


Physics for Scientists and Engineers

A Strategic Approach

with Modern Physics

FIFTH EDITION

Randall D. Knight

PHYSICS

For Scientists and Engineers | A Strategic Approach

WITH MODERN PHYSICS

GLOBAL EDITION

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Global Edition

Table of Contents

Cover

Half Title

Title Page

Copyright

About the Author

Preface to the Instructor

Preface to the Student

Brief Contents

Detailed Contents

Part I: Newtons Laws

Overview: Why Things Move

Chapter 1. Concepts of Motion

- 1.1 Motion Diagrams
- 1.2 Models and Modeling
- 1.3 Position, Time, and Displacement
- 1.4 Velocity
- 1.5 Linear Acceleration
- 1.6 Motion in One Dimension
- 1.7 Solving Problems in Physics
- 1.8 Units and Significant Figures

Summary

Questions And Problems

Chapter 2. Kinematics in One Dimension

- 2.1 Uniform Motion
- 2.2 Instantaneous Velocity
- 2.3 Finding Position from Velocity
- 2.4 Motion with Constant Acceleration
- 2.5 Free Fall

- 2.6 Motion on an Inclined Plane
- 2.7 Advanced Topic: Instantaneous Acceleration

Summary

Questions And Problems

Chapter 3. Vectors and Coordinate Systems

- 3.1 Scalars and Vectors
- 3.2 Using Vectors
- 3.3 Coordinate Systems and Vector Components
- 3.4 Unit Vectors and Vector Algebra

Summary

Questions And Problems

Chapter 4. Kinematics in Two Dimensions

- 4.1 Motion in Two Dimensions
- 4.2 Projectile Motion
- 4.3 Relative Motion
- 4.4 Uniform Circular Motion
- 4.5 Centripetal Acceleration
- 4.6 Nonuniform Circular Motion

Summary

Questions And Problems

Chapter 5. Force and Motion

- 5.1 Force
- 5.2 A Short Catalog of Forces
- 5.3 Identifying Forces
- 5.4 What Do Forces Do?
- 5.5 Newtons Second Law
- 5.6 Newtons First Law
- 5.7 Free-Body Diagrams

Summary

Questions And Problems

Chapter 6. Dynamics I: Motion Along a Line

- 6.1 The Equilibrium Model
- 6.2 Using Newtons Second Law
- 6.3 Mass, Weight, and Gravity
- 6.4 Friction
- 6.5 Drag
- 6.6 More Examples of Newtons Second Law

Summary

Questions And Problems

Chapter 7. Newtons Third Law

- 7.1 Interacting Objects
- 7.2 Analyzing Interacting Objects
- 7.3 Newtons Third Law
- 7.4 Ropes and Pulleys
- 7.5 Examples of Interacting-Objects Problems

Summary

Questions And Problems

Chapter 8. Dynamics II: Motion in a Plane

- 8.1 Dynamics in Two Dimensions
- 8.2 Uniform Circular Motion
- 8.3 Circular Orbits
- 8.4 Reasoning About Circular Motion
- 8.5 Nonuniform Circular Motion

Summary

Questions And Problems

Knowledge Structure: Part 1 Newtons Laws

Part II: Conservation Laws

Overview: Why Some Things Dont Change

Chapter 9. Work and Kinetic Energy

- 9.1 Energy Overview
- 9.2 Work and Kinetic Energy for a Single Particle
- 9.3 Calculating the Work Done
- 9.4 Restoring Forces and the Work Done by a Spring
- 9.5 Dissipative Forces and Thermal Energy
- 9.6 Power

Summary

Questions And Problems

Chapter 10. Interactions and Potential Energy

- 10.1 Potential Energy
- 10.2 Gravitational Potential Energy
- 10.3 Elastic Potential Energy
- 10.4 Conservation of Energy
- 10.5 Energy Diagrams

- 10.6 Force and Potential Energy
- 10.7 Conservative and Nonconservative Forces
- 10.8 The Energy Principle Revisited

Summary

Questions And Problems

Chapter 11. Impulse and Momentum

- 11.1 Momentum and Impulse
- 11.2 Conservation of Momentum
- 11.3 Collisions
- 11.4 Explosions
- 11.5 Momentum in Two Dimensions
- 11.6 Advanced Topic: Rocket Propulsion

Summary

Questions And Problems

Knowledge Structure: Part II Conservation Laws

Part III: Applications of Newtonian Mechanics

Overview: Power Over Our Environment

Chapter 12. Rotation of a Rigid Body

- 12.1 Rotational Motion
- 12.2 Rotation About the Center of Mass
- 12.3 Rotational Energy
- 12.4 Calculating Moment of Inertia
- 12.5 Torque
- 12.6 Rotational Dynamics
- 12.7 Rotation About a Fixed Axis
- 12.8 Static Equilibrium
- 12.9 Rolling Motion
- 12.10 The Vector Description of Rotational Motion
- 12.11 Angular Momentum
- 12.12 Advanced Topic: Precession of a Gyroscope

Summary

Questions And Problems

Chapter 13. Newtons Theory of Gravity

- 13.1 A Little History
- 13.2 Isaac Newton
- 13.3 Newtons Law of Gravity

- 13.4 Little g and Big G
- 13.5 Gravitational Potential Energy
- 13.6 Satellite Orbits and Energies

Summary

Questions And Problems

Chapter 14. Fluids and Elasticity

- 14.1 Fluids
- 14.2 Pressure
- 14.3 Measuring and Using Pressure
- 14.4 Buoyancy
- 14.5 Fluid Dynamics
- 14.6 Motion of a Viscous Fluid
- 14.7 Elasticity

Summary

Questions And Problems

Knowledge Structure: Part III Applications of Newtonian Mechanics

Part IV: Oscillations and Waves

Overview: The Wave Model

Chapter 15. Oscillations

- 15.1 Simple Harmonic Motion
- 15.2 SHM and Circular Motion
- 15.3 Energy in SHM
- 15.4 The Dynamics of SHM
- 15.5 Vertical Oscillations
- 15.6 The Pendulum
- 15.7 Damped Oscillations
- 15.8 Driven Oscillations and Resonance
- 15.9 Advanced Topic: Coupled Oscillations and Normal Modes

Summary

Questions And Problems

Chapter 16. Traveling Waves

- 16.1 An Introduction to Waves
- 16.2 One-Dimensional Waves
- 16.3 Sinusoidal Waves
- 16.4 Advanced Topic: The Wave Equation on a String
- 16.5 Sound and Light

- 16.6 Advanced Topic: The Wave Equation in a Fluid
- 16.7 Waves in Two and Three Dimensions
- 16.8 Power, Intensity, and Decibels
- 16.9 The Doppler Effect

Summary

Questions And Problems

Chapter 17. Superposition

- 17.1 The Principle of Superposition
- 17.2 Standing Waves
- 17.3 Standing Waves on a String
- 17.4 Standing Sound Waves and Musical Acoustics
- 17.5 Interference in One Dimension
- 17.6 The Mathematics of Interference
- 17.7 Interference in Two and Three Dimensions
- 17.8 Beats

Summary

Questions And Problems

Knowledge Structure: Part IV Oscillations and Waves

Part V: Thermodynamics

Overview: Its All About Energy

Chapter 18. A Macroscopic Description of Matter

- 18.1 Solids, Liquids, and Gases
- 18.2 Atoms and Moles
- 18.3 Temperature
- 18.4 Thermal Expansion
- 18.5 Phase Changes
- 18.6 Ideal Gases
- 18.7 Ideal-Gas Processes

Summary

Questions And Problems

Chapter 19. Work, Heat, and the First Law of Thermodynamics

- 19.1 Its All About Energy
- 19.2 Work in Ideal-Gas Processes
- 19.3 Heat
- 19.4 The First Law of Thermodynamics
- 19.5 Thermal Properties of Matter

- 19.6 Calorimetry
- 19.7 The Specific Heats of Gases
- 19.8 Heat-Transfer Mechanisms

Summary

Questions And Problems

Chapter 20. The Micro/Macro Connection

- 20.1 Connecting the Microscopic and the Macroscopic
- 20.2 Molecular Speeds and Collisions
- 20.3 Pressure in a Gas
- 20.4 Temperature
- 20.5 Thermal Energy and Specific Heat
- 20.6 Heat Transfer and Thermal Equilibrium
- 20.7 Irreversible Processes and the Second Law of Thermodynamics
- 20.8 Microstates, Multiplicity, and Entropy
- 20.9 Using Entropy

Summary

Questions And Problems

Chapter 21. Heat Engines and Refrigerators

- 21.1 Turning Heat into Work
- 21.2 Heat Engines and Refrigerators
- 21.3 Ideal-Gas Heat Engines
- 21.4 Ideal-Gas Refrigerators
- 21.5 The Limits of Efficiency
- 21.6 The Carnot Cycle

Summary

Questions And Problems

Knowledge Structure: Part V Thermodynamics

Part VI: Electricity and Magnetism

Overview: Forces and Fields

Chapter 22. Electric Charges and Forces

- 22.1 The Charge Model
- 22.2 Charge
- 22.3 Insulators and Conductors
- 22.4 Coulombs Law
- 22.5 The Electric Field

Summary

Questions And Problems

Chapter 23. The Electric Field

- 23.1 Electric Field Models
- 23.2 The Electric Field of Point Charges
- 23.3 The Electric Field of a Continuous Charge Distribution
- 23.4 The Electric Fields of Some Common Charge Distributions
- 23.5 The Parallel-Plate Capacitor
- 23.6 Motion of a Charged Particle in an Electric Field
- 23.7 Motion of a Dipole in an Electric Field

Summary

Questions And Problems

Chapter 24. Gausss Law

- 24.1 Symmetry
- 24.2 The Concept of Flux
- 24.3 Calculating Electric Flux
- 24.4 Gausss Law
- 24.5 Using Gausss Law
- 24.6 Conductors in Electrostatic Equilibrium

Summary

Questions And Problems

Chapter 25. The Electric Potential

- 25.1 Electric Potential Energy
- 25.2 The Potential Energy of Point Charges
- 25.3 The Potential Energy of a Dipole
- 25.4 The Electric Potential
- 25.5 The Electric Potential Inside a Parallel-Plate Capacitor
- 25.6 The Electric Potential of a Point Charge
- 25.7 The Electric Potential of Many Charges

Summary

Questions And Problems

Chapter 26. Potential and Field

- 26.1 Connecting Potential and Field
- 26.2 Finding the Electric Field from the Potential
- 26.3 A Conductor in Electrostatic Equilibrium
- 26.4 Sources of Electric Potential
- 26.5 Capacitance and Capacitors
- 26.6 The Energy Stored in a Capacitor

26.7 Dielectrics

Summary

Questions And Problems

Chapter 27. Current and Resistance

- 27.1 The Electron Current
- 27.2 Creating a Current
- 27.3 Current and Current Density
- 27.4 Conductivity and Resistivity
- 27.5 Resistance and Ohms Law

Summary

Questions And Problems

Chapter 28. Fundamentals of Circuits

- 28.1 Circuit Elements and Diagrams
- 28.2 Kirchhoffs Laws and the Basic Circuit
- 28.3 Energy and Power
- 28.4 Series Resistors
- 28.5 Real Batteries
- 28.6 Parallel Resistors
- 28.7 Resistor Circuits
- 28.8 Getting Grounded
- 28.9 RC Circuits

Summary

Questions And Problems

Chapter 29. The Magnetic Field

- 29.1 Magnetism
- 29.2 The Discovery of the Magnetic Field
- 29.3 The Source of the Magnetic Field: Moving Charges
- 29.4 The Magnetic Field of a Current
- 29.5 Magnetic Dipoles
- 29.6 Ampères Law and Solenoids
- 29.7 The Magnetic Force on a Moving Charge
- 29.8 Magnetic Forces on Current-Carrying Wires
- 29.9 Forces and Torques on Current Loops
- 29.10 Magnetic Properties of Matter

Summary

Questions And Problems

Chapter 30. Electromagnetic Induction

- 30.1 Induced Currents
- 30.2 Motional emf
- 30.3 Magnetic Flux
- 30.4 Lenzs Law
- 30.5 Faradays Law
- 30.6 Induced Fields
- 30.7 Induced Currents: Three Applications
- 30.8 Inductors
- 30.9 LC Circuits
- 30.10 LR Circuits

Summary

Questions And Problems

Chapter 31. Electromagnetic Fields and Waves

- 31.1 E or B? It Depends on Your Perspective
- 31.2 The Field Laws Thus Far
- 31.3 The Displacement Current
- 31.4 Maxwells Equations
- 31.5 Advanced Topic: Electromagnetic Waves
- 31.6 Properties of Electromagnetic Waves
- 31.7 Polarization

Summary

Questions And Problems

Chapter 32. AC Circuits

- 32.1 AC Sources and Phasors
- 32.2 Capacitor Circuits
- 32.3 RC Filter Circuits
- 32.4 Inductor Circuits
- 32.5 The Series RLC Circuit
- 32.6 Power in AC Circuits

Summary

Questions And Problems

Knowledge Structure: Part VI Electricity and Magnetism

Part VII: Optics

Overview: The Story of Light

Chapter 33. Wave Optics

33.1 Models of Light

- 33.2 The Interference of Light
- 33.3 The Diffraction Grating
- 33.4 Single-Slit Diffraction
- 33.5 Advanced Topic: A Closer Look at Diffraction
- 33.6 Circular-Aperture Diffraction
- 33.7 The Wave Model of Light
- 33.8 Interferometers

Summary

Questions And Problems

Chapter 34. Ray Optics

- 34.1 The Ray Model of Light
- 34.2 Reflection
- 34.3 Refraction
- 34.4 Image Formation by Refraction at a Plane Surface
- 34.5 Thin Lenses: Ray Tracing
- 34.6 Thin Lenses: Refraction Theory
- 34.7 Image Formation with Spherical Mirrors

Summary

Questions And Problems

Chapter 35. Optical Instruments

- 35.1 Lenses in Combination
- 35.2 The Camera
- 35.3 Vision
- 35.4 Optical Systems That Magnify
- 35.5 Color and Dispersion
- 35.6 The Resolution of Optical Instruments

Summary

Questions And Problems

Knowledge Structure: Part VII Optics

Part VIII: Relativity and Quantum Physics

Overview: Contemporary Physics

Chapter 36. Relativity

- 36.1 Relativity: Whats It All About?
- 36.2 Galilean Relativity
- 36.3 Einsteins Principle of Relativity
- 36.4 Events and Measurements

- 36.5 The Relativity of Simultaneity
- 36.6 Time Dilation
- 36.7 Length Contraction
- 36.8 The Lorentz Transformations
- 36.9 Relativistic Momentum
- 36.10 Relativistic Energy

Summary

Questions And Problems

Chapter 37. The Foundations of Modern Physics

- 37.1 Matter and Light
- 37.2 The Emission and Absorption of Light
- 37.3 Cathode Rays and X Rays
- 37.4 The Discovery of the Electron
- 37.5 The Fundamental Unit of Charge
- 37.6 The Discovery of the Nucleus
- 37.7 Into the Nucleus
- 37.8 Classical Physics at the Limit

Summary

Questions And Problems

Chapter 38. Quantization

- 38.1 The Photoelectric Effect
- 38.2 Einsteins Explanation
- 38.3 Photons
- 38.4 Matter Waves and Energy Quantization
- 38.5 Bohrs Model of Atomic Quantization
- 38.6 The Bohr Hydrogen Atom
- 38.7 The Hydrogen Spectrum

Summary

Questions And Problems

Chapter 39. Wave Functions and Uncertainty

- 39.1 Waves, Particles, and the Double-Slit Experiment
- 39.2 Connecting the Wave and Photon Views
- 39.3 The Wave Function
- 39.4 Normalization
- 39.5 Wave Packets
- 39.6 The Heisenberg Uncertainty Principle

Summary

Questions And Problems

Chapter 40. One-Dimensional Quantum Mechanics

- 40.1 The Schrödinger Equation
- 40.2 Solving the Schrödinger Equation
- 40.3 A Particle in a Rigid Box: Energies and Wave Functions
- 40.4 A Particle in a Rigid Box: Interpreting the Solution
- 40.5 The Correspondence Principle
- 40.6 Finite Potential Wells
- 40.7 Wave-Function Shapes
- 40.8 The Quantum Harmonic Oscillator
- 40.9 More Quantum Models
- 40.10 Quantum-Mechanical Tunneling

Summary

Questions And Problems

Chapter 41. Atomic Physics

- 41.1 The Hydrogen Atom: Angular Momentum and Energy
- 41.2 The Hydrogen Atom: Wave Functions and Probabilities
- 41.3 The Electrons Spin
- 41.4 Multielectron Atoms
- 41.5 The Periodic Table of the Elements
- 41.6 Excited States and Spectra
- 41.7 Lifetimes of Excited States
- 41.8 Stimulated Emission and Lasers

Summary

Questions And Problems

Chapter 42. Nuclear Physics

- 42.1 Nuclear Structure
- 42.2 Nuclear Stability
- 42.3 The Strong Force
- 42.4 The Shell Model
- 42.5 Radiation and Radioactivity
- 42.6 Nuclear Decay Mechanisms
- 42.7 Biological Applications of Nuclear Physics

Summary

Questions And Problems

Knowledge Structure: Part VIII Relativity and Quantum Physics

Appendix A. Mathematics Review

Appendix B. Periodic Table Of Elements

Appendix C. Atomic And Nuclear Data

Answers To Stop To Think Questions And Odd-Numbered Exercises And Problems

Credits

Index

