

CONCEPTUAL PHYSICS

THIRTEENTH EDITION

Paul G. Hewitt

written and illustrated by

Paul G. Hewitt

City College of San Francisco

Conceptual Physics, Global Edition

Table of Contents

	`	_		_	
(•	n	v	e	r

Title Page

Copyright

Dedication

Some Significant Dates In The History Of Physics

Contents in Brief

Contents in Detail

Conceptual Physics Photo Album

To the Student

To the Instructor

Acknowledgments

Chapter 1. About Science

1.1 Scientific Measurements

How Eratosthenes Measured the Size of Earth

Practicing Physics

Size of the Moon

Distance to the Moon

Distance to the Sun

Size of the Sun

MathematicsThe Language of Science

1.2 Scientific Methods

The Scientific Attitude

Dealing with Misconceptions

1.3 Science, Art, and Religion

Fake Science

1.4 Science and Technology

Risk Assessment

- 1.5 PhysicsThe Basic Science
- 1.6 In Perspective

Part One: Mechanics

Chapter 2. Newtons First Law of MotionInertia

2.1 Aristotle on Motion

Aristotle (384322 BC)

Copernicus and the Moving Earth

2.2 Galileos Experiments

Leaning Tower

Inclined Planes

Galileo Galilei (15641642)

2.3 Newtons First Law of Motion

Personal Essay

2.4 Net Force and Vectors

2.5 The Equilibrium Rule

Practicing Physics

2.6 Support Force

2.7 Equilibrium of Moving Things

2.8 The Moving Earth

Chapter 3. Linear Motion

3.1 Speed

Instantaneous Speed

Average Speed

Motion Is Relative

3.2 Velocity

Constant Velocity

Changing Velocity

3.3 Acceleration

Acceleration on Galileos Inclined Planes

3.4 Free Fall

How Fast

How Far

How Quickly How Fast Changes

Hang Time

3.5 Velocity Vectors

Chapter 4. Newtons Second Law of Motion

- 4.1 Forces
- 4.2 Friction
- 4.3 Mass and Weight

Mass Resists Acceleration

4.4 Newtons Second Law of Motion

- 4.5 When Acceleration Is gFree Fall
- 4.6 When Acceleration Is Less Than gNonfree Fall

Problem Solving

Chapter 5. Newtons Third Law of Motion

- 5.1 Forces and Interactions
- 5.2 Newtons Third Law of Motion

Simple Rule to Identify Action and Reaction

Defining Your System

5.3 Action and Reaction on Different Masses

Practicing Physics: Tug-Of-War

- 5.4 Vectors and the Third Law
- 5.5 Summary of Newtons Three Laws

Chapter 6. Momentum

- 6.1 Momentum
- 6.2 Impulse
- 6.3 Impulse-Momentum Relationship

Case 1: Increasing Momentum

Case 2: Decreasing Momentum Over a Long Time

Case 3: Decreasing Momentum Over a Short Time

- 6.4 Bouncing
- 6.5 Conservation of Momentum

Conservation Laws

6.6 Collisions

Problem Solving

6.7 More Complicated Collisions

Chapter 7. Energy

- 7.1 Work
- 7.2 Power

Mechanical Energy

- 7.3 Potential Energy
- 7.4 Kinetic Energy
- 7.5 WorkEnergy Theorem
- 7.6 Conservation of Energy

Circus Physics

Junk Science

- 7.7 Machines
- 7.8 Efficiency
- 7.9 Major Sources of Energy

Recycled Energy

Chapter 8. Rotational Motion

8.1 Circular Motion

Wheels On Railroad Trains

8.2 Centripetal Force

Practicing Physics: Water-Bucket Swing

8.3 Centrifugal Force

Centrifugal Force in a Rotating Reference Frame

Simulated Gravity

- 8.4 Rotational Inertia
- 8.5 Torque
- 8.6 Center of Mass and Center of Gravity

Locating the Center of Gravity

Stability

- 8.7 Angular Momentum
- 8.8 Conservation of Angular Momentum

Chapter 9. Gravity

- 9.1 The Universal Law of Gravity
- 9.2 The Universal Gravitational Constant, G
- 9.3 Gravity and Distance: The Inverse-Square Law
- 9.4 Weight and Weightlessness
- 9.5 Ocean Tides

Tidal Calendars

Tides in the Earth and Atmosphere

Tidal Bulges on the Moon

9.6 Gravitational Fields

Gravitational Field Inside a Planet

Einsteins Theory of Gravitation

- 9.7 Black Holes
- 9.8 Universal Gravitation

Chapter 10. Projectile and Satellite Motion

10.1 Projectile Motion

Projectiles Launched Horizontally

Projectiles Launched at an Angle

Practicing Physics: Hands-On Dangling Beads

Hang Time Revisited

- 10.2 Fast-Moving ProjectilesSatellites
- 10.3 Circular Satellite Orbits
- 10.4 Elliptical Orbits

World Monitoring By Satellite

10.5 Keplers Laws of Planetary Motion

Finding Your Way

- 10.6 Energy Conservation and Satellite Motion
- 10.7 Escape Speed

Part Two: Properties of Matter

Chapter 11. The Atomic Nature of Matter

11.1 The Atomic Hypothesis

Falling Alice

- 11.2 Characteristics of Atoms
- 11.3 Atomic Imagery
- 11.4 Atomic Structure

The Elements

11.5 The Periodic Table of the Elements

Relative Sizes of Atoms

- 11.6 Isotopes
- 11.7 Molecules
- 11.8 Compounds and Mixtures
- 11.9 Antimatter

Dark Matter

Chapter 12. Solids

12.1 Crystal Structure

Crystal Power

- 12.2 Density
- 12.3 Elasticity
- 12.4 Tension and Compression

Practicing Physics: Stick Strength

12.5 Arches

Additive Manufacturing Or 3-D Printing

12.6 Scaling

Chapter 13. Liquids

- 13.1 Pressure
- 13.2 Pressure in a Liquid

Water And Its History

- 13.3 Buoyancy
- 13.4 Archimedes Principle

Archimedes And The Gold Crown

13.5 What Makes an Object Sink or Float?

13.6 Flotation

Floating Mountains

- 13.7 Pascals Principle
- 13.8 Surface Tension
- 13.9 Capillarity

Chapter 14. Gases

- 14.1 The Atmosphere
- 14.2 Atmospheric Pressure

The Barometer

- 14.3 Boyles Law
- 14.4 Buoyancy of Air
- 14.5 Bernoullis Principle

Applications of Bernoullis Principle

Newtonian Air Lift

Practicing Physics

14.6 Plasma

Plasma in the Everyday World

Plasma Power

Part Three: Heat

Chapter 15. Temperature, Heat, and Expansion

15.1 Temperature

15.2 Heat

Measuring Heat

- 15.3 Specific Heat Capacity
- 15.4 The High Specific Heat Capacity of Water
- 15.5 Thermal Expansion

Expansion of Water

Life At The Extremes

Chapter 16. Heat Transfer

- 16.1 Conduction
- 16.2 Convection

Practicing Physics

16.3 Radiation

Emission of Radiant Energy

Absorption of Radiant Energy

Reflection of Radiant Energy

Cooling at Night by Radiation

16.4 Newtons Law of Cooling

- 16.5 The Greenhouse Effect
- 16.6 Climate Change
- 16.7 Solar Power

Spreading Solar Energy

16.8 Controlling Heat Transfer

Chapter 17. Change of Phase

- 17.1 Evaporation
- 17.2 Condensation

Condensation in the Atmosphere

Fog and Clouds

17.3 Boiling

Geysers

Boiling Is a Cooling Process

Boiling and Freezing at the Same Time

17.4 Melting and Freezing

Regelation

17.5 Energy and Changes of Phase

Practicing Physics

Chapter 18. Thermodynamics

18.1 Absolute Zero

Internal Energy

- 18.2 First Law of Thermodynamics
- 18.3 Adiabatic Processes
- 18.4 Meteorology and the First Law
- 18.5 Second Law of Thermodynamics

Heat Engines

Thermodynamics Dramatized!

- 18.6 Energy Tends to Disperse
- 18.7 Entropy

Part Four: Sound

Chapter 19. Vibrations and Waves

19.1 Good Vibrations

Vibration of a Pendulum

19.2 Wave Description

19.3 Wave Motion

Practicing Physics

Transverse Waves

Longitudinal Waves

- 19.4 Wave Speed
- 19.5 Wave Interference

Standing Waves

- 19.6 Doppler Effect
- 19.7 Bow Waves
- 19.8 Shock Waves

Chapter 20. Sound

20.1 Nature of Sound

Media That Transmit Sound

20.2 Sound in Air

Loudspeaker

Speed of Sound in Air

Practicing Physics

Energy in Sound Waves

Measuring Waves

- 20.3 Reflection of Sound
- 20.4 Refraction of Sound
- 20.5 Forced Vibrations

Natural Frequency

- 20.6 Resonance
- 20.7 Interference
- 20.8 Beats

Radio Broadcasts

Chapter 21. Musical Sounds

- 21.1 Noise and Music
- 21.2 Pitch
- 21.3 Sound Intensity and Loudness
- 21.4 Quality
- 21.5 Musical Instruments
- 21.6 Fourier Analysis
- 21.7 From Analog to Digital

Part Five: Electricity and Magnetism

Chapter 22. Electrostatics

- 22.1 Electric Forces
- 22.2 Electric Charges
- 22.3 Conservation of Charge

Electronics Technology And Sparks

22.4 Coulombs Law

22.5 Conductors and Insulators

Semiconductors

Transistors

Superconductors

22.6 Charging

Charging by Friction and Contact

Charging by Induction

22.7 Charge Polarization

Microwave Oven

22.8 Electric Field

Electric Shielding

22.9 Electric Potential

Electric Energy Storage

Van de Graaff Generator

Chapter 23. Electric Current

- 23.1 Flow of Charge and Electric Current
- 23.2 Voltage Sources
- 23.3 Electrical Resistance
- 23.4 Ohms Law

Ohms Law and Electric Shock

23.5 Direct Current and Alternating Current

Converting AC to DC

- 23.6 Speed and Source of Electrons in a Circuit
- 23.7 Electric Power
- 23.8 Electric Circuits

Series Circuits

Parallel Circuits

Fuel Cells

Combining Resistors In A Circuit

Parallel Circuits and Overloading

Safety Fuses

Chapter 24. Magnetism

- 24.1 Magnetism
- 24.2 Magnetic Poles
- 24.3 Magnetic Fields
- 24.4 Magnetic Domains
- 24.5 Electric Currents and Magnetic Fields

Practicing Physics

24.6 Electromagnets

Superconducting Electromagnets

24.7 Magnetic Forces

On Moving Charged Particles

On Current-Carrying Wires

Electric Meters

Electric Motors

24.8 Earths Magnetic Field

Cosmic Rays

24.9 Biomagnetism

MRI: Magnetic Resonance Imaging

Chapter 25. Electromagnetic Induction

- 25.1 Electromagnetic Induction
- 25.2 Faradays Law
- 25.3 Generators and Alternating Current
- 25.4 Power Production

Turbogenerator Power

MHD Power

- 25.5 Transformers
- 25.6 Self-Induction
- 25.7 Magnetic Braking
- 25.8 Power Transmission
- 25.9 Field Induction

Part Six: Light

Chapter 26. Properties of Light

- 26.1 Electromagnetic Waves
- 26.2 Electromagnetic Wave Velocity
- 26.3 The Electromagnetic Spectrum

Fractal Antennas

- 26.4 Transparent Materials
- 26.5 Speed of Light in a Transparent Medium
- 26.6 Opaque Materials

Shadows

- 26.7 Solar and Lunar Eclipses
- 26.8 Seeing LightThe Eye

Chapter 27. Color

- 27.1 Color in Our World
- 27.2 Selective Reflection
- 27.3 Selective Transmission

27.4 Mixing Colored Lights

Primary Colors

Complementary Colors

27.5 Mixing Colored Pigments

The Color Black

27.6 Sky Colors

Why the Sky Is Blue

Why Sunsets Are Red

Practicing Physics

Why an Eclipsed Moon Is Red

Why Clouds Are White

27.7 Water Colors

Why Water Is Greenish Blue

Why Deep Water Is Black

Chapter 28. Reflection and Refraction

28.1 Reflection

Principle of Least Time

28.2 Law of Reflection

Plane Mirrors

Diffuse Reflection

28.3 Refraction

Index of Refraction

Mirage

28.4 Cause of Refraction

Isaac Newton And His Study Of Light

28.5 Dispersion

28.6 The Rainbow

Alterations in Sky Brightness

28.7 Total Internal Reflection

28.8 Lenses

Image Formation by a Lens

Pinhole Camera

28.9 Lens Defects

Chapter 29. Light Waves

29.1 Huygens Principle

29.2 Diffraction

X-Ray Diffraction

29.3 Superposition and Interference

Youngs Double Slit Experiment

29.4 Single-Color Thin-Film Interference

Interference Colors

Practicing Physics

29.5 Polarization

Three-Dimensional Viewing

29.6 Holography

Chapter 30. Light Emission

- 30.1 Light Emission
- 30.2 Excitation
- 30.3 Emission Spectra
- 30.4 Incandescence
- 30.5 Absorption Spectra
- 30.6 Fluorescence
- 30.7 Phosphorescence
- 30.8 Lamps

Incandescent Lamp

Fluorescent Lamp

Light-Emitting Diode

30.9 Lasers

Chapter 31. Light Quanta

- 31.1 Birth of the Quantum Theory
- 31.2 Quantization and Plancks Constant

Constants In Nature

31.3 Photoelectric Effect

Photovoltaic Cells

- 31.4 WaveParticle Duality
- 31.5 Double-Slit Experiment
- 31.6 Particles as Waves: Electron Diffraction
- 31.7 Uncertainty Principle
- 31.8 Complementarity

Predictability And Chaos

Part Seven: Atomic and Nuclear Physics

Chapter 32. The Atom and the Quantum

- 32.1 Discovery of the Atomic Nucleus
- 32.2 Discovery of the Electron

Unique Or Identical

- 32.3 Atomic Spectra: Clues to Atomic Structure
- 32.4 Bohr Model of the Atom

- 32.5 Explanation of Quantized Energy Levels: Electron Waves32.6 Quantum Mechanics32.7 Correspondence Principle
 - Higgs Boson

Chapter 33. The Atomic Nucleus and Radioactivity

- 33.1 X-rays and Radioactivity
- 33.2 Alpha, Beta, and Gamma Rays
- 33.3 Neutrinos
- 33.4 Environmental Radiation

Units of Radiation

Doses of Radiation

Radioactive Tracers

- 33.5 The Atomic Nucleus and the Strong Force
- 33.6 Radioactive Half-Life
- 33.7 Radiation Detectors
- 33.8 Transmutation of Elements

Natural Transmutation

Artificial Transmutation

33.9 Radiometric Dating

Food Irradiation

Chapter 34. Nuclear Fission and Fusion

- 34.1 Nuclear Fission
- 34.2 Nuclear Fission Reactors

Plutonium

34.3 The Breeder Reactor

The Thorium Reactor

- 34.4 Fission Power
- 34.5 MassEnergy Equivalence

Physics At Airport Security

- 34.6 Nuclear Fusion
- 34.7 Controlling Fusion

Part Eight: Relativity

Chapter 35. Special Theory of Relativity

35.1 Motion Is Relative

MichelsonMorley Experiment

- 35.2 Postulates of the Special Theory of Relativity
- 35.3 Simultaneity
- 35.4 Spacetime and Time Dilation

Clockwatching On A Trolley Car Ride

The Twin Trip

35.5 Addition of Velocities

Space Travel

Century Hopping

- 35.6 Length Contraction
- 35.7 Relativistic Momentum
- 35.8 Mass, Energy, and E 5 mc 2
- 35.9 The Correspondence Principle

Chapter 36. General Theory of Relativity

- 36.1 Principle of Equivalence
- 36.2 Bending of Light by Gravity
- 36.3 Gravity and Time: Gravitational Red Shift
- 36.4 Gravity and Space: Motion of Mercury
- 36.5 Gravity, Space, and a New Geometry
- 36.6 Gravitational Waves
- 36.7 Newtonian and Einsteinian Gravitation

Author Profile

Appendix A. On Measurement and Unit Conversions

Appendix B. More About Motion

Appendix C. Graphing

Appendix D. Vector Applications

Appendix E. Exponential Growth and Doubling Time

Odd-Numbered Answers

Glossary

Credits

Index

