

GLOBAL
EDITION

Essentials of Genetics

TENTH EDITION

Klug • Cummings • Spencer • Palladino • Killian

EVOLVING CONCEPT OF THE GENE

The Evolving Concept of the Gene is a unique feature, integrated into key chapters, which highlights how scientists' understanding of the gene has changed over time. By underscoring how the conceptualization of the gene has evolved, our goal is to help students appreciate the process of discovery that has led to an ever more sophisticated understanding of hereditary information.

CHAPTER 3 pg. 66 Based on the pioneering work of Gregor Mendel, the gene was viewed as a heritable unit factor that determines the expression of an observable trait, or phenotype. ■

CHAPTER 4 pg. 82 Based on the work of many geneticists following the rediscovery of Mendel's work in the very early part of the twentieth century, the chromosome theory of inheritance was put forward, which hypothesized that chromosomes are the carriers of genes and that meiosis is the physical basis of Mendel's postulates. In the ensuing 40 years, the concept of a gene evolved to reflect the idea that this hereditary unit can exist in multiple forms, or alleles, each of which can have an impact on the phenotype in different ways, leading to incomplete dominance, codominance, and even lethality. It became clear that the process of mutation was the source of new alleles. ■

CHAPTER 7 pg. 160 Based on the gene-mapping studies in *Drosophila* and many other organisms from the 1920s through the mid-1950s, geneticists regarded genes as hereditary units organized in a specific sequence along chromosomes, between which recombination could occur. Genes were thus viewed as indivisible "beads on a string." ■

CHAPTER 9 pg. 199 Based on the model of DNA put forward by Watson and Crick in 1953, the gene was viewed for the first time in molecular terms as a sequence of nucleotides in a DNA helix that encodes genetic information. ■

CHAPTER 18 pg. 383 Based on the work of the ENCODE project, we now know that DNA sequences that have previously been thought of as "junk DNA," because they do not encode proteins, are nonetheless often transcribed into what we call noncoding RNA (ncRNA). Since the function of some of these RNAs is now being determined, we must consider whether the concept of the gene should be expanded to include DNA sequences that encode ncRNAs. At this writing, there is no consensus, but it is important for you to be aware of these current findings as you develop your final interpretation of a gene. ■

CHAPTER 15 pg. 319 The groundbreaking work of Jacob, Monod, and Lwoff in the early 1960s, which established the operon model for the regulation of gene expression in bacteria, expanded the concept of the gene to include noncoding regulatory sequences that are present upstream (5') from the coding region. In bacterial operons, the transcription of several contiguous structural genes whose products are involved in the same biochemical pathway is regulated in a coordinated fashion. ■

CHAPTER 13 pg. 278 In the 1940s, a time when the molecular nature of the gene had yet to be defined, groundbreaking work of Beadle and Tatum provided the first experimental evidence concerning the product of genes, their "one-gene:one-enzyme" hypothesis. This idea received further support and was later modified to indicate that one gene specifies one polypeptide chain. ■

CHAPTER 12 pg. 260 The elucidation of the genetic code in the 1960s supported the concept that the gene is composed of a linear series of triplet nucleotides encoding the amino acid sequence of a protein. While this is indeed the case in bacteria and viruses, in 1977, it became apparent that in eukaryotes, the gene is divided into coding sequences, called exons, which are interrupted by noncoding sequences, called introns (intervening sequences), which must be spliced out during production of the mature mRNA. ■

Essentials of Genetics, Global Edition

Table of Contents

Front Cover

Title Page

Copyright Page

About the Authors

Content

Preface

1 Introduction to Genetics

1.1 Genetics Has an Interesting Early History

1.2 Genetics Progressed from Mendel to DNA in Less Than a Century

1.3 Discovery of the Double Helix Launched the Era of Molecular Genetics

1.4 Development of Recombinant DNA Technology Began the Era of DNA Cloning

1.5 The Impact of Biotechnology Is Continually Expanding

1.6 Genomics, Proteomics, and Bioinformatics Are New and Expanding Fields

1.7 Genetic Studies Rely on the Use of Model Organisms

1.8 Genetics Has Had a Profound Impact on Society

Problems and Discussion Questions

2 Mitosis and Meiosis

2.1 Cell Structure Is Closely Tied to Genetic Function

2.2 Chromosomes Exist in Homologous Pairs in Diploid Organisms

2.3 Mitosis Partitions Chromosomes into Dividing Cells

2.4 Meiosis Creates Haploid Gametes and Spores and Enhances Genetic Variation in Species

2.5 The Development of Gametes Varies in Spermatogenesis Compared to Oogenesis

2.6 Meiosis Is Critical to Sexual Reproduction in All Diploid Organisms

2.7 Electron Microscopy Has Revealed the Physical Structure of Mitotic and Meiotic Chromosomes

EXPLORING GENOMICS

PubMed: Exploring and Retrieving Biomedical Literature

Pearson

Table of Contents

CASE STUDY: Timing is everything

Insights and Solutions

Problems and Discussion Questions

3 Mendelian Genetics

3.1 Mendel Used a Model Experimental Approach to Study Patterns of Inheritance

3.2 The Monohybrid Cross Reveals How One Trait Is Transmitted from Generation to Generation

3.3 Mendel's Dihybrid Cross Generated a Unique F₂ Ratio

3.4 The Trihybrid Cross Demonstrates That Mendel's Principles Apply to Inheritance of Multiple Traits

3.5 Mendel's Work Was Rediscovered in the Early Twentieth Century

EVOLVING CONCEPT OF THE GENE

3.6 Independent Assortment Leads to Extensive Genetic Variation

3.7 Laws of Probability Help to Explain Genetic Events

3.8 Chi-Square Analysis Evaluates the Influence of Chance on Genetic Data

3.9 Pedigrees Reveal Patterns of Inheritance of Human Traits

3.10 Tay-Sachs Disease: The Molecular Basis of a Recessive Disorder in Humans

EXPLORING GENOMICS

Online Mendelian Inheritance in Man

CASE STUDY: To test or not to test

Insights and Solutions

Problems and Discussion Questions

4 Modification of Mendelian Ratios

4.1 Alleles Alter Phenotypes in Different Ways

4.2 Geneticists Use a Variety of Symbols for Alleles

4.3 Neither Allele Is Dominant in Incomplete, or Partial, Dominance

4.4 In Codominance, the Influence of Both Alleles in a Heterozygote Is Clearly Evident

4.5 Multiple Alleles of a Gene May Exist in a Population

4.6 Lethal Alleles Represent Essential Genes

EVOLVING CONCEPT OF THE GENE

4.7 Combinations of Two Gene Pairs with Two Modes of Inheritance Modify the 9:3:3:1 Ratio

Table of Contents

- 4.8 Phenotypes Are Often Affected by More Than One Gene
- 4.9 Complementation Analysis Can Determine if Two Mutations Causing a Similar Phenotype Are Alleles of the Same Gene
- 4.10 Expression of a Single Gene May Have Multiple Effects
- 4.11 X-Linkage Describes Genes on the X Chromosome
- 4.12 In Sex-Limited and Sex-Influenced Inheritance, an Individual's Gender Influences the Phenotype
- 4.13 Genetic Background and the Environment Affect Phenotypic Expression
- 4.14 Extranuclear Inheritance Modifies Mendelian Patterns

GENETICS, ETHICS, AND SOCIETY

Mitochondrial Replacement and Three-Parent Babies

CASE STUDY: Is it all in the genes?

Insights and Solutions

Problems and Discussion Questions

5 Sex Determination and Sex Chromosomes

- 5.1 X and Y Chromosomes Were First Linked to Sex Determination Early in the Twentieth Century

5.2 The Y Chromosome Determines Maleness in Humans

5.3 The Ratio of Males to Females in Humans Is Not 1.0

5.4 Dosage Compensation Prevents Excessive Expression of X-Linked Genes in Humans and Other Mammals

5.5 The Ratio of X Chromosomes to Sets of Autosomes Can Determine Sex

5.6 Temperature Variation Controls Sex Determination in Reptiles

GENETICS, ETHICS, AND SOCIETY

A Question of Gender: Sex Selection in Humans

CASE STUDY: Is the baby a boy or a girl?

Insights and Solutions

Problems and Discussion Questions

6 Chromosome Mutations: Variation in Number and Arrangement

6.1 Variation in Chromosome Number: Terminology and Origin

6.2 Monosomy and Trisomy Result in a Variety of Phenotypic Effects

6.3 Polyploidy, in Which More Than Two Haploid Sets of Chromosomes Are Present, Is Prevalent in Plants

6.4 Variation Occurs in the Composition and Arrangement of Chromosomes

Table of Contents

- 6.5 A Deletion Is a Missing Region of a Chromosome
- 6.6 A Duplication Is a Repeated Segment of a Chromosome
- 6.7 Inversions Rearrange the Linear Gene Sequence
- 6.8 Translocations Alter the Location of Chromosomal Segments in the Genome
- 6.9 Fragile Sites in Human Chromosomes Are Susceptible to Breakage

GENETICS, ETHICS, AND SOCIETY

- Down Syndrome and Prenatal Testing
- The New Eugenics?

CASE STUDY: Fish tales

Insights and Solutions

Problems and Discussion Questions

7 Linkage and Chromosome Mapping in Eukaryotes

- 7.1 Genes Linked on the Same Chromosome Segregate Together
- 7.2 Crossing Over Serves as the Basis of Determining the Distance between Genes during Mapping
- 7.3 Determining the Gene Sequence during Mapping Requires the Analysis of Multiple Crossovers
- 7.4 As the Distance between Two Genes Increases, Mapping Estimates Become More Inaccurate

EVOLVING CONCEPT OF THE GENE

- 7.5 Chromosome Mapping Is Now Possible Using DNA Markers and Annotated Computer Databases

7.6 Other Aspects of Genetic Exchange

EXPLORING GENOMICS

- Human Chromosome Maps on the Internet

CASE STUDY: Links to autism

Insights and Solutions

Problems and Discussion Questions

8 Genetic Analysis and Mapping in Bacteria and Bacteriophages

- 8.1 Bacteria Mutate Spontaneously and Are Easily Cultured
- 8.2 Genetic Recombination Occurs in Bacteria
- 8.3 The F Factor Is an Example of a Plasmid
- 8.4 Transformation Is Another Process Leading to Genetic Recombination in Bacteria
- 8.5 Bacteriophages Are Bacterial Viruses

Table of Contents

8.6 Transduction Is Virus-Mediated Bacterial DNA Transfer

GENETICS, ETHICS, AND SOCIETY

Multidrug-Resistant Bacteria: Fighting with Phage

CASE STUDY: To test or not to test

Insights and Solutions

Problems and Discussion Questions

9 DNA Structure and Analysis

9.1 The Genetic Material Must Exhibit Four Characteristics

9.2 Until 1944, Observations Favored Protein as the Genetic Material

9.3 Evidence Favoring DNA as the Genetic Material Was First Obtained during the Study of Bacteria and Bacteriophages

9.4 Indirect and Direct Evidence Supports the Concept That DNA Is the Genetic Material in Eukaryotes

9.5 RNA Serves as the Genetic Material in Some Viruses

9.6 The Structure of DNA Holds the Key to Understanding Its Function

EVOLVING CONCEPT OF THE GENE

9.7 Alternative Forms of DNA Exist

9.8 The Structure of RNA Is Chemically Similar to DNA, but Single Stranded

9.9 Many Analytical Techniques Have Been Useful during the Investigation of DNA and RNA

EXPLORING GENOMICS

Introduction to Bioinformatics: BLAST

CASE STUDY: Credit where credit is due

Insights and Solutions

Problems and Discussion Questions

10 DNA Replication

10.1 DNA Is Reproduced by Semiconservative Replication

10.2 DNA Synthesis in Bacteria Involves Five Polymerases, as Well as Other Enzymes

10.3 Many Complex Issues Must Be Resolved during DNA Replication

10.4 A Coherent Model Summarizes DNA Replication

10.5 Replication Is Controlled by a Variety of Genes

10.6 Eukaryotic DNA Replication Is Similar to Replication in Bacteria, but Is More Complex

Table of Contents

10.7 Telomeres Solve Stability and Replication Problems at Eukaryotic Chromosome Ends

GENETICS, ETHICS, AND SOCIETY

Telomeres: The Key to a Long Life?

CASE STUDY: At loose ends

Insights and Solutions

Problems and Discussion Questions

11 Chromosome Structure and DNA Sequence Organization

11.1 Viral and Bacterial Chromosomes Are Relatively Simple DNA Molecules

11.2 Mitochondria and Chloroplasts Contain DNA Similar to Bacteria and Viruses

11.3 Specialized Chromosomes Reveal Variations in the Organization of DNA

11.4 DNA Is Organized into Chromatin in Eukaryotes

11.5 Eukaryotic Genomes Demonstrate Complex Sequence Organization Characterized by Repetitive DNA

11.6 The Vast Majority of a Eukaryotic Genome Does Not Encode Functional Genes

EXPLORING GENOMICS

Database of Genomic Variants: Structural Variations in the Human Genome

CASE STUDY: Helping or hurting?

Insights and Solutions

Problems and Discussion Questions

12 The Genetic Code and Transcription

12.1 The Genetic Code Exhibits a Number of Characteristics

12.2 Early Studies Established the Basic Operational Patterns of the Code

12.3 Studies by Nirenberg, Matthaei, and Others Deciphered the Code

12.4 The Coding Dictionary Reveals the Function of the 64 Triplets

12.5 The Genetic Code Has Been Confirmed in Studies of Bacteriophage MS2

12.6 The Genetic Code Is Nearly Universal

12.7 Different Initiation Points Create Overlapping Genes

12.8 Transcription Synthesizes RNA on a DNA Template

12.9 RNA Polymerase Directs RNA Synthesis

12.10 Transcription in Eukaryotes Differs from Bacterial Transcription in Several Ways

12.11 The Coding Regions of Eukaryotic Genes Are Interrupted by Intervening

Table of Contents

- Sequences Called Introns
- EVOLVING CONCEPT OF THE GENE
- 12.12 RNA Editing May Modify the Final Transcript
- 12.13 Transcription Has Been Visualized by Electron Microscopy
- CASE STUDY: Treatment dilemmas
- GENETICS, ETHICS, AND SOCIETY
 - Treating Duchenne Muscular Dystrophy with Exon-Skipping Drugs
 - Insights and Solutions
 - Problems and Discussion Questions
- 13 Translation and Proteins
 - 13.1 Translation of mRNA Depends on Ribosomes and Transfer RNAs
 - 13.2 Translation of mRNA Can Be Divided into Three Steps
 - 13.3 High-Resolution Studies Have Revealed Many Details about the Functional Bacterial Ribosome
 - 13.4 Translation Is More Complex in Eukaryotes
 - 13.5 The Initial Insight That Proteins Are Important in Heredity Was Provided by the Study of Inborn Errors of Metabolism
 - 13.6 Studies of Neurospora Led to the One-Gene: One-Enzyme Hypothesis
 - 13.7 Studies of Human Hemoglobin Established That One Gene Encodes One Polypeptide
 - EVOLVING CONCEPT OF THE GENE
 - 13.8 Variation in Protein Structure Is the Basis of Biological Diversity
 - 13.9 Proteins Function in Many Diverse Roles
 - CASE STUDY: Crippled ribosomes
 - Insights and Solutions
 - Problems and Discussion Questions
- 14 Gene Mutation, DNA Repair, and Transposition
 - 14.1 Gene Mutations Are Classified in Various Ways
 - 14.2 Mutations Can Be Spontaneous or Induced
 - 14.3 Spontaneous Mutations Arise from Replication Errors and Base Modifications
 - 14.4 Induced Mutations Arise from DNA Damage Caused by Chemicals and Radiation
 - 14.5 Single-Gene Mutations Cause a Wide Range of Human Diseases

Table of Contents

- 14.6 Organisms Use DNA Repair Systems to Counteract Mutations
- 14.7 The Ames Test Is Used to Assess the Mutagenicity of Compounds
- 14.8 Transposable Elements Move within the Genome and May Create Mutations
- CASE STUDY: An unexpected diagnosis
- Insights and Solutions
- Problems and Discussion Questions

15 Regulation of Gene Expression in Bacteria

- 15.1 Bacteria Regulate Gene Expression in Response to Environmental Conditions
- 15.2 Lactose Metabolism in *E. coli* Is Regulated by an Inducible System
- 15.3 The Catabolite-Activating Protein (CAP) Exerts Positive Control over the lac Operon
- 15.4 The Tryptophan (trp) Operon in *E. coli* Is a Repressible Gene System
 - EVOLVING CONCEPT OF THE GENE
- 15.5 RNA Plays Diverse Roles in Regulating Gene Expression in Bacteria
- 15.6 CRISPR-Cas Is an Adaptive Immune System in Bacteria
- CASE STUDY: MRSA in the National Football League (NFL)
- Insights and Solutions
- Problems and Discussion Questions

16 Regulation of Gene Expression in Eukaryotes

- 16.1 Organization of the Eukaryotic Cell Facilitates Gene Regulation at Several Levels
- 16.2 Eukaryotic Gene Expression Is Influenced by Chromatin Modifications
- 16.3 Eukaryotic Transcription Initiation Requires Specific Cis-Acting Sites
- 16.4 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites
- 16.5 Activators and Repressors Interact with General Transcription Factors and Affect Chromatin Structure
- 16.6 Regulation of Alternative Splicing Determines Which RNA Spliceforms of a Gene Are Translated
- 16.7 Gene Expression Is Regulated by mRNA Stability and Degradation
- 16.8 Noncoding RNAs Play Diverse Roles in Posttranscriptional Regulation
- 16.9 mRNA Localization and Translation Initiation Are Highly Regulated
- 16.10 Posttranslational Modifications Regulate Protein Activity
- EXPLORING GENOMICS

Table of Contents

Tissue-Specific Gene Expression

CASE STUDY: A mysterious muscular dystrophy

Insights and Solutions

Problems and Discussion Questions

17 Recombinant DNA Technology

17.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and Cloning Vectors

17.2 DNA Libraries Are Collections of Cloned Sequences

17.3 The Polymerase Chain Reaction is A Powerful Technique for Copying DNA

17.4 Molecular Techniques for Analyzing DNA and RNA

17.5 DNA Sequencing Is the Ultimate Way to Characterize DNA at the Molecular Level

17.6 Creating Knockout and Transgenic Organisms for Studying Gene Function

17.7 Genome Editing with CRISPR-Cas

EXPLORING GENOMICS

Manipulating Recombinant Dna: Restriction Mapping

CASE STUDY: Ethical issues and genetic technology

Insights and Solutions

Problems and Discussion Questions

18 Genomics, Bioinformatics, and Proteomics

18.1 Whole-Genome Sequencing Is Widely Used for Sequencing and Assembling Entire Genomes

18.2 DNA Sequence Analysis Relies on Bioinformatics Applications and Genome Databases

18.3 The Human Genome Project Revealed Many Important Aspects of Genome Organization in Humans

18.4 The Omics Revolution Has Created a New Era of Biological Research

EVOLVING CONCEPT OF THE GENE

18.5 Comparative Genomics Provides Novel Information about the Human Genome and the Genomes of Model Organisms

18.6 Metagenomics Applies Genomics Techniques to Environmental Samples

18.7 Transcriptome Analysis Reveals Profiles of Expressed Genes in Cells and Tissues

18.8 Proteomics Identifies and Analyzes the Protein Composition of Cells

Table of Contents

18.9 Synthetic Genomes and the Emergence of Synthetic Biology GENETICS, ETHICS, AND SOCIETY

Privacy and Anonymity in the Era of Genomic Big Data

EXPLORING GENOMICS

Contigs, Shotgun Sequencing, and Comparative Genomics

CASE STUDY: Your microbiome may be a risk factor for disease

Insights and Solutions

Problems and Discussion Questions

19 The Genetics of Cancer

19.1 Cancer Is a Genetic Disease at the Level of Somatic Cells

19.2 Cancer Cells Contain Genetic Defects Affecting Genomic Stability, DNA Repair, and Chromatin Modifications

19.3 Cancer Cells Contain Genetic Defects Affecting Cell-Cycle Regulation

19.4 Proto-oncogenes and Tumor-suppressor Genes Are Altered in Cancer Cells

19.5 Cancer Cells Metastasize and Invade Other Tissues

19.6 Predisposition to Some Cancers Can Be Inherited

19.7 Environmental Agents Contribute to Human Cancers

GENETICS, ETHICS, AND SOCIETY

Breast Cancer: The Ambiguities and Ethics of Genetic Testing

CASE STUDY: Cancer-killing bacteria

Insights and Solutions

Problems and Discussion Questions

20 Quantitative Genetics and Multifactorial Traits

20.1 Quantitative Traits Can Be Explained in Mendelian Terms

20.2 The Study of Polygenic Traits Relies on Statistical Analysis

20.3 Heritability Values Estimate the Genetic Contribution to Phenotypic Variability

20.4 Twin Studies Allow an Estimation of Heritability in Humans

20.5 Quantitative Trait Loci Are Useful in Studying Multifactorial Phenotypes

CASE STUDY: A chance discovery

GENETICS, ETHICS, AND SOCIETY

Rice, Genes, and the Second Green Revolution

Insights and Solutions

Problems and Discussion Questions

21 Population and Evolutionary Genetics

Table of Contents

- 21.1 Genetic Variation Is Present in Most Populations and Species
- 21.2 The HardyWeinberg Law Describes Allele Frequencies and Genotype Frequencies in Population Gene Pools
- 21.3 The HardyWeinberg Law Can Be Applied to Human Populations
- 21.4 Natural Selection Is a Major Force Driving Allele Frequency Change
- 21.5 Mutation Creates New Alleles in a Gene Pool
- 21.6 Migration and Gene Flow Can Alter Allele Frequencies
- 21.7 Genetic Drift Causes Random Changes in Allele Frequency in Small Populations
- 21.8 Nonrandom Mating Changes Genotype Frequency but Not Allele Frequency
- 21.9 Speciation Can Occur through Reproductive Isolation
- 21.10 Phylogeny Can Be Used to Analyze Evolutionary History

GENETICS, ETHICS, AND SOCIETY

Tracking Our Genetic Footprints out of Africa

CASE STUDY: A tale of two Olivias

Insights and Solutions

Problems and Discussion Questions

SPECIAL TOPICS IN MODERN GENETICS 1

Epigenetics

- ST 1.1 Molecular Alterations to the Genome Create an Epigenome
- ST 1.2 Epigenetics and Monoallelic Gene Expression
- ST 1.3 Epigenetics and Cancer
- ST 1.4 Epigenetic Traits Are Heritable
- ST 1.5 Epigenome Projects and Databases

SPECIAL TOPICS IN MODERN GENETICS 2

Genetic Testing

- ST 2.1 Testing for Prognostic or Diagnostic Purposes
- ST 2.2 Prenatal Genetic Testing to Screen for Conditions
- BOX 1 Recommended Uniform Screening Panel
- ST 2.3 Genetic Testing Using Allele-Specific Oligonucleotides
- ST 2.4 Microarrays for Genetic Testing
- ST 2.5 Genetic Analysis of Individual Genomes by DNA Sequencing
- BOX 2 Undiagnosed Diseases Network

Table of Contents

BOX 3 Genetic Analysis for Pathogen Identification During Infectious Disease Outbreaks

ST 2.6 Genome-Wide Association Studies Identify Genome Variations That Contribute to Disease

ST 2.7 Genetic Testing and Ethical, Social, and Legal Questions

SPECIAL TOPICS IN MODERN GENETICS 3

Gene Therapy

ST 3.1 What Genetic Conditions Are Candidates for Treatment by Gene Therapy?

ST 3.2 How Are Therapeutic Genes Delivered?

BOX 1 ClinicalTrials.gov

ST 3.3 The First Successful Gene Therapy Trial

ST 3.4 Gene Therapy Setbacks

ST 3.5 Recent Successful Trials by Conventional Gene Therapy Approaches

ST 3.6 Genome-Editing Approaches to Gene Therapy

ST 3.7 Future Challenges and Ethical Issues

BOX 2 Glybera: The First Commercial Gene Therapy to be Approved in the West
Lasted Only Five Years

BOX 3 Gene Doping for Athletic Performance?

SPECIAL TOPICS IN MODERN GENETICS 4

Advances in Neurogenetics: The Study of Huntington Disease

ST 4.1 The Search for the Huntington Gene

BOX 1 George Huntington and His Namesake Disease

ST 4.2 The HTT Gene and Its Protein Product

ST 4.3 Molecular and Cellular Alterations in Huntington Disease

ST 4.4 Transgenic Animal Models of Huntington Disease

ST 4.5 Cellular and Molecular Approaches to Therapy

SPECIAL TOPICS IN MODERN GENETICS 5

DNA Forensics

ST 5.1 DNA Profiling Methods

BOX 1 The Pitchfork Case: The First Criminal Conviction Using DNA Profiling

ST 5.2 Interpreting DNA Profiles

ST 5.3 Technical and Ethical Issues Surrounding DNA Profiling

BOX 2 The Kennedy Brewer Case: Two Bite-Mark Errors and One Hit

BOX 3 A Case of Transference: The Lukis Anderson Story

Table of Contents

SPECIAL TOPICS IN MODERN GENETICS 6

Genetically Modified Foods

ST 6.1 What Are GM Foods?

BOX 1 The Tale of GM Salmon Downstream Effects?

ST 6.2 Methods Used to Create GM Plants

ST 6.3 GM Foods Controversies

BOX 2 The New CRISPR Mushroom

ST 6.4 The Future of GM Foods

SPECIAL TOPICS IN MODERN GENETICS 7

Genomics and Precision Medicine

ST 7.1 Pharmacogenomics

BOX 1 Preemptive Pharmacogenomic Screening: The PGEN4Kids Program

ST 7.2 Precision Oncology

BOX 2 Precision Cancer Diagnostics and Treatments: The Lukas Wartman Story

BOX 3 Cell Types in the Innate and Adaptive Immune Systems

BOX 4 Steps in Cytotoxic T-cell Recognition, Activation, and Destruction of Cancer Cells

ST 7.3 Precision Medicine and Disease Diagnostics

ST 7.4 Technical, Social, and Ethical Challenges

BOX 5 Beyond Genomics: Personal Omics Profiling

Appendix Solutions to Selected Problems and Discussion Questions

Glossary

Credits

Index

Back Cover