cisco...

Official Cert Guide

Advance your IT career with hands-on learning

Volume 1

Hands-On Labs

Review Exercises

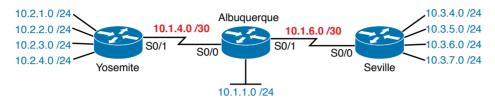
Config Checklists

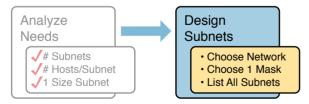
CCNA 200-301, Volume 1 Official Cert Guide

In addition to the wealth of updated content, this new edition includes a series of free hands-on exercises to help you master several real-world configuration and troubleshooting activities. These exercises can be performed on the CCNA 200-301 Network Simulator Lite, Volume 1 software included for free on the companion website that accompanies this book. This software, which simulates the experience of working on actual Cisco routers and switches, contains the following 21 free lab exercises, covering topics in Part II and Part III, the first hands-on configuration sections of the book:

- 1. Configuring Local Usernames
- 2. Configuring Hostnames
- 3. Interface Status I
- 4. Interface Status II
- 5. Interface Status III
- 6. Interface Status IV
- 7. Configuring Switch IP Settings
- 8. Switch IP Address
- 9. Switch IP Connectivity I
- 10. Switch CLI Configuration Process I
- 11. Switch CLI Configuration Process II
- 12. Switch CLI Exec Mode
- 13. Setting Switch Passwords
- 14. Interface Settings I
- 15. Interface Settings II
- 16. Interface Settings III
- 17. Switch Forwarding I
- 18. Switch Security I
- 19. Switch Interfaces and Forwarding Configuration Scenario
- 20. Configuring VLANs Configuration Scenario
- 21. VLAN Troubleshooting

If you are interested in exploring more hands-on labs and practice configuration and troubleshooting with more router and switch commands, go to www.pearsonitcertification.com/ networksimulator for demos and to review the latest products for sale. However, you still need to be ready to work with designs that use more than one mask in different subnets of the same Class A, B, or C network. In fact, a design that does just that is said to be using variable-length subnet masks (VLSM). For example, the internetwork in Figure 11-10 shows 11 subnets, two with a mask of /30, and nine with a mask of /24. By using more than one mask among all the subnets of one Class A network (10.0.0.0), the design uses VLSM.




Figure 11-10 Internetwork with VLSM: Network 10.0.0.0, >1 Mask

For the current CCNA 200-301 exam, using VLSM causes no issues, although it does cause problems with some older routing protocols. The only routing protocol included in the CCNA blueprint (OSPF) works the same regardless of whether the design uses VLSM. Just be aware of the term and what it means and that it should not impact the features included in the current CCNA exam.

NOTE VLSM has been featured in the CCNA exam topics in the past. If you want to read a little more about VLSM, check out Appendix N, "Variable-Length Subnet Masks," on the companion website for this book.

Make Design Choices

Now that you know how to analyze the IP addressing and subnetting needs, the next major step examines how to apply the rules of IP addressing and subnetting to those needs and make some choices. In other words, now that you know how many subnets you need and how many host addresses you need in the largest subnet, how do you create a useful subnetting design that meets those requirements? The short answer is that you need to do the three tasks shown on the right side of Figure 11-11.

Figure 11-11 Input to the Design Phase, and Design Questions to Answer

Choose a Classful Network

In the original design for what we know of today as the Internet, companies used registered public classful IP networks when implementing TCP/IP inside the company. By the

mid-1990s, an alternative became more popular: private IP networks. This section discusses the background behind these two choices because it impacts the choice of what IP network a company will then subnet and implement in its enterprise internetwork.

Public IP Networks

The original design of the Internet required that any company that connected to the Internet had to use a registered public IP network. To do so, the company would complete some paperwork, describing the enterprise's internetwork and the number of hosts existing, plus plans for growth. After submitting the paperwork, the company would receive an assignment of either a Class A, B, or C network.

Public IP networks—and the administrative processes surrounding them—ensure that all the companies that connect to the Internet all use unique IP addresses. In particular, after a public IP network is assigned to a company, only that company should use the addresses in that network. That guarantee of uniqueness means that Internet routing can work well because there are no duplicate public IP addresses.

For example, consider the example shown in Figure 11-12. Company 1 has been assigned public Class A network 1.0.0.0, and company 2 has been assigned public Class A network 2.0.0.0. Per the original intent for public addressing in the Internet, after these public network assignments have been made, no other companies can use addresses in Class A networks 1.0.0.0 or 2.0.0.0.

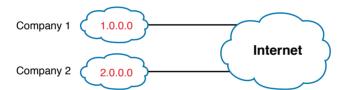


Figure 11-12 Two Companies with Unique Public IP Networks

This original address assignment process ensured unique IP addresses across the entire planet. The idea is much like the fact that your telephone number should be unique in the universe, your postal mailing address should also be unique, and your email address should also be unique. If someone calls you, your phone rings, but no one else's phone rings. Similarly, if company 1 is assigned Class A network 1.0.0.0, and the engineers at Company 1 assign address 1.1.1.1 to a particular PC, that address should be unique in the universe. A packet sent through the Internet to destination 1.1.1.1 should only arrive at this one PC inside company 1, instead of being delivered to some other host.

Growth Exhausts the Public IP Address Space

By the early 1990s, the world was running out of public IP networks that could be assigned. During most of the 1990s, the number of hosts newly connected to the Internet was growing at a double-digit pace per month. Companies kept following the rules, asking for public IP networks, and it was clear that the current address-assignment scheme could not continue without some changes. Simply put, the number of Class A, B, and C networks supported by the 32-bit address in IP version 4 (IPv4) was not enough to support one public classful network per organization, while also providing enough IP addresses in each company.

11

NOTE The universe has run out of public IPv4 addresses in a couple of significant ways. IANA, which assigns public IPv4 address blocks to the five Regional Internet Registries (RIR) around the globe, assigned the last of the IPv4 address spaces in early 2011. By 2015, ARIN, the RIR for North America, exhausted its supply of IPv4 addresses, so companies must return unused public IPv4 addresses to ARIN before they have more to assign to new companies. Try an online search for "ARIN depletion" to see pages about the current status of available IPv4 address space for just one RIR example.

The Internet community worked hard during the 1990s to solve this problem, coming up with several solutions, including the following:

- A new version of IP (IPv6), with much larger addresses (128 bit)
- Assigning a subset of a public IP network to each company, instead of an entire public IP network, to reduce waste, using a feature called "Classless Interdomain Routing" (CIDR)
- Network Address Translation (NAT), which allows the use of private IP networks

These three solutions matter to real networks today. However, to stay focused on the topic of subnet design, this chapter focuses on the third option, and in particular, the private IP networks that can be used by an enterprise when also using NAT. (Be aware that Chapter 10, "Network Address Translation" in CCNA 200-301 Official Cert Guide, Volume 2, gives more detail about the last two bullets in the list, while Part VII of this book discusses the first bullet item (IPv6) in more depth.

Focusing on the third item in the bullet list, NAT allows multiple companies to use the exact same private IP network, using the same IP addresses as other companies while still connecting to the Internet. For example, Figure 11-13 shows the same two companies connecting to the Internet as in Figure 11-12, but now with both using the same private Class A network 10.0.0.0.

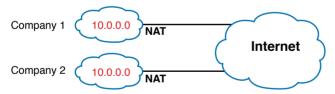


Figure 11-13 Reusing the Same Private Network 10.0.0.0 with NAT

Both companies use the same classful IP network (10.0.0.0). Both companies can implement their subnet design internal to their respective enterprise internetworks, without discussing their plans. The two companies can even use the exact same IP addresses inside network 10.0.0.0. And amazingly, at the same time, both companies can even communicate with each other through the Internet.

The technology called Network Address Translation makes it possible for companies to reuse the same IP networks, as shown in Figure 11-13. NAT does this by translating the IP addresses inside the packets as they go from the enterprise to the Internet, using a small number of public IP addresses to support tens of thousands of private IP addresses. That one bit of information is not enough to understand how NAT works; however, to keep the focus

on subnetting, the book defers the discussion of how NAT works until CCNA 200-301 Official Cert Guide, Volume 2. For now, accept that most companies use NAT, and therefore, they can use private IP networks for their internetworks.

Private IP Networks

When using NAT—and almost every organization that connects to the Internet uses NAT—the company can simply pick one or more of the private IP networks from the list of reserved private IP network numbers. RFC 1918 defines the list of available private IP networks, which is summarized in Table 11-2.

Table 11-2 RFC 1918 Private Address Space

Class of Networks	Private IP Networks	Number of Networks
A	10.0.0.0	1
В	172.16.0.0 through 172.31.0.0	16
С	192.168.0.0 through 192.168.255.0	256

NOTE According to an informal survey I ran on my blog a few years back, about half of the respondents said that their networks use private Class A network 10.0.0.0, as opposed to other private networks or public networks.

From the perspective of making IPv4 work for the entire world, private IP networks have helped preserve and extend IPv4 and its use in every enterprise and throughout the Internet. In particular, private networks have improved IPv4's implementation worldwide by

- Avoiding Using Another Organization's Public Address Range for Private Networks: Some organizations have a part of their networks that need zero Internet access. The hosts in that part of their network need IP addresses. RFC 1918 suggests that truly private networks—that is, networks with no need for Internet connectivity—use addresses from the RFC 1918 list of private networks.
- Avoiding/Delaying IPv4 Address Exhaustion: To delay the day in which all public IPv4 addresses were assigned to organizations as public addresses, RFC 1918 calls for the use of NAT along with private networks for the addresses internal to an organization.
- Reducing Internet Routers' Routing Table Size: Using private networks also helps reduce the size of the IP routing tables in Internet routers. For instance, routers in the Internet do not need routes for the private IP networks used inside organizations (in fact, ISPs filter those routes).

Choosing an IP Network During the Design Phase

Today, some organizations use private IP networks along with NAT, and some use public IP networks. Most new enterprise internetworks use private IP addresses throughout the network, along with NAT, as part of the connection to the Internet. Those organizations that already have registered public IP networks—often obtained before the addresses started

11

running short in the early 1990s—can continue to use those public addresses throughout their enterprise networks.

After the choice to use a private IP network has been made, just pick one that has enough IP addresses. You can have a small internetwork and still choose to use private Class A network 10.0.0.0. It might seem wasteful to choose a Class A network that has over 16 million IP addresses, especially if you need only a few hundred. However, there's no penalty or problem with using a private network that is too large for your current or future needs.

For the purposes of this book, most examples use private IP network numbers. For the design step to choose a network number, just choose a private Class A, B, or C network from the list of RFC 1918 private networks.

Regardless, from a math and concept perspective, the methods to subnet a public IP network versus a private IP network are the same.

Choose the Mask

If a design engineer followed the topics in this chapter so far, in order, he would know the following:

- The number of subnets required
- The number of hosts/subnet required
- That a choice was made to use only one mask for all subnets so that all subnets are the same size (same number of hosts/subnet)
- The classful IP network number that will be subnetted

This section completes the design process, at least the parts described in this chapter, by discussing how to choose that one mask to use for all subnets. First, this section examines default masks, used when a network is not subnetted, as a point of comparison. Next, the concept of borrowing host bits to create subnet bits is explored. Finally, this section ends with an example of how to create a subnet mask based on the analysis of the requirements.

Classful IP Networks Before Subnetting

Before an engineer subnets a classful network, the network is a single group of addresses. In other words, the engineer has not yet subdivided the network into many smaller subsets called subnets.

When thinking about an unsubnetted classful network, the addresses in a network have only two parts: the network part and host part. Comparing any two addresses in the classful network:

- The addresses have the same value in the network part.
- The addresses have different values in the host part.

The actual sizes of the network and host part of the addresses in a network can be easily predicted, as shown in Figure 11-14.

Figure 11-14 Format of Unsubnetted Class A, B, and C Networks

In Figure 11-14, N and H represent the number of network and host bits, respectively. Class rules define the number of network octets (1, 2, or 3) for Classes A, B, and C, respectively; the figure shows these values as a number of bits. The number of host octets is 3, 2, or 1, respectively.

Continuing the analysis of classful network before subnetting, the number of addresses in one classful IP network can be calculated with the same 2^H – 2 formula previously discussed. In particular, the size of an unsubnetted Class A, B, or C network is as follows:

- \blacksquare Class A: $2^{24} 2 = 16,777,214$
- \blacksquare Class B: $2^{16} 2 = 65,534$
- \blacksquare Class C: $2^8 2 = 254$

Borrowing Host Bits to Create Subnet Bits

To subnet a network, the designer thinks about the network and host parts, as shown in Figure 11-15, and then the engineer adds a third part in the middle: the subnet part. However, the designer cannot change the size of the network part or the size of the entire address (32 bits). To create a subnet part of the address structure, the engineer borrows bits from the host part. Figure 11-15 shows the general idea.

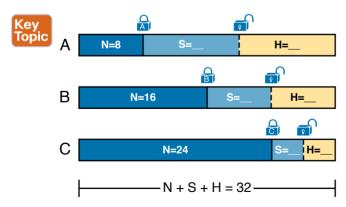


Figure 11-15 Concept of Borrowing Host Bits

Figure 11-15 shows a rectangle that represents the subnet mask. N, representing the number of network bits, remains locked at 8, 16, or 24, depending on the class. Conceptually, the designer moves a (dashed) dividing line into the host field, with subnet bits (S) between the