Contents

Part I	Opening Session	
New Looks at By N.F. Ramse		2
	rology and the Fundamental Physical Constants y and J.L. Flowers (With 2 Figures)	10
in Free Space	troscopy on a Single Atomic System at Rest	15
Part II	Use and Availability of the Frequency Reference	
	ability of the Frequency Standards	22
	lications of Frequency Standards ta (With 2 Figures)	23
	e Best Clock – an Update (With 6 Figures)	29
	Primary Frequency Standards and J. Azoubib (With 5 Figures)	37
Part III	Established Microwave Standards	
	crowave Frequency Standards	44
	w on the Accuracy Performances and on the Prospects of of Primary Cesium Beam Frequency Standards	46
The Accuracy	of Commercial Cesium Beam Frequency Standards chi (With 2 Figures)	52

Reproducibility of H Maser Standards By S.B. Crampton, J.J. Krupczak, and Phat Vu (With 2 Figures)	
Advances in the Theory of Gas-Cell Atomic Frequency Standards By J.C. Camparo (With 2 Figures)	62
Part IV New Standards	
Presentation of the Session Entitled "New Standards" By C. Audoin	70
High Accuracy Spectroscopy of Stored Ions By D.J. Wineland, W.M. Itano, J.C. Bergquist, J.J. Bollinger, F. Diedrich, and S.L. Gilbert (With 1 Figure)	71
Mg Beam Frequency Standard By A. Godone, E. Bava, and C. Novero (With 4 Figures)	78
Part V Cold H Masers	
Introduction to Cold Hydrogen Masers By S.B. Crampton (With 1 Figure)	86
The Cold Hydrogen Maser By R.F.C. Vessot, E.M Mattison, R.L. Walsworth, and I.F. Silvera (With 3 Figures)	88
Performance of the UBC Cryogenic Hydrogen Maser By M.D. Hürlimann, W.N. Hardy, M.E. Hayden, and R.W. Cline (With 6 Figures)	95
Quantum Scattering of Atomic Hydrogen from the Surface of Liquid Helium	
By J.T.M. Walraven and J.J. Berkhout (With 2 Figures)	102
Part VI Optically Pumped Cesium	
Influence of Low Magnetic Field on Pumping Efficiency in an Optically Pumped Cesium Beam Resonator	
By G. Théobald, P. Cérez, N. Dimarcq, and V. Giordano (With 6 Figures)	110
An Optically Pumped Primary Frequency Standard By R.E. Drullinger, J.H. Shirley, D.J. Glaze, and L. Hollberg	116
Design of an Optically Pumped Cs Laboratory Frequency Standard By E. de Clercq, A. Clairon, B. Dahmani, A. Gérard, and P. Aynié	4.4-
(With 7 Figures)	120

Preliminary Results and Some Considerations on Optically Pumped Cesium Beam Frequency Standard By Wang Yiqiu, Xie Linzhen, Wang Depei, and Yao Shutong (With 5 Figures)	126
Experimental Results on an Optically Pumped Cs Frequency Standard By S. Ohshima, Y. Nakadan, T. Ikegami, and Y. Koga (With 4 Figures)	132
Temperature Measurements of Laser Cooled Cesium Atoms By C. Salomon and J. Dalibard (With 4 Figures)	137
Part VII Local Oscillators	
Local Oscillators – Introductory Remarks By V.F. Kroupa	144
Stability of Frequency Locked Loops By F.L. Walls (With 3 Figures)	145
1/f Noise in Oscillators: Theoretical and Experimental Progresses By JJ. Gagnepain (With 5 Figures)	150
RF Local Oscillators for Future Frequency Standards By R.J. Besson	157
Ultra-Stable Cavity-Stabilized Lasers with Subhertz Linewidth By D. Hils and J.L. Hall (With 7 Figures)	162
Low-Noise and Stable LO's for Deep Space Applications By L. Maleki (With 2 Figures)	174
Part VIII Frequency Synthesis	
Progress in Infrared Frequency Synthesis By F. Bertinetto	180
Coherent Frequency Measurements of the Hfs-Resolved Methane Line By G. Kramer, C.O. Weiss, and B. Lipphardt (With 5 Figures)	181
Phase-Locked Frequency Chains to 130 THz at NRC By B.G. Whitford (With 3 Figures)	187
Direct Comparison of the Characteristics of Optical and Hydrogen Frequency Standards By S.N. Bagayev, V.P. Chebotayev, V.M. Klementyev, B.A. Timchenko, and V.F. Zakharyash (With 4 Figures)	191
Part IX Near IR Frequency Standards	-
The Physics of Optical Frequency Standards Using Saturation Methods By C.J. Bordé (With 10 Figures)	196

Double-Mode He-Ne/CH ₄ Laser Stabilized by Methane Resonances with Relative Width of 10^{-11} By M.A. Gubin, A.V. Nikulchin, and D.A. Tyurikov (With 3 Figures)	206
State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO ₄ and CO ₂ By A. Clairon, O. Acef, C. Chardonnet, and C.J. Bordé (With 13 Figures)	212
Part X Solid State Lasers	
Solid State Lasers Introduction By H.R. Telle	224
Narrow-Linewidth Operation of Diode-Laser-Pumped Nonplanar Ring Oscillators	
By A.C. Nilsson, T. Day, A.D. Farinas, E.K. Gustafson, and R.L. Byer (With 4 Figures)	225
Optical Stabilization of Semiconductor Lasers By L. Hollberg (With 3 Figures)	231
Frequency Stabilization of Highly Coherent AlGaAs Diode Lasers By A.M. Akulshin, V.V. Nikitin, V.A. Sautenkov, V.V. Vasiliev, V.L. Velichansky, E.K. Yurkin, and A.S. Zibrov (With 4 Figures)	236
Frequency Control of Semiconductor Lasers By M. Ohtsu, K. Kuboki, C.H. Shin, and M. Murata (With 3 Figures)	242
Part XI Containment of Neutrals	
Recent Progress in the Control of the Motion of Atomic Beams by Laser Fields	
By V.I. Balykin, V.S. Letokhov, Y.B. Ovchinnikov, A.I. Sidorov, and S.V. Shul'ga (With 6 Figures)	248
Atoms Laser-Cooled Below the Doppler-Cooling Limit By P.D. Lett, C.I. Westbrook, R.N. Watts, S.L. Rolston, P.L. Gould, H.J. Metcalf, and W.D. Phillips (With 4 Figures)	264
High-Contrast, High-Resolution Single Recoil Component Ramsey Fringes in Ca	070
By J. Helmcke, J. Ishikawa, and F. Riehle (With 4 Figures)	270
Obtaining of Supernarrow Saturated Absorption Resonances on Cold Particles and Their Use for Optical Frequency Standards By S.N. Bagayev, V.P. Chebotayev, A.K. Dmitriyev, A.E. Om,	277
Y.V. Nekrasov, and B.N. Skvortsov (With 4 Figures) Laser Cooling in Calcium and Magnesium Atomic Beams	277
By N. Beverini, E. Maccioni, D. Pereira, F. Strumia, and G. Vissani (With 2 Figures)	282

Introduction to the Session on Trapped Ions By H. Dehmelt (With 1 Figure)	286
Hg ⁺ Single Ion Spectroscopy By J.C. Bergquist, F. Diedrich, W.M. Itano, and D.J. Wineland (With 3 Figures)	287
Lifetime Measurements of Metastable States in Ions By G. Werth (With 2 Figures)	293
Nonlinear Effects in Trapped Three-Level Ions By H. Gilhaus, T. Sauter, R. Blatt, W. Neuhauser, and P.E. Toschek (With 10 Figures)	300
New Frequency Standards Based on Yb ⁺ By R. Blatt, R. Casdorff, V. Enders, W. Neuhauser, and P.E. Toschek (With 5 Figures)	306
Laser Spectroscopy of a Single Barium Ion Using "Shelving" By W. Nagourney, Nan Yu, and H. Dehmelt (With 4 Figures)	312
Frequency Standards Utilizing Penning Traps By J.J. Bollinger, S.L. Gilbert, W.M. Itano, and D.J. Wineland (With 2 Figures)	319
XII.1 General Physics	
The Interferometric Detection of Gravitational Waves – a Status Report By A. Brillet	326
Relativity, Pulsar Time, and Atomic Time By J.H. Taylor (With 2 Figures)	332
Testing Spatial Isotropy Using Optically-Pumped ¹⁹⁹ Hg and ²⁰¹ Hg By S.K. Lamoreaux (With 2 Figures)	338
XII.2 Quantum Physics	
Squeezed States, Interferometric Limits and Back-Action Evasion By R.E. Slusher, A. La Porta, B. Yurke, and P. Grangier (With 4 Figures)	343
Mass Ratio Spectroscopy and the Proton's Atomic Mass By R.S. Van Dyck, Jr., F.L. Moore, D.L. Farnham, and P.B. Schwinberg (With 4 Figures)	349
The Physics of Circular Atoms and the Measurement of the Rydberg Constant	
By M. Gross, J. Hare, P. Goy, and S. Haroche (With 3 Figures)	356

Spectroscopy of Atomic Hydrogen Rydberg States By M. Allegrini, F. Biraben, B. Cagnac, J.C. Garreau, and L. Julien	
(With 4 Figures)	362
Part XIII Poster Sessions	
The Primary Cesium Atomic Clocks of the PTB By A. Bauch and T. Heindorff (With 3 Figures)	370
Metrological Parameters of the Primary Cesium Beam Frequency Standards in the National Time and Frequency Standard of the USSR By Y.G. Abashev, V.N. Baryshev, G.A. Yolkin, and Y.N. Yakovlev (With 4 Figures)	374
Work on Cesium Standards at NRC By JS. Boulanger and R.J. Douglas	379
Optical Pumping with Finite-Linewidth Lasers: Predictions for the Optically Pumped Cesium Beam Frequency Standard By P. Tremblay and C. Jacques (With 5 Figures)	382
Work on Primary Cesium Beam Frequency Standard at CRL By K. Nakagiri, M. Shibuki, H. Okazawa, M. Aida, and N. Kotake (With 1 Figure)	386
Improvement and Reevaluation of Chinese Primary Frequency Standard By Yang Xiaoren, Wu Changhua, and Li Mingshou (With 4 Figures)	389
Preliminary Results on Small Optically Pumped Cesium Resonator By P. Thomann, H. Schweda, and G. Busca (With 3 Figures)	392
Determining the Velocity Distribution in Cesium Beams from the Response to a Microwave Pulse By G.D. Rovera, A. Premoli, and A. De Marchi (With 5 Figures)	395
Physical Problems Determining the Reliability of the Classical Microwave Frequency Standards	200
By G. Busca, H. Schweda, P. Thomann, and L.G. Bernier Difference Frequency in Two Isotopes Atomic Beam Magnetic Resonance Apparatus as Candidate for Frequency Standard By K.W. Radecki (With 1 Figure)	398 400
Studies and Developments of H-Masers at LHA By R. Barillet, P. Lesage, P. Petit, J. Viennet, and C. Audoin	402
Hydrogen Maser Auto-Tuning Systems By D. Morris (With 2 Figures)	404
Work on Hydrogen Maser By Cheng Yumin (With 1 Figure)	406

Advanced Atomic Hydrogen Masers By H. Peters, B. Owings, and P. Koppang (With 1 Figure)	408
Recent Progress in Oscillating Compact Hydrogen Masers By H.T.M. Wang and R.R. Hayes (With 1 Figure)	410
Shapes of Storage Bulbs for Hydrogen Masers for Maximum Filling Factor By J.E.B. Ponsonby (With 1 Figure)	412
H Maser and Rb Work in Romania By O. Gheorghiu, L. Giurgiu, M. Dinca, C. Szekely, and C. Mandache (With 2 Figures)	414
Collisions of Atoms in Microwave and Laser Fields By B.J. Verhaar and H.T.C. Stoof	416
Temperature of Mercury Ions Stored in an R.F. Cylindrical Trap By C. Meis, M. Jardino, B. Gely, and M. Desaintfuscien (With 1 Figure)	418
A High Stability Oscillator Based on a Sapphire Loaded Superconducting Cavity Resonator By S.K. Jones, D.G. Blair, and A. Giles (With 3 Figures)	420
Recent Scientific Results at the Istituto di Radioastronomia By R. Ambrosini (With 2 Figures)	425
The Time and Frequency System at the Matera Space Geodesy Center By A. Cenci, L. Garramone, G. Bianco, B. Pernice, and G. Sylos Labini (With 2 Figures)	427
Optical Pumping of Rubidium Vapor with Laser-Diodes: Application to Coherent Optical Communications By M. Têtu, N. Cyr, B. Villeneuve, V. Giordano, S. Thériault, and M. Breton (With 3 Figures)	431
Improvements in Short- and Long-Term Frequency Stabilities of Diode Laser Pumped Rubidium Atomic Clock By M. Hashimoto and M. Ohtsu (With 2 Figures)	434
Efficient Frequency Noise Reduction of GaAlAs Laser Diodes by Negative Electronic Feedback By H.R. Telle and B. Lipphardt (With 2 Figures)	436
Some Applications of Extended-Cavity Semiconductor Lasers By M. de Labachelerie, K. Diomande, and P. Cérez	439
Ultra-Narrow Linewidth of Optically Self-Locked Diode Lasers By C. Bréant, P. Laurent, and A. Clairon (With 5 Figures)	441
Manipulation of Metastable Helium with a LNA Laser By R. Kaiser, N. Vansteenkiste, E. Arimondo, A. Aspect, C. Cohen- Tannoudji, M. Karrais, and H. Haberland (With 2 Figures)	445

Quantitative Study of Laser Cooling in a Penning Trap By W.M. Itano, L.R. Brewer, D.J. Larson, J.J. Bollinger, S.L. Gilbert, and D.J. Wineland	447
Laser Cooling and Resonant Transport of MG ⁺ Ions in a Penning Trap By Jin Yu, F. Plumelle, and M. Desaintfuscien (With 1 Figure)	449
Trapped Yb ⁺ as a Potential Optical Frequency Standard By G.P. Barwood, A.S. Bell, P. Gill, and H.A. Klein (With 3 Figures)	451
Kinetic Energy and Spatial Distribution of Ion Clouds in Paul Traps By R. Blatt, I. Siemers, M. Schubert, T. Sauter, and W. Neuhauser (With 2 Figures)	453
Tuning Characteristic of 543 nm Internal Mirror He-Ne Laser for Frequency Stabilization By T. Tako, M. Yamashita, and M. Suzuki (With 2 Figures)	455
Double-Mode CO ₂ Laser with Complex Resonator for Frequency Standards and Superhigh Resolution Spectroscopy By V.Y. Kurochkin, V.N. Petrovskiy, E.D. Protsenko, and A.N. Rurukin	457
Laser Frequency Measurement at NPL By D.J.E. Knight, K.I. Pharaoh, and M.J. Padgett	459
Saturation Spectroscopy with the NH ₃ Laser By K.J. Siemsen, A.A. Madej, and J. Reid (With 1 Figure)	461
OsO ₄ Molecular Beam for High Accuracy Frequency Standard By A. Godone, M.P. Sassi, E. Bava, and C. Caldera	463
He-Ne Laser at 612 nm Stabilized to ¹²⁷ I ₂ Using FM Spectroscopy By F. Bertinetto, G.B. Picotto, P. Cordiale, and S. Fontana (With 1 Figure)	465
Frequency Stabilization of a 543.5 nm Wavelength He-Ne Laser to an Iodine Absorption Line	
By U. Brand and J. Helmcke (With 2 Figures)	46′
Measurement of Isotope Shift in Optical Transitions of Atomic Oxygen By G.M. Tino, K. Ernst, A. Sasso, and M. Inguscio (With 3 Figures)	469
Selective Electron Attachment of SF_6 Molecules in Collision with Xe(nf) Rydberg Atoms in a R.F. Quadrupole Trap and Correlative Effects on SF_6^- Ions Lifetime	
By S. Rajab Pacha, G. Brincourt, R. Catella, Y. Zerega, and J. Andre (With 1 Figure)	47
Closing Remarks	475
List of Participants	47′
Index of Contributors	48