Contents

Preface to the second edition ---- V

Preface to the first edition ---- VII

Author's biographies —— XXIII

Part A: Innovation and industry

1	Introduction goal, scope, and structure —— 3
1.1	Purpose of this book —— 3
1.2	Book scope —— 5
1.2.1	Product classification and description —— 5
1.2.2	Description of process industries —— 6
1.3	Book structure —— 6
	References and further reading —— 7
2	All system levels relevant to design for innovation —— 8
2.1	Introduction —— 8
2.2	Earth system —— 9
2.3	Society system —— 10
2.3.1	Present society system and material flows —— 10
2.3.2	Society system: futuristic closed material flows —— 11
2.4	Value chain system —— 12
2.5	Industrial symbiosis system level for mass and energy —— 13
2.5.1	Example: domestic wastewater to industrial boiler feed water —— 13
2.6	Industrial complex system level —— 14
2.6.1	Example: Rotterdam harbor industrial complex —— 15
2.7	Factory system level —— 15
2.8	Process system level —— 15
2.8.1	Process system description —— 15
2.8.2	Products as part of processes —— 16
2.9	Process step system level —— 16
2.10	Unit operation system level —— 16
2.11	Main equipment system level —— 17
2.12	Characteristic subprocess system level —— 17
2.13	Microelement system level —— 18
2.14	Elementary system level —— 18
2.15	Exercises —— 19
	References and further reading —— 20

3	Managing innovation —— 22
3.1	Overview —— 22
3.1.1	Innovation terms —— 22
3.1.2	Stage-gate approach —— 22
3.1.2.1	Short description of stage characteristics —— 24
3.2	Business focus and motives for innovation —— 25
3.2.1	Business focus trends on product and process innovation —— 25
3.2.2	Business motives for innovation —— 26
3.2.2.1	Competition as innovation driver —— 26
3.2.2.2	Learning curve as innovation driver —— 27
3.2.2.3	Circular economy as innovation driver —— 28
3.2.2.4	Sustainable development as innovation driver —— 29
3.2.2.5	Corporate social responsibility as innovation driver —— 29
3.2.2.6	World problems as driver for the product-process industries —— 30
3.3	Innovation classes and types —— 31
3.3.1	Innovation classes —— 31
3.3.2	Innovation by serendipity —— 34
3.3.3	Social innovations —— 35
3.4	Innovation partners —— 35
3.4.1	In-house versus open innovation —— 35
3.4.2	Innovation partners —— 36
3.4.3	Universities —— 36
3.4.4	Contract research organizations —— 37
3.4.5	Start-up innovators —— 37
3.4.6	Technology providers —— 38
3.4.7	Equipment providers —— 38
3.4.8	Engineering procurement construction contractors —— 38
3.4.9	Tolling manufacturers —— 39
3.5	Portfolio innovation management —— 39
3.5.1	Objectives of portfolio management —— 39
3.5.2	Ambition matrix for innovation portfolio management —— 40
3.5.2.1	Core cluster —— 40
3.5.2.2	Adjacent cluster —— 41
3.5.2.3	Transformational cluster —— 42
3.5.2.4	Budget distribution over clusters —— 44
3.5.3	Risk-adjusted value for innovation management —— 44
3.5.3.1	Risk-adjusted value development stage and beyond: crossing the
	valley of death —— 45
3.5.4	Innovation management guidelines for small enterprises —— 45
3.5.4.1	Innovation guidelines for small enterprises —— 45
3.5.4.2	Guidelines for breakthrough innovation companies —— 45
3.5.5	Project failures and their causes —— 47

3.5.5.1	Innovation failure statistics —— 47
3.5.5.2	Causes of project failures —— 47
3.5.5.3	Mega project failures —— 48
3.5.5.4	Project failures in the detailed engineering stage —— 48
3.6	Project management of innovation —— 49
3.6.1	Objectives of innovation project management —— 49
3.6.2	Project management by stage-gate system —— 49
3.6.2.1	Product and process innovation stages: general aspects —— 49
3.6.2.2	End-of-life stage —— 50
3.6.3	Project entries to stages by the technology readiness level method —— 52
3.6.4	Team formation —— 54
3.6.4.1	Behavior characteristics of team members and teams required over
	the stages —— 54
3.6.4.2	Group design with Belbin team roles —— 54
3.6.4.3	Desired behavior in different stages —— 54
3.6.5	Intellectual property creation and protection —— 54
3.7	Discovery stage —— 55
3.7.1	Managing projects in discovery stage —— 55
3.7.2	Creativity methods —— 56
3.7.3	Discovery stage-gate decision evaluation criteria —— 56
3.7.3.1	Idea description —— 56
3.7.3.2	Proof of principle —— 56
3.7.4	Business case —— 57
3.7.4.1	Creating value —— 57
3.7.4.2	Strategic fit —— 57
3.7.4.3	Necessity of the idea —— 57
3.7.4.4	Idea development doable (with others) —— 58
3.8	Concept stage —— 58
3.8.1	Customer value proposition in concept stage —— 58
3.8.2	Technical product requirements in concept stage —— 59
3.8.3	Process concept generation —— 59
3.8.3.1	Proof of process concept —— 59
3.8.3.2	Selection of best process alternative —— 60
3.8.3.3	Process concept design —— 60
3.8.3.4	Basic design data generation —— 60
3.8.4	Concept stage-gate evaluation —— 60
3.9	Feasibility stage —— 60
3.9.1	Concurrent product-process design and testing —— 61
3.9.2	Microplant in feasibility stage —— 61
3.9.3	Scale-up strategy and information —— 63
3.9.4	Scale-up information equipment —— 64

3.9.5	Business case feasibility stage —— 64
3.10	Development stage —— 64
3.10.1	Product testing in development stage —— 64
3.10.2	Process testing in development stage —— 65
3.10.2.1	Mini plant purpose and design —— 65
3.10.2.2	Pilot plant purposes and design —— 65
3.10.2.3	Pilot plant as downscaled version of commercial-scale design — 68
3.10.3	Pilot plant engineering, procurement, and construction (EPC)
	company's choice —— 68
3.10.3.1	Equipment scale-up effects determination —— 68
3.10.3.2	Mock-up design and testing for hydrodynamic scale-up effects —— 69
3.10.3.3	Development stage-gate evaluation —— 70
3.11	Detailed design stage —— 70
3.11.1	Detailed product design —— 70
3.11.2	Detailed process engineering —— 70
3.11.3	Choice of EPC contractor —— 71
3.11.4	Demonstration plant —— 72
3.12	Process start-up and product launch —— 72
3.12.1	Panel for product testing —— 73
3.12.2	Product launch planning —— 73
3.12.3	Matching the timing of marketing and manufacturing —— 73
3.12.4	Information to supply chain and customers —— 74
3.12.5	Process implementation —— 74
3.12.6	Recognition of new commercial implementations require special
	preparation —— 74
3.12.7	First commercial-scale process start-up —— 75
3.12.7.1	Start-up preparation —— 75
3.12.7.2	Start-up manual 76
	References and further reading —— 77
4 Des	igning for innovation —— 80
4.1	Introduction —— 80
4.2	Design thinking —— 80
4.2.1	Design for innovation theory —— 80
4.2.1.1	Design and risks —— 81
4.2.1.2	Design links with society and nature —— 82
4.2.1.3	Further reading on design —— 82
4.2.2	Design knowledge types —— 82
4.2.3	Differences between design thinking and scientific research —— 83
4.3	Design methodologies —— 83
4.3.1	General design methods for products, processes, and systems —— 83
4.3.2	Design methods for chemical products and processes —— 84

4.4	Designing for innovative products and related processes —— 85
4.4.1	Introduction —— 85
4.4.2	Product-process design method: Delft Design Map (DDM) —— 85
4.4.3	Explaining the Delft Design Map (DDM) for product-process design —— 88
4.4.3.1	Design (cycle) steps description —— 88
4.4.3.1	Executing design activities in all 12 design levels —— 89
4.4.4	How to plan and execute design activities using the Delft Design Map —— 94
4.4.4.1	Practical benefits of working with the Delft design map —— 96
4.4.5	Design planning with the Delft Design Map for various innovation classes —— 96
4.4.5.1	Fingerprints of Delft Design Map for design tasks planning —— 97
4.4.6	Examples of the Delft Design Map (DDM) results —— 101
4.4.6.1	Input-output (I-O) examples —— 101
4.4.6.2	Subprocess (SP) examples —— 103
4.5	Planning for design and experimentation in innovation —— 105
4.5.1	Design sequence ranking method —— 105
4.6	Embedding design by criteria and context setting —— 106
4.6.1	Introduction to the purpose of criteria and context setting —— 106
4.6.2	Comprehensive list of modal aspects for defining criteria from modal aspects of reality —— 106
4.6.3	SHEETS criteria list —— 108
4.7	Role of modeling and simulation in concurrent design —— 108
4.8	Exploiting experience in design (design heuristics) —— 110
4.8.1	Strength of design heuristics —— 110
4.8.2	Weaknesses in using design heuristics —— 111
4.8.3	Tapping into experience —— 111
4.9	Industrial example of design driving innovation —— 112
4.10	Exercises —— 113
	Abbreviations —— 116
	References and further reading —— 117

Part B: **Design generation**

5	General and sustainable design approaches —— 121
5.1	Introduction to general and sustainable design approaches —— 121
5.2	General design approaches —— 121
5.2.1	Product design and development —— 121
5.2.2	Product quality function deployment —— 121
5.2.3	Total (product) design (Pugh) —— 121

5.2.4	Resilient mechanical product design by VDI guidelines —— 122
5.3	Sustainable product and process design approaches —— 123
5.3.1	Introduction —— 123
5.3.2	Cradle-to-cradle product design —— 123
5.3.2.1	Design for cradle-to-cradle —— 123
5.3.3	Product and process design for circular economy (Ellen MacArthur
3.3.3	Foundation) —— 123
5.3.4	Design for industrial ecology —— 124
5.3.5	Design for industrial symbiosis —— 125
5.3.6	Product design for biomimicry —— 126
5.3.7	Design for renewable energy sources —— 127
5.3.7.1	Present bulk chemicals production from fossil fuel resources —— 12
5.3.7.2	Design for renewable energy-based product-process chain
	methods —— 128
5.4	Design for specific targets —— 128
5.4.1	Introduction —— 128
5.4.2	Design for energy efficiency —— 129
5.4.3	Design for human factors —— 135
5.4.4	Design for Six Sigma —— 137
	References —— 137
6	Scoping the design —— 140
6.1	Introduction to scoping the design —— 140
6.2	Defining design goal and name —— 140
6.2.1	Purpose design goals and names —— 140
6.2.1.1	Design goal setting —— 140
6.3	Defining the design scope (system levels, boundaries, and
	context) —— 141
6.4	Defining constraints (specifications) —— 142
6.4.1	Design constraints —— 142
6.4.2	Product specifications —— 143
6.4.3	Process specifications —— 144
6.4.3.1	Identifying reference cases to improve design constraints —— 144
6.5	Generating basic design data —— 145
6.5.1	Ideation stage —— 147
6.5.2	Concept stage —— 147
6.5.3	Data generation feasibility stage —— 149
6.5.4	Development stage —— 151
6.6	Exercises —— 152
	References and further reading —— 153

7	Executing designs —— 154
7.1	Introduction to executing designs —— 154
7.2	Synthesizing preliminary design solutions —— 155
7.2.1	Synthesizing design solutions using heuristics —— 155
7.2.1.1	General heuristics —— 155
7.2.1.2	Specific heuristics —— 156
7.2.2	Synthesizing product design —— 157
7.2.2.1	Synthesizing design: physically structured products —— 157
7.2.2.2	From functional product specification to product structure —— 158
7.2.3	Radically new process synthesis design —— 160
7.2.3.1	Introduction to process synthesis concept design —— 160
7.2.3.2	Process synthesis function design —— 160
7.2.3.3	Designing and selecting unit operations for functions —— 164
7.2.3.4	Choice of batch processing versus continuous processing —— 168
7.3	Analyze concept designs —— 169
7.3.1	Introduction to analysis —— 169
7.3.2	Analyze preliminary designs —— 169
7.3.2.1	Qualitative analysis of preliminary design solutions —— 169
7.3.2.2	Quantitative analysis of interim concept solutions —— 170
7.3.3	Best selection from alternative concept solutions —— 172
7.3.3.1	Selecting best process concept option —— 174
7.3.3.2	Economic ranking of process concepts —— 175
7.3.3.3	Overall selection between alternative process designs —— 175
7.4	Evaluate designs —— 176
7.4.1	Introduction —— 176
7.4.2	Balancing the design —— 177
7.4.3	Make design robust to future uncertainties —— 177
7.4.3.1	Increasing robustness towards future uncertainties using scenario sets —— 177
7.4.4	Robustness to competition by comparing with reference case —— 181
7.4.5	Intellectual property (IP) creation and protection —— 181
7.4.6	Selecting alternative for next stage —— 182
7.5	Report designs —— 182
7.6	Exercises —— 182
	References and further reading —— 182
8	Product modeling and optimization —— 184
8.1	Verbal, schematic, mathematical, and physical models —— 184
8.2	Process design: schematic and mathematical models useful for product design —— 186
8.3	Product design schematic models —— 189

8.3.1	House of quality model for consumer function and property function —— 189
8.3.2	Understanding the product application/use process: visualizing system splits —— 193
8.4	Mathematical models for consumer and property functions —— 195
8.4.1	Characteristic times and regime analysis —— 195
8.4.1.1	Estimation skills – Fermi problems —— 197
8.4.1.2	"Systemic" time constants – eigenvalues —— 198
8.4.2	Data-driven nonlinear product modeling: artificial neural
	networks —— 198
8.4.3	Scientific models for product state and behavior —— 199
8.4.3.1	Constituents —— 199
8.4.3.2	Product structure —— 200
8.4.3.3	Interfaces between dispersed phases —— 202
8.4.4	Product structure matrix —— 203
8.5	Relations between product and process modeling —— 204
8.5.1	Causal flow of information on process – product modeling —— 204
8.5.1.1	The product manufacturing = > product structure and state model —— 205
8.5.1.2	A product structure and state = > product properties model —— 206
8.5.1.3	The product property = > customer qualities (attributes) model —— 207
8.5.1.4	Interconnectivity between product and process models —— 207
8.5.1.5	Mathematical model-based product-process optimization —— 208
8.5.2	Notes on first-principles models of formation of a structured product —— 209
8.6	Product models: overview —— 212
8.7	Modeling for "safety, health, environment, economy, technology, social (SHEETS)" —— 215
8.8	Exercises —— 215
	Symbols —— 215
	Glossary —— 216
	References and further reading —— 217

Part C: **Design optimization**

9	Process modeling and optimization —— 223
9.1	Justification and objectives of process modeling —— 223
9.1.1	Conceptual representation of a process: network features —— 224
9.1.2	Sharing a generic view on process modeling and computing —— 225
9.2	Contributions to a <i>concept</i> stage with linear modeling —— 226
9.2.1	Modeling for a concept stage —— 226

9.2.2	Design leads to a reversal of information flow to a model —— 227
9.2.3	Modeling for the Concept stage —— 228
9.2.4	Examples for Concept stage modeling —— 228
9.3	Nonlinear process model simulations for the Development stage —— 233
9.3.1	Process representation —— 233
9.3.2	Product modeling —— 234
9.3.3	Process equipment modeling —— 234
9.3.4	Scope of a process model —— 235
9.3.5	Process analysis scenarios —— 236
9.3.6	Process performance evaluation metrics —— 236
9.3.7	Sensitivity analyses —— 237
9.3.8	Process design and synthesis cases with targets —— 238
9.3.9	Additional specification of an external scenario for a design —— 239
9.3.10	Consistency in model formulation —— 240
9.3.11	Process model computations —— 241
9.3.12	Analysis of the solution obtained from a model —— 241
9.3.13	Process performance evaluation metrics —— 242
9.3.14	Using uncertainty information in a sensitivity analysis —— 242
9.3.15	Examples for development stage modeling —— 243
9.4	Nonlinear process model optimization for a feasibility stage —— 245
9.4.1	Nonlinear modeling and optimization —— 245
9.4.2	Overview of common elements in an optimization frame —— 246
9.4.3	Mixed integer nonlinear programming format —— 247
9.4.4	Flow of information in the computational process —— 247
9.4.5	Examples for feasibility stage modeling —— 250
9.5	Flowsheet simulators and their usages —— 253
9.5.1	Flowsheet simulators —— 253
9.5.2	Usage 254
9.5.3	List of steady-state and dynamic simulation packages —— 255
9.5.4	Risks in using flow sheet simulators —— 256
9.6	Life cycle analysis packages and their usages —— 257
9.6.1	Life cycle analysis packages —— 257
9.6.2	Usage —— 257
9.7	Computational fluid dynamic (CFD) packages and their usages —— 257
9.7.1	CFD packages —— 257
9.7.2	Usage —— 258
9.8	Concluding remarks —— 258
	List of symbols, subscripts, and abbreviations —— 258
	References and further reading —— 259

10	Evaluating economic performance —— 262
10.1	Introduction —— 262
10.2	Economic project evaluation —— 263
10.2.1	Project cash flow —— 263
10.2.2	Economic potential project evaluation method —— 266
10.2.3	Simple project evaluation methods —— 266
10.2.4	Present value project evaluation methods —— 267
10.3	Manufacturing costs —— 268
10.3.1	Direct costs —— 269
10.3.2	Indirect and general costs —— 270
10.3.3	Cost sheet —— 272
10.4	Estimation of capital costs —— 272
10.4.1	Capital cost components —— 272
10.4.2	Evolution and purpose of capital cost estimates —— 278
10.4.3	Order of magnitude estimates —— 279
10.4.3.1	Existing plant data —— 279
10.4.3.2	Step counting methods —— 282
10.4.4	Study and preliminary estimates (factorial methods) —— 285
10.4.4.1	Estimation of purchased equipment cost —— 285
10.4.4.2	Overall installation (Lang) factors —— 287
10.4.4.3	Individual factors —— 288
10.5	Exercises —— 288
	Nomenclature —— 289
	References and Further Reading —— 290
11	Evaluating for safety —— 292
11.1	Introduction —— 292
11.2	Hazard and risk —— 292
11.3	Process risk management during design —— 293
11.3.1	Inherent safer design principle —— 294
11.3.2	Process risk management strategies —— 295
11.4	Hazard identification studies —— 296
11.4.1	Chemical reactivity hazards —— 296
11.4.1.1	Thermodynamic properties and thermal runaway potential —— 297
11.4.1.2	Chemical composition, structure, and bonds —— 298
11.4.1.3	Chemical interactions' hazards —— 300
11.4.2	Dow index methods —— 307
11.4.3	Bowtie assessments —— 309
11.5	Consequence assessment —— 311
11.5.1	Fire models —— 311
11.5.1.1	Pool fire —— 312
11.5.1.2	let fire 314

11.5.1.3	Fire balls/BLEVEs —— 314
11.5.1.4	Flash fires —— 315
11.5.2	Explosion models —— 315
11.5.2.1	TNT equivalency —— 316
11.5.2.2	Vapor cloud explosions: multi-energy method —— 318
11.5.2.2	Toxic exposure —— 322
11.6	Codes, standards, and designing ALARP —— 324
11.6.1	Regulations, codes, and engineer standards —— 324
11.6.2	ALARP principle —— 325
11.7	Risk analysis —— 326
11.7.1	Qualitative assessments —— 327
11.7.2	Quantitative assessments — 328
11.7.2.1	Fault tree analysis —— 328
11.7.2.2	Event tree analysis —— 331
11.7.2.3	Individual and group risk —— 332
11.8	Exercises — 333
	References —— 334
	Further reading —— 336
12	Evaluating for sustainable development, environmental impact,
	social acceptance —— 337
12.1	Introduction —— 337
12.2	Contributions to the UN sustainable development goals —— 337
12.2.1	Example use of SDG in process concept design —— 339
12.3	Environmental impact evaluation by life cycle assessment —— 341
12.3.1	Introduction to environmental impact evaluation by life cycle
	assessment —— 341
12.3.2	Rapid LCA method for discovery and concept innovation stages —— 342
12.3.3	Environmental evaluation feasibility and development stages —— 348
12.3.3.1	Fugitive emissions evaluation process —— 348
12.3.3.2	A remark on scope 1, 2, and 3 environmental emissions —— 349
12.3.3.3	Example case LCA: new infant milk formula product and package —— 349
12.4	Evaluating for social acceptance —— 351
12.4.1	Social acceptance concept stage —— 351
12.4.2	Social acceptance at the end of the development stage —— 352
12.5	Exercises —— 353
	References and further reading —— 354
13	Communicating —— 355
13.1	Communicating: project team and stakeholders —— 355
13.2	Communicating using the Delft Design Map (DDM) —— 355
13.3	Activity reports —— 357

13.4	Meetings: agenda and minutes of meeting (MOM) —— 358
13.4.1	Standard agenda, MOM structure (internal and external) —— 358
13.5	Models 359
13.6	Presentations —— 359
13.6.1	Quality checks: FOOFI list for presentations —— 360
13.7	Reporting in stage-gate reviews —— 360
13.7.1	Concept stage —— 360
13.7.2	Feasibility and development stages —— 364
13.7.3	Quality checks: FOOFI list for reports —— 368
13.8	Exercises —— 369
	Abbreviations —— 370
	References and further reading —— 371

Part D: Education

14	Education —— 3/5
14.1	(Bio)chemical design education: a long history —— 375
14.2	Education programs —— 376
14.2.1	BSc programs: TU Delft —— 377
14.2.2	MSc programs: TU Delft —— 379
14.2.3	PhD programs: TU Delft —— 379
14.2.4	EngD programs: TU Delft —— 380
14.3	Design-oriented courses at TU Delft's BSc, MSc, PhD, and EngD levels —— 385
14.3.1	BSc molecular science and technology (MST) and BSc life science and technology (LST) —— 385
14.3.1.1	Chemical product design (BSc-MST, 4052TLEON3, 6 ECTS) —— 385
14.3.1.2	Design of sustainable biotechnological processes (BSc-LST, LB2611, 5
	ECTS) 385
14.3.2	MSc chemical engineering —— 386
14.3.2.1	Product and process design (CH3803, 6 ECTS) —— 386
14.3.2.2	Conceptual design project (CH3843, 12 ECTS) —— 386
14.3.3	Process and product design EngD courses —— 387
14.3.3.1	Advanced principles in product and process design (ST6064, 6 ECTS) —— 387
14.3.3.2	Process simulation laboratory (ASPEN Plus®) (ST6063A, 2 ECTS) —— 388
14.3.3.3	Advanced process energy analysis and optimization (ST7101, 3 ECTS) —— 388
14.3.3.4	Technology management, economical evaluation in the process industry (ST6612, 6 ECTS) —— 388
14.3.3.5	(Personal and) project management (ST6111, 2 ECTS) —— 389

14.3.3.6	Sustainable design of processes, products, and systems EngD course (ST7111, 3 ECTS) —— 389
14.3.3.7	Group design project (ST6802, 21 ECTS, ST6814, 17 ECTS) —— 390
14.3.3.8	
14.3.3.9	Individual design project (ST6902, or ST6903, 60 ECTS) —— 392
14.3.4	Advanced courses (PhD, EngD, and participants from industry) —— 395
14.3.4.1	Chemical product-centric sustainable process design (PhD/EngD
	course) —— 395
14.3.4.2	Other advanced courses —— 396
14.3.5	(Process) systems engineering (PSE, SE) education development —— 397
14.4	Glossary —— 397
	References —— 398
А3	Appendix to Chapter 3 —— 401
A4	Appendix belonging to Chapter 4 —— 405
A9	Appendix belonging to Chapter 9: Cases of process modeling for simulation and optimization —— 411
A13	Appendix to Chapter 13: communicating —— 463

Index ---- 481