

Contents

Lectures

Viscoelastic Behavior of Polymeric Liquids <i>R.B. Bird</i>	1
Experimental Evidence for Non-Newtonian Behavior of Polymeric Liquids	
Rheometry and Material Functions	
Continuum Mechanical Ideas and Empirical Constitutive Equations	
Kinetic Theory Ideas and Dumbbell Models	
Kinetic Theory Ideas and Chain Models	
Problems Associated with the Elasticity of Liquids <i>D.D. Joseph</i>	22
Physical Phenomena Associated with Hyperbolicity and Change of Type	
Conceptual Ideas	
Mathematical Theory	
Rheology and Shear Induced Structure of Fluids <i>S. Hess</i>	51
Introduction	
Pressure Tensor, Viscosity Coefficients	
The Structure of Streaming Fluids	
Concluding Remarks	
On the Dynamics of Polymers in Solution <i>J.M. Rubí, J. Bonet Avalos and D. Bedeaux</i>	74
Introduction	
Equation of Motion of a Polymer	
Polymer Dynamics	
Conclusions	
Mesoscopic Dynamics and Thermodynamics: Applications to Polymeric Fluids <i>M. Grmela</i>	99
Introduction	
Hierarchy of Descriptions	
Thermodynamics - Geometry of the State Space	
Dynamics - Physical Foundation of Thermodynamics	
Rheological Modelling	
Thermodynamics and Dynamics of Driven Systems	
Concluding Remarks	

Conformation Tensor Rheological Models <i>P.J. Carreau and M. Grmela</i>	126
Introduction	
Governing Equations	
Predictions and Comparison with Experiments	
Concluding Remarks	
Biofluids as Structured Media: Rheology and Flow	
Properties of Blood	158
<i>D. Quemada</i>	
Introduction	
Main Characteristics of Blood Flows	
Blood as a Concentrated Dispersion	
Blood as a Shear-Thinning Fluid	
Blood as a Thixotropic and Viscoelastic Fluid	
Modelling of Blood Microcirculation	
Concluding Remarks	
Phase Separation of Flowing Polymer Solutions	194
<i>B.A. Wolf</i>	
Introduction	
Procedures and Observations	
Calculation of Phase Diagrams	
Discussion	
Towards a Unified Formulation of Microrheological Models <i>R.J.J. Jongschaap</i>	215
Introduction	
Theory	
Applications	
Discussion	
Adhesion and Rheology (Abstract)	248
<i>P.G. de Gennes</i>	
 Seminars	
Rheology of Hard Sphere Suspensions <i>B.U. Felderhof</i>	250

Extended Irreversible Thermodynamics Versus Rheology <i>G. Lebon, D. Jou and J. Casas-Vázquez</i>	257
Objectivity and the Extended Thermodynamic Description of Rheology <i>P.C. Dauby</i>	278
Convection in Viscoelastic Fluids <i>C.Pérez-García, J. Martínez-Mardones and J. Millán</i>	292
Fractional Relaxation Equations for Viscoelasticity and Related Phenomena <i>T.F. Nonnenmacher</i>	309
Relaxation Functions of Rheological Constitutive Equations with Fractional Derivatives: Thermodynamical Constraints <i>C. Friedrich</i>	321
A Simple One Dimensional Model Showing Glasslike Dynamical Behavior <i>J.J. Brey and M.J. Ruiz-Montero</i>	331
Statistical Conformation of a Polymer in a Nematic Medium Under a Shear Flow Using the Rouse Model <i>Y. Thiriet, R. Hocquart, F. Lequeux and J.F. Palierne</i>	344
On the Modelling of Stationary Heat Transfer by the Use of Dissipative Networks <i>G. Brunk</i>	356
Thermomechanics of Porous Media Filled with a Fluid <i>W. Derski</i>	367