           | 60 |
| 1.2 Influence of Diffusion and Photoprocesses on the Plane Breakdown Waves .....                                                                                 | 75 |
| 2 General Properties of Nonstationary Ionization Fronts .....                                                                                                    | 94 |
| 2.1 Integrals of Nonstationary Equations. Reduction of a General Problem to the Cauchy Problem for the Electric Field Distribution .....                         | 94 |

|                                                                                                                                                  |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2.2 Solution of the Cauchy Problem by the Method of Characteristics. Conditions for the Breaking of a Continuous Solution .....                  | 99         |
| 2.3 Propagation of Strong and Weak Discontinuities of Electron Concentration .....                                                               | 103        |
| 3 Dynamics of Formation of the Anode- and Cathode-Directed Waves from Initial Nonuniformities .....                                              | 118        |
| 3.1 Asymptotic Behavior of the Solution of the Cauchy Problem for a Finite Initial Distribution of Electron Concentration .....                  | 118        |
| 3.2 Development of Ionization Waves from Infinitely Extended Distribution of Electron Concentration .....                                        | 127        |
| <b>Chapter 4. Propagation of Ionizing Electric-Field Solitary Waves in Shielded Discharge Tubes with Preionization .....</b>                     | <b>145</b> |
| 1 Basic Equations and Assumptions .....                                                                                                          | 145        |
| 2 The Effect of the Surface Wave on the Formation of the Ionization Wave .....                                                                   | 147        |
| 3 Averaging Two-Dimensional Equations and Formulation of a Quasi-One-Dimensional Model .....                                                     | 149        |
| 4 Numerical Simulation of Stationary Waves .....                                                                                                 | 153        |
| 5 Analytical Model of an Ionization Wave .....                                                                                                   | 160        |
| 6 Specialized Problems of the Theory of Breakdown Waves in Tubes with Preionization .....                                                        | 164        |
| 6.1 Limiting Transition to a Nonlinear Model of the Electric Potential Diffusion. Conditions of Nonmonotonic Increase of Current in a Wave ..... | 164        |
| 6.2 Emergence of the Oscillating Structure of an Ionization Wave .....                                                                           | 169        |
| 6.3 The Effect of a Longitudinal Magnetic Field on the Structure of a Fast Ionization Wave .....                                                 | 175        |
| <b>Chapter 5. Propagation of Electric Breakdown Waves Along a Gas-Dielectric Boundary With No Preionization .....</b>                            | <b>185</b> |
| 1 Breakdown Waves in Shielded Tubes Without Preionization .....                                                                                  | 186        |
| 1.1 Taking Account of Associative Ionization and Resonance Radiation Transfer .....                                                              | 186        |
| 1.2 Results of Numerical Calculations of Breakdown Stationary Waves .....                                                                        | 188        |
| 1.3 Analytical Estimate of Breakdown Wave Velocity .....                                                                                         | 192        |
| 2 Propagation of a Sliding Discharge Front as an Ionization Wave .....                                                                           | 194        |
| 2.1 Assumed Equations and Problem Statement .....                                                                                                | 194        |
| 2.2 Formulating a Calculated Model of a Stationary Wave .....                                                                                    | 196        |

|                                                       |     |
|-------------------------------------------------------|-----|
| 2.3 Structure and Velocity of Front Propagation ..... | 201 |
| 3 Slow Breakdown Waves in Shielded Tubes .....        | 207 |
| 3.1 Features of a Quasi-One-Dimensional Solution      |     |
| Describing Slow Waves .....                           | 208 |
| 3.2 Influence of a Longitudinal Magnetic Field on the |     |
| Structure of Slow Waves .....                         | 212 |
| 4 Solitary Wave of an Electric Field as a Source of   |     |
| Runaway Electrons .....                               | 214 |
| References .....                                      | 221 |