

Contents

Introduction	1
<i>Chapter 1. Rates in Open System in the Steady State: Definitions and Relations</i>	5
A. One Pool Embedded in a Multicompartmental System	6
Rates of Entry	6
Production Rate	6
Rates of Removal	6
B. Two Related Pools Embedded in a Multicompartmental System	6
Rates of Entry, Exit, and Transfer	6
The Transfer Factor	9
Calculations of Rates from Values of Production Rates (PR's) and Transfer Factors (ϱ 's)	11
Further Description of the Rate of Transfer of Material from One Pool to Another	12
The Contribution Factor	14
Application of the Two-Pool Analysis to a Hormonal System	16
C. Three Related Pools Embedded in a Multicompartmental System	18
Rates of Entry, Exit, and Transfer	18
Production Rates	18
Contribution Factor	20
Calculation of Rates from Values of PR's and ϱ 's	20
Application of the Three-Pool Analysis to a Hormonal System	21
D. General Systems of m Related Pools	23
Expanded Subsystems of Pools	25
<i>Chapter 2. Infusion of Tracers at a Constant Rate</i>	29
A. Multicompartmental System in Which Only One Pool is Studied	29
B. Multicompartmental System in Which Two Pools are Studied	30
Rates	30
Transfer Factors (ϱ)	33

Contribution Factors (Δ)	34
Rates of Transfer Which Exclude Recycle	34
C. Multicompartmental System in Which Three Pools are Studied	35
Rates	35
Contribution Factors	35
“Non-Recycling” Transfer Rates	36
Transfer Factors in a Subsystem of Three Primary Pools Connected in Series	37
D. General m-Primary-Pool Subsystem	37
Rates	38
Rates in Terms of PR's and ϱ 's	39
Contribution Factors	39
Proof of the Relationship $PR_1 = v_{01} + Q_{21} v_{02} + \dots + Q_{m1} v_{0m}$	40
Relationships Between Rates in a System of m-Primary Pools and a Subsystem of Some of these Pools	41
Chapter 3. Rapid Injection of Tracers	44
A. Calculations Based on Areas under Specific Activity Curves	44
Production Rates (PR) and Transfer Factors (ϱ)	44
Rates	45
B. Relationships Between Data Obtained by Rapid Injection and by Constant Infusion of a Tracer	46
C. Calculations Based on the Shape of Specific Activity Curves	51
Total Number of Pools in the System Undetermined	52
Pool Size	52
Rates of Exit	53
Rates of Reentry, Fractional Loss	55
“Turnover Times”	55
Mean Residence Time (\bar{T})	56
Mean Transit Time (\bar{t})	56
Mean Number of Cycles (ν)	56
Mean Recycling Time (\bar{t}_{ii})	56
Mean Transfer Time (\bar{t}_{ij})	57
Two-Primary-Pool Subsystem	59
D. Determination of Areas and Shapes of Specific Activity Curves	60
Graphic Methods to Measure Areas	60
Procedures to Determine Specific Activity Functions	61
“Peel-off” Graphic Method	61
Numerical (Computer) Methods	62

Contents	IX
<i>Chapter 4. Tracer Kinetics in Compartmental Models</i>	71
Rate Constants (k's)	71
Fractional Rates (h's)	72
A. One-Pool System	73
Rapid Injection of the Tracer	73
Infusion of the Tracer at a Constant Rate	75
B. Two-Pool Systems	76
Rapid Injection of the Tracer	76
Analysis of Two-Pool Systems with Equal Exponential Constants	80
Analysis of a Two-Pool Closed System	81
Calculation of Parameters of the Two-Pool System from Values of α 's and D's	82
Infusion of Tracers into the Pools at a Constant Rate	93
C. Multiple-Pool Systems	94
h's in Terms of α 's and D's	94
Unrestricted Three-Pool Systems	96
Irreducible System: Number of Pools Versus Number of Exponential Terms in Specific Activity Functions	98
Linearly Dependent Specific Activities	100
Repeated α 's	102
Complex α 's	102
<i>Chapter 5. Interpretation of Isotopic Data from Blood-Borne Compounds</i>	105
I. Data: Isotopic Steady-State Values or Areas under Concentration Curves	106
A. One Tracer Administered	106
Production Rates	106
Metabolic Clearance Rates	107
Sources of a Circulating Hormone	114
Measurement of Blood Flow	115
B. Two Tracers Administered	116
Conversion Factors (ϱ 's)	116
Rates of Secretion and Metabolism	117
Pathways of Conversion of a Circulating Hormone to Another	119
Fetomaternal Transfer and Production of Hormones	120
Rates of Metabolism in Specific Organs	121
C. Three Tracers Administered	124

II. Data: Specific Activity Functions	125
Size of the Pool of Fast Initial Distribution of the Intravenously Injected Tracer	126
"Volume" of the Space of Fast Initial Distribution	126
Rates of Exit of a Compound from Circulation	127
Reentry into Circulation	127
Average Times of Transit, Residence, and Recycling of Hormones in Circulation	127
III. Calculations Based on Models Involving a Limited Number of Compartments	130
IV. Analysis of Systems that are Not at the Steady State	133
Note 5	137
"Peel-off" Method	138
Computer Method (R. J. Bogumil)	140
Discussion of Results	142
<i>Chapter 6. Rates of Secretion and Metabolism of Hormones Estimated from Specific Activities of Urinary Metabolites</i>	148
A. Estimation of Hormone Secretion Rates	149
Case 1. Metabolites Derived from one Secreted Precursor (e.g., Aldo- sterone)	149
Case 2. Metabolites Derived from Two Secreted Precursors (e.g., Dehydroisoandrosterone)	152
Case 3. Metabolites Derived from Several Secreted Precursors (e.g., Testosterone)	156
B. Interpretation of Specific Activity Data Obtained from Labeled Urinary Metabolites	158
C. Parameters of Metabolism Estimated from Labeled Urinary Me- tabolites	158
Conversion of a Precursor to Urinary Metabolites	158
Relative Conversion of Two Precursors to a Metabolite	159
Metabolites "Uniquely Derived" from a Circulating Compound .	159
Relation Between the Specific Activities of a Circulating Compound and of a Urinary Metabolite Uniquely Derived from It	160
Measurement of Production Rates and Rates of Interconversion of Circulating Compounds	161
Production Rates	161
Rates of Interconversion	162
D. Labeled Urinary Metabolites in Pregnancy	162
Secretion Rates	162
Fetomaternal Transfers	164
E. Comments	164

Contents	XI
<i>Chapter 7. In vitro Tracer Superfusion Experiments</i>	165
Superfusion Versus Batch Incubations	165
Use of Two Metabolically Related Tracers in Superfusion Experiments	166
Model	167
Calculation of Rates of Entry of Superfused Tracer into Cells	167
Fraction of a Superfused Tracer Returning from the Cells to the Medium	170
Fraction of Superfused Tracer Appearing in the Perfusate as a Metabolite	170
Conversion Factors	170
Rates in the Superfusion Model	170
Intracellular Clearance	171
A Special Case: Nonsteroidogenic Tissue	172
Validation of the Model	172
Applications	174
<i>References</i>	176
<i>Subject Index</i>	185